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The energy-band structure of lithium chloride, sodium chloride, and potassium chloride has been calculated

following a mixed approach of linear-combination-of-atomic-orbitals method for the valence bands and

orthogonalized-plane-wave method for the conduction bands. The interpolation scheme developed by Slater

and Koster has been used to calculate the matrix elements of the energy operator and the overlap integrals.

The influence of the mode of admixture of wave functions to the crystal orbitals is extensively studied. For the
different mode of admixture of states, the variations in the band parameters, viz. band gaps, widths, and

locations, are noted. The calculated values are compared with experiments and the previous theoretical results.

I. INTRODUCTION

Recently' ' a number of authors have published
calculations on the band structure of alkali-halide
crystals. Shockley' for the first time calculated
the valence-band structure of NaCl. Two other
calculations on NaCl were reported by Tibbs' and

Cassella. Tibb's calculation gives only the ap-
proximate results and Cassella's calculation pro-
vides only the valence bands. In case of KCl,
Howland's linear-combination-of-atomic-orbital
(LCAO) approach reports on the valence band for
the first time. In that paper the author takes into
account the contributions of the core states to the

crystal orbitals although he does not show the
core bands. Subsequently Oyama and Miyakawa'
calculated the conduction bands of KCl adopting the
orthogonalized-plane-wave (OPW) method, De

Cicco used the augmented-plane-wave method to
calculate the valence and the conduction bands of
KCl. In a semiempirical approach Phillips ex-
plained the band structure of some alkali halides.
On using the experimental data due to Eby et al. '
and Philipp et al. , he empirically deduced the
bands of alkali-halide crystals. His results for
KC1 are found to be consistent with those due to
Howland. Although his calculations are semi-
empirical, the optical properties obtained are
found to be consistent with recent experimental
interpretations. «o'« In a more recent investiga-
tion, Kunz@ adopted the OP% method to calculate
the band structure of LiCl, NaC1, and KCl. His
results axe found to be consistent with the recent
experiments due to Roessler et aE. «Fong and
Cohen« in a recent paper calculated the optical
constants of NaCl and KCl using the empirical-

pseudopotential-method. In the case of NaC1 they
adopted the empirical-pseudopotential-method
approach but in the case of KCl they added a non-
local d-wave potential. Their results provide a
complete analysis of the band structure in optical
spectrum. In a recent investigation, Shulichenco
ef, al. ' ' adopted a simplified LCAO approach to
deduce the valence band of KCl taking certain pa-
rameters from Ref. 13.

Very recently Kunz et al. " have calculated the
band properties of LiCl, NaCl, and KC1 using a
mixed basis method developed by Kunz. «This
method involves expanding an electronic wave
function in terms of plane waves and tight-binding
Bloch functions. Using local orbitals, the self-
consistent Hartree-Fock energy bands are first
obtained and correlation effects are then taken into
account. To avoid excessive labor they considered
only several points in the first Brillouin zone along
some highly symmetric directions. Nevertheless
their results are more favored by the recent ex-
periments 3' than the calculations«~ using only
the Hartree-Fock approach without the correla-
tion effects. «8

Experimentally the situation of the alkali halides
is rather interesting. Among the considerable ex-
perimental measurements, the results of Parrett
and Jossem«7' were interpreted as yielding the
valence widths of KCl. They found a half-width
of Q. 02t. Ry. Many authors have compared
their results with those due to Parrett and Jossem,
but Best " has recently advanced convincing argu-
ments to show that the results of Parrett and Jos-
sem do not give correct valence widths. Severe
localization effects of the hole prevent the true
valence width being given in x-ray emission.
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Moreover, the results of Parrett and Jossem are
in conflict with x-ray emission data of Q'Brian
and Skinner"' and the recent experiments of Teegar-
den et a/. ' Baldini eI'al. 20 and Roessler et al. ~3

provide information which is not consistent with
the experiments of Parrett and Jossem. Qf these
the work of Roessler et al. ~ is consistent with
the theoretical investigations. "' ~6

Among the very recent experimental information,
the photoemission studies of LiCl, NaCl, and

KC1 by Pong and Smith ' are likely to be the most
interesting. The results which they obtained
within the spectrum range (13-25 eV) provide data
on the valence and conduction bands which dis-
agree with the previous experiments. Since they
were interested in the upper band regions, their
results did not provide information about the core.
In a very recent experiment Kowalczyk et aE. ~

obtained optical properties of the localized as well
as the valence bands of NaCl and KC1.

The present authors~3 calculated the band struc-
ture of KCt, using an I CAQ approach in the filled
region. In this investigation it is noted that if one
progressively adds core states to the crystal or-
bitals, the results obtained are in good agreement
with experiment. The gradual introduction of the
local orbitals to the final one-electron crystal
orbital is noted to i.mprove the band locations with
respect to the vacuum level which is consistent
with the recent experiments on alkali-halide crys-
tals regarding low-energy-electron diffraction,
x-ray emission, and optical studies. 6

From the QP% approach due to Kunz~~ it is
clear, however, that. this treatment yields excel-
lent band structure in the conduction region. Qn
the other hand, the LCAQ technique gives quite
good results on the valence and inner bands. In
view of these predictions, we have adopted a. mixed
approach to calculate the band structure of LiