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An extended three-body-force shell model has been developed for the lattice dynamics of ionic crystals by
incorpo..z ing the effect of three-body and second-neighbor forces in the framework of the shell model with

both ions polarizable. The versatility of the model has been tested by carrying out a qualitative analysis of the
elastic and dielectric behavior of ionic crystals of rocksalt structure in general and a quantitative analysis of
the phonon dispersion in sodium ha1ides in particular. The model has been found to possess some remarkable

features and describe more satisfactorily the dispersion of phonons in sodium halides as compared to those
revealed by the original three-body-force shell model and other models.

I. INTRODUCTION

During the last decade some useful phenomeno-
logical models' 4 have been developed for the lat-
tice dynamics of ionic crystals. These models
generally employ the electron-shell deformation
effects in terms of effective many-body interac-
tions' in the framework of the rigid-shell models

(RSM) to explain the Cauchy violation and dynami-
cal properties. Parallel to this, various micro-
scopic models have been developed for the study
of general properties of phonons. However, one
difficulty common to all of them is that their math-
ematical equations are too complicated and unless
drastic approximations are made numerical cal-
culations become impossible. In contrast, the
formulations of other models' 4 are relatively
simple and easily adaptable for the computations.
Consequently, the most extensively used amongst
them are the breathing-shell model' and three-
body-force shell model' (TSM). The basis for the
introduction of the radial expansion rate of the
shells as an additional degree of freedom in the
former is, however, not clearly understood. Al-
so, it takes account of the Cauchy violation only
approximately, while the nature of three-body
forces is well known and their inclusion in TSM
is based on I owdin-Lundqvist microscopic
theory' '" which is considered to be the most
appealing and realistic approach to represent the
interatomic interactions and explain the Cauchy
violation in ionic crystals. In addition, the TSM
framework is almost identical~~ to the microscopic
model of Sinha. Thus, it may be regarded as
ingenious Mending of microscopic considerations
in the phenomenological scheme of RSM. Further-
more, the TSM has described satisfactorily the
lattice dynamics of almost all the ionic crystals,
namely, the monovalent metal halides+ ~ and di-
valent metal oxides. '

Despite several remarkable successes outlined
above, the TSM suffers from some limitations

which have recently been pointed out by Singh and

Qupta. '7 These limitations are subject to an in-
consistency which is involved in the definition of
ionic, core, and shell charges and leads to the
incorrect expressions for the electrical and mech-
anical polarizabilities. Also, the short-range
interactions are limited only to the first neighbors
while the same between second neighbors contrib-
ute significantly in most of the cases. These
deficiencies clearly indicate the necessity for
further refinement of TSM for better description
of interatomic forces and lattice dynamics of ionic
solids.

The need for such refinements is also obvious
from the remark of Singh and Verma that the

discrepancies observed in the prediction of disper-
sion curves of sodium halides are so significant
at some points that TSM deserves to be refined
further. One possiMe direction of improvement
suggested by them'2 is the inclusion of second-
neighbor short-range interactions which will en-
able TSM to establish closer identity with Sinha's
microscopic model and reduce the largest devi. a-
tion appearing in the longitudinal optical branch
along the (q, q, q) direction, especially in the case
of NaI.

The chief object of this paper is to report the
corrected and extended framework of TSM and

investigate the applicability of the resultant model
designated as extended TSM (ETSM) to describe
the lattice dynamics of sodium halides. The ef-
forts devoted in this regard have revealed several
remarkable features outlined in the following:

(i) The off-diagonal elements of the dynamical
matrix corresponding to ETSM contain a complete-
ly new and significant term besides minor modifi-
cations introduced in various other quantities in-
volved in their expressions as compared to the
original TSM.

(ii) The zone-center optical vibration frequen-
cies involving three-body-force parameters while
satisfying the Lyddane-Sachs-Teller (LST) rela-
tions introduce important modifications in other

14



2626 R. K. SINGH AND KANTI CHANDRA 14

microscopic relations like the Clausius-Mossotti
(CM), Lorentz-Lorenz (LL), Szigeti, ~ and Ruffaao

relations. These derivations are of great academ-
ic interest and importance since the relations
clearly demonstrate the three-body-force effects
and correlate the optical and mechanical properties
of solids through interatomic forces and crystal
polarizabilities. The numerical effect of these
modifications seems to be quite significant in the
case of solids with large Cauchy discrepancy. It
is worth mentioning that the analytical expressions
of these relations although apparently different
from those reported by derma and Agrawal ul-
timately lead to similar conclusions.

(iii) The ETSM framework seems to be quite
capable and adequate for the description of phonons
and interatomic interactions in ionic crystals.

The latter fact is self-evident from the conse-
quences explored from ETSM to predict the mea-
sured phonon dispersion data which provide the
most dependable test of any model since the eigen-
vectors of the normal modes are not well known.
The analysis carried out here for sodium halides
has yielded excellent agreement between theoreti-
cal and experimental dispersion curves in which
much information referring to optical, dielectric,
elastic and thermodynamic properties of crystals
is embodied. The motivation for the selection of

sodium-halide crystals has been the availability
of such curves for all of them (NaF, NaCl, "
NaBr, and" Nal) and the continued interest in
them since the last few decades. Further work on
the features of their infrared absorption and Raman
scattering spectra and Debye-temperature variations
even though they provide a relatively less s ens itive
test, is in progress and expected to reveal their
interpretation with almost the same success as
that on the phonons.

A brief theory of ETSM with its noteworthy fea-
tures has been described in Sec. II. The results
computed for the sodium halides with this model
have been presented in Sec. III and discussed in
Sec. IV.

II. THEORY OF EXTENDED TSM (ETSM)

A. General formulations

The theory of ETSM basically includes the ef-
fect of three-body forces and short-range repul-
sion effective up to second neighbors in the frame-
work of both ions polarizable shell model. The
former effect has been included on the basis of
Lowdin-Lundqvist microscopic theory of overlap
of adjacent ions in crystals. The general formal-
ism of ETSM can be derived from the crystal po-
tential energy expressed as (Lundqvist")

Z Z e
U(r)= —PP '„',„, +—gg C(~r(lk; I'k')~)+ Pg P Z, ef (r(lk;l"k")) ' . . . ( )

t
(lkgl'k' ) ( l kit l 'k' gi' ' k' ' )

where the first two terms represent the usual two-
body long-range Coulomb and short-range repul-
sive interaction potentials. The last term con-
tains interactions of three-body character (Low-
din, 'o Lundqvist~') which can be calculated as if a
charge nq= +Z,ef(r) is transferred to the ion (lk)
from the neighboring ion (l "k") due to the overlap
of electron shells and this in turn interacts with

Z, , e at (l'k') via Coulomb's law. Here f(r) is a
function proportional to the square of the overlap
integrals ' between two neighboring ions and de-
pendent on the separation (r) between them. As
usual, it can be shown that three-body forces of
Eq. (1) modify the long-range Coulomb and short-
range repulsive parts and introduce an explicitly
three-body term to the dynamical matrix of ionic
crystals of rocksalt structure.

Based on Eq. (1) and postulating the overlap
repulsion effective upto. the second neighbors and
following closely the method of Woods, Cochran,
and Brockhouse, the equations of motion of ETSM
can be written

(u MU=(R+Z C'Z )U+(T+Z C'Y ) W,

0=(& + Y C'Z )U+(6+K+ Y C'Y ) W,

(2)

(3)

( .; )' , .;( ;,). .
k, +(R;;), o' ' k;+(R, ,), 0'

(4)
which have been modified significantly as com-
pared to those derived from the original TSM.

In Eqs. (2) and (3) R, T, and S are (6&&6) ma-

where Z e=Z[1+6f(ro)] e denotes the effective
ionic charge (Cochran26) modified from its original
values Ze (Woods e& al. ). In view of the small-
ness of three-body force parameter fo [=f(ro)], we
can write Z =+Z(l+12f, )'~' since (1+6fo) can be
approximated as (1+12f0). Consequently, the
original core and shell charges (X, Y) will be
modified to (X, Y ) given by Z =X + Y =xZ
+yZ with the reduced charges (x, y) such that x
+y =+1. This correction has led to the following
expressions for the electrical and mechanical
polarizabilities:
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trices that represent the short-range "atom-
atom, ""atom-dipole, " and "dipole-dipole" inter-
action matrices, respectively. In order to re-
duce the number of parameters they have been
treated e(lual (It = T= 9) by allowing the short-
range fox"ces to act only through the shells. The
expressions required to evaluate R have already
been derived by Cowley. 37 C' represents the
modified long-range interaction matrix given by

O' =C+Z Zr+~V,

where C and V are the Coulomb and three-body
interaction matrices already defined and evalu-
ated by Kellermann28 Rnd derma and Sivgh, re-
spectively.

It seems appropriate at this juncture to point
out the feature which mex its attention and occurs
mainly due te the diffex'ence iD the representation
of C' in the present form and that of derma and
Singh' (see also Verma and Agrawal'9) as

Thi.s representation seems questionable since
as such it allows Z to attain the power 4 instead
of 2 in the equations of motion [E(ls. (2) and (3)].
The above difference also leads to the differences
appeRring throughout in various formulas de-
scribing optical behavior of ionic crystals to be
described a little later. However, this inadvertent
error could not be detected in numex'ical analysis
cax ried out by &erma and Agrawal since in their
computer program Z has been multiplied only
with C and not with V.

The elimination of W from E(ls. (2) and (3) leads
to the usual seculax determinant

]D —m„(d
/
=0,

with its (6&& 6) dynamical matrix

D(q)=(R+Z O'Z ) -(T+Z O' F„)

x(S+Z+ F.C'F.) '(T'+ F„C'Z ). (6)

the long-wavelength aspects of ETSM.

B. Long-wavelength aspect of ETSM

In order to investigate the lang-wavelength
characteristics of ETSM, we will follow closely
the method of long waves as adapted to the shell
model by Cowley ', to save space, the arguments
parallel to those presented there will hot be gen-
erally repeated.

1. Long-wave elastic behavior

The expressions for the elastic constants can
be derived from the dynamical matrix of ETSM
and obtained to be

Cqq--(e /4ro)[-5. 112Z +A(2y~(Au+Amer)

+ 2 (Bn + 822) + 9.3204Z&of()],
Ogm = (e /4&o) [0.226Z' —8~+ a(A„+A32)

—g(8), + 82,) + 9.3204Z&0f0],

C44=(e /4&0)[2. 556Z +Bt~+ a(Au+ 38)()

+ 4(A22+ 38,~)]. (11)

(9)

(10)

here A;, and B;; are the radial and tangential
force constants between nearest- (i 0 j) and next-
nearest-neighbor (f =j) tons defined as

—Ur

Introducing these notations in E(I. (1) and imposing
it to the equilibrium condition

This matrix along symmetry directions reduces
to (2x 2) with elements D(&~(q), Dz~8(q), and D&~(q)

=DR~(q) The expres. sions for them derived re-
cently by Singh and Gupta show that the off-dia-
gonal elements D;2~(q) contain a completely new
term which has appreciable contribution of about
(5-10)%when the shell charges are treated un-
equal Rnd contributes zero for equal shell charge
considerations. In order to calculate the eigen-
values (~) for any general (or symmetry) direction
the solution of E(I. (7) will require the knowledge
of the parametexs involved in the dynamical ma-
trix. These parameters are generally calculated
by relating them with macroscopic data like elastic,
optic, and dielectric constants. The derivation of
these relations can be carried out by examining

(13)

In view of this relation, the above elastic constants
lead to the Cauchy violation

C,2
—C~, = (e /4&0) (9.3204Zro f ())

Rnd the compressibility

I/p = 3(C„+2C„)=ft,/6~, + (e'/12m ,') (A„+28„
+A22+ 2822) + (e /12m 0) (2V. 9612Zrof0) . (15)

The first term is usual Boxn-model contribution,
the middle one is due to the second-neighbor short-
range interactions and the last one is purely three-
body interaction term.
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2. Long-wave optieaI behavior

In order to demonstrate qualitatively the capabil-
ities of ETSM to describe the optical behavior of
solids certain well-known macroscopic relations
have been derived in this section. These relations
have although been derived (Born and Huang'0)

earlier but by neglecting the effect of overlap of
electron shells of the ions.

a. Modified C-A arsd I.-L relations. The ex-
pression for the effective field (E,«) polarizing
the ion can be derived from the crystal energy
given by Eq. (1) and written (Kellermann )

g ff —E,„t+~3 n'P+ ~P,

where F.,„, is the external field. The second and

last terms are contributed by the long-range Cou-
lomb and three-body interactions, respectively.
I' represents the polarization due to the ions with

effective charge +Z e and the abbreviation X stands
for

X.= 16vZro f0/3Z2 .

(23) with the help of L-L and C-M relations (19)
mill lead to the folio@ring I ST relations:

(~L/~T)q-0 = «0/«

~'s = ~'T[(»0+ 2)/(«. + 2)].
(24)

(25)

«0 = [1+(tat v + 3x) (n + n 1}//V]

~ [1—,'v(n+ n, )/V]-',

«„=[1+(Sv+3&}n/V](1-yen/V) 1

=f~/fT .

(27)

(28)

c. &eigeti re«tio11s. Using Eqs. (20) and (21),
the splitting of optical phonons can be obtained as

t (~', —~T) =[3{Z'e)'/VfQT](& v+~). (29)

Here, u~ is the triply degenerate infrared fre-
quency given by

t1vs =Ro[l+ (&/V} (n+ n,)](1+Xn/V) ', (26)

and can be derived from Eq. (16). The stattc-
and high-frequency dielectric constants in above
relations read as

Noir, employing the polarizability relations

P = (n/V) E,«and I'/E = (« —1)/4v, (18)

one could easily obtain from Eq. (16) the following
modified I.I. and CM relations;

Alternatively, it can also be expressed as

t (~'.—~', ) = [4v(Z. +d, - &d)'
'e/fV. f,]

& (1+12f0+ 4Zro f0) (1+12fo) '. (3o)

(~~vr+X)n/V «„-1
1 1. (Xn/V) «„+2

(~4v+ &}(n+ n, )/V «0 —1

1+ g[(n+ n )/V] «0+2
(19)

Here, n and +I correspond to the electronic and

ionic polarizabilities, respectively.
t I.yddane S.achs bette-r(I. ST)-relations. Fol-

lowing usual procedure, the long-a&ave optical
vibration frequencies {~„,~T) can be written

t1 ~L = Rt+ (811/3V) [(Z'e)~/f~] (1+6Z ~Zrof,'),

tt ver = Ro —(4v/3V) (Z'e)'/f T, (21)

&which by means of simple algebraic manipulations
can be recasted to the most symmetrical form

This splitting as compared to one derived from
the original TSM

p. ((u2„- (u2T) = [4v(Z + d, —d2)2e2/V f„fT]
x (1 + 12fo + 4Zra f0)

qualitatively differs by a factor (1+12fo)
Now, substituting the LST relation (24) into

Eq. (29) we get,

t1 ~T(»0/« —1)

= [3(Z'e)'/Vf'Tt (fT/f 1.}(3 11+~) (32)

8111ce « =f1/fT f1'olll Eq. (28) slid

(«+2)'=(fz+2fT)'/fT=(9/fT)(1+~n/V)'.

Therefore, the Eq. (32) reduces to

(Z'e)'(» „+2)' (~3m+ &)

3 V(»0 —» „) (1+Xn/V}' '

t1~'„=R,'[1+ (-,
' v+ 3X) (n + n, )/V]

~[i.(~..») /V]-,

t ~T =Ro[1 3v(n+n. )/V](1 --vnjV) ',
{22)

(23)

~T=[4v(».+2)'/9t V(»0-» )] e*' .

This represents the first Szigeti relation with
modified Szigeti effective charge given by

where

Ro =Ra —e (da/n, + d22/na) = (Z'e)'/n„

Z =Z +d& -d&,

f,= 1 + (', v+3~) n/V, f, =1 —S vn/V .
The elimination of u and +I from Eqs. (22) and

e' = [Z'(1+ 3X/4v)"' (1+Xn/V)']e

This effective charge is contributed by both the
three-body forces arising from the electron shell
deformations and the shell distortions due to
overlap of neighboring ions.
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at (E, —Z eP )'' ' Z, —Z eP
(37)

where o.", and af represent the cation polarizabili-
ties in crystalline and free state of ions, Ei and

E~ are mean excitation energies which can be
determined using the values of polarizabilities
(Pauling"} and ionic radii (Pauling' ), Q = —e o /
rp is the Madlung energy, c = h /8v m, and n is
the number of electrons in the ion.

It is evident from the above ETSM description
of dielectric behavior that three-body forces in-
troduce important modifications in L-L, C-M,
Szigeti, and Buffa relations and leave the LST
relations unaffected. A similar conclusion has
also been drawn by Verma and Agrawal ' but their
expressions slightly differ from those derived by
us to the basic difference in the representation
of C' as pointed out earlier [see Eqs. (5) and (6)].

e. Strategy for Parameter determination The.
ETSM theory described above contains 12 param-
eters: 4& B&3 A&& 8» A.z~ 822 d& d2 n~
Qo, Z~, and 'Yofo. The exP1'esslolls collllec'tlIlg
them with macroscopic quantities: C» C g2 C44,
+L +T +p 6p and & „, are just sufficient to
determine only 8 parameters. The problem of
evaluating the rest, 4 parameters has been solved
by deriving the expressions for the known fre-
quencies corresponding to the L point (0. 5, 0. 5,
0. 5) given below:

ml~LA(L) = Rp+ (e'/v) (~» + Bll) —e 'd', /o,

+ (e'/V) C,',(Z. + d, )' [1+(o,/V)C'„]-',

(38)

By employing simple manipulations in the ex-
pressions of P given by Eq. (15), the second mod-
ified Szigeti relation can be obtained as

(ti'/P) = (ti*/ti) o(1+( e'/Rov) [(All+2B11

+A +2B )+27.9612zr f']j,
where (P*/P) e represents the original Szigeti re-
lation given by

(ti*/P) o = [1 —(e'/R, ) (d', /&1+ d o/&p) '1. (36)

The modification introduced in the second Szigeti
relation (35) is evident from the last two terms
which are contributed by the second-neighbor and
three-body lnterac tlons.

d. Modified Ruffa's equation The .ions experi-
ence loosening and tightening effects when they
enter the crystal from free state due to the nature
of the Madelung potential at the cation and anion
sites according to Buffa's theory. ' In ETSM,
since the usual Madelung energy has been mod-
ified by a factor Z = +Z(1+ 12fo)'t p, therefore the
modified Buffa's equations will be given by

moulo(L) =Rp+ (e /V) (2Aoo yBop) —e dp/&p

+ (e'/V) C', (Z —d, )' [1+(n /V) C ', „] ',
(38)

ml" T~(L}= Ro+ (e'/2 V}(A»+ 5B11)—e'd 1/a,

+ (e'/V)C'„(Z. + d, )'[1+(o,/V)C', ]-',
(40)

moolTO(L) —Rp + (e /2V) (Apo + 5Bpp) —cod I/oto

+("/V}C'„(Z.—d.)'[1+(o,/V)C,', ] ',
(41)

Ro= (e /V) (Alp+ 2B~),
C ll ——[(C1„„+2C 1„)

+(V,„,+ 2V„,)Z.'Zrof o]o.p. o. , o. ,

c'„=—[(c,„„-c,„,}+(v„„-v„,)z-.'z~,f,']. . . , , ,

In view of the scarcity of useful equations and
the necessity f'or determination of crystal polariz-
abilities (o,, ao), we have employed a reasonable
assumption according to which the ratio of the
electronic polarizabilities of free ions is equal
to that of the iona in crystals, i. e. , (n, /no)
= (al/up) . The justification for this assumption
has been given by Carabatos and Prevot. " The
use of such an assumption became essential in our
case since the four quantities (ooL, &uT, eo, e „) are
equivalent to only three independent quantities in
view of LST relation. The knowledge of the param-
eters thus obtained enables one to compute the
phonon spectra and associated phsycial properties
of the crystals with ETSM.

III. COMPUTATIONS AND RESULTS

A detailed theoretical treatment of ETSM
presented in the preceding section shows qualita-
tively the role of second-neighbor and three-body
forces to describe the dynamical and dielectric
properties of ionic crystals. This analysis, how-
ever, alone cannot lead to a definite conclusion
about their roles unless the effects are thoroughly
investigated quantitatively. Thus, in order to test
the versatility of the model completely it has been
applied to compute the dispersion curves of sodium
halides for phonons propagating along principal
symmetry directions 4, &, and A of the crystals,
These calculations have been performed using the
model parameters listed in Table I and obtained
with the macroscopic data given in Table II and
the formulation described in Sec. II. It may also
be pointed out that in order to achieve satisfactory
agreement and reasonable values of the param-
meters, the polarizability ratio in case of NaBr
and NaI have been taken from the fitted values re-
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Parameters NaF NaCl NaBr Nal

Table I. Model parameters for sodium halides.

Values

NaF
F'

(2,0.
r h

B12

G1

Q2

di
d2

ttl

&of(}

].0.924 79
—l.061 56
—l.471 89

0.069 13
1.37163

—0.16939
0.485 23
0.761 15
0.010 07
0.208 51
0.998 63

—0.01966

11.645 84
—1.255 81
—0.94540

0.167 66
1.027 67

—0.085 39
0.616 30
2. 580 00
0 ~ 002 88
0.267 63
l. 003 66

—0.015 06

12.554 19
—l.466 OO

—l.080 06
0.120 92
1.309 09
0, 108 ll
1.550 00
3.600 00
0.004 80
0.267 29
1.030 42

—0.078 31

11.745 69
-0.987 66
-2.177 98

0.323 77
l.997 58

-0.504 17
1.921 38
4.211 51
0.022 14
0.365 99
l.001 31

—0.003 50

l0.0

8.0.

6.0'
0
Z

4.0.
4

2.0.

ported by Reid et al. and Woods et al. ,
' respec-

tively.
The phonon dispersion curves derived from

ETSM and those determined from the neutron
spectrometry for NaF, NaCl, NaBr, and NaI have
been displayed in Figs. 1-4, respectively. The
dispersion curves obtained by Melvin et al. 2 using
the deformable-shell model (DSM) have also been
shown in the same figures. This will enable us to
judge the relative merit of ETSM over DSM by
visual comparison.

IV. DISCUSSIONS

A glance at the dispersion curves given in the
Figs. 1-4 reveals excellent agreement between

0.0 0,4 0.4 0,0 0.2 0.4
g~ ~q q~

FIG. 1. Dispersion curves for NaF. Theoretical
curves (solid line) ETSM, (dashed line) DSM (Ref. 2).
Experimental points (Ref. 22) (o—longitudinal, = trans-
verse).

theoretical and experimental results for almost
all the sodium halides. As compared to our re-
sults, the DSM results show considerably large
deviations from the experimental ones especially
towards the higher-wave-vector region for the
optic (h„h„Z~, Zs, A~, and &Q) and acoustic (Z,
and A, ) branches in almost all the materials under
consideration. The maximum deviations are
generally (8-12)%with exceptionally high up to 15%

Table II. Input data for sodium halides.

Constants

Cff(10 dyn cm )

C(2(10 dyn cm )

C44(10 dyn cm ~)

v, (r) (10" sec )

vT(I') (10 sec )

vz, (L) (10 sec ')

vT, (L)(10 sec )

v&&(L) (10 sec )

vT„(L) (10' sec )

NaF
values

9.710

2.430

2.800

12.176

7.385

9.980

6.190

8.543

5.145

22 5.172

22 6.907

22 4.168

22 5, 332

22 3,613

23

23

Nacl
Ref. values Ref.

36 5.838 39

36 1.194 39

36 1.327 39

7, 830 23

2.160 24

NaBr
values Ref.

4.800 42

0.542

1.070 42

6.220 24

4.040 24

5.830 24

3.810

3.180 24

NaI
values Ref.

3.500

2.360

1.530

25

25

3.590

0.750

0.768

5.170 25

3.600 25

5, 270 25

0.408
0.640

37 0, 6163
2.58

40 l. 56
3.64

24 1.98
4.34

25

&o(10 ' cm)

1.739

2.312

37 2.25 30

38 2.7935 41

2.438 c

2.987 38

2, 91 25

3.199 43

'Calculated from LST relation using eo = 4.73 (Ref. 44) .
Calculated from P relation using P=5. 1&&10 dyn cm (Ref. 45).

'Calculated from LST relation using co=5.78 (Ref. 44).
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h L

o 70-

0 6.0-

o 50
Z
4l

O 4.o.
K

3.0-

2.0-

h 5 ~ --—— ~i(
TU

3.0-

0
Z~ 2.O-

8
LU

4

I.O.

5
~ E Q 3 RL~F

I.O-

I

0.8 I.o 0.8 0.4 0.0 0.2 0.4

0-80 0.4 0.8 I.o 0.8 0.0 0.2 0.4

FIG. 2. Dispersion curves for NaCl. Theoretical
curves (solid line) ETSM, (dashed line) DSM (Ref. 2).
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FIG. 4. Dispersion curves for NaI. Theoretical
curves (solid line) ETSM, (dashed line) DSM (Ref. 2).
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for 4,(l.o) and e,(TO) branches in case of NaI.
In addition to these deviations, the DSM results
possess some unusual features of sudden rise of
branch near the zone-boundary point (X) in all the
cases. Such features are, however, not exhibited
by experimental results although they have been
noticed from the breathing-shell model (BSM) re-
sults particularly for NaCl. This similarity be-
tween BSM and DSM is not unexpected because
both of them aeeount for the radial deformations
almost identically. The absence of such unusual
features and large deviations in the ETSM descrip-

tion of dispersion curves make it evident that the
representation of electron shell deformations in
terms of three-body forces is better than those of
radial deformations as pointed out earlier in the
introduction.

The literature available shows that the models
(in addition to the above) generally employed for
the interpretation of phonon dispersion relations
in sodium halides are RSM, DDM (deformation
dipole model" ), and BSGM (Basu and Sengupta'
model) but none of them reproduces satisfactorily
all the four frequency values at the zone-boundary
points (X, I ) If DDM a.nd RSM calculations per-
formed by Caldwell and Klein' for NaC1 are com-
pared with BSM, the latter gives a somewhat bet-
ter fit. The HSM results, while reproducing the
four frequency values at X, lead to very poor re-
production of LO and LA branches at the I. point
in NaC1 crystal.

The degree of agreement achieved from ETSM
in the present study is much better than that ob-
tained by Singh and Verma' from the original
TSM. This success is indicative of the fact that
the extension and correction employed in TSM is
important and essential for the adequate descrip-
tion of the dielectric and dynamical behavioI of
alkali halides.

The general conclusion drawn from the discus-
sion of results on the prediction of phonon disper-
sion curves of sodium halides is that the ETSM
incorporating the second-neighbor and three-body
forces presents a useful description of the inter-
atomic forces and gives a reasonable account of
the deformation of outer electron shells in ionic
crystals.
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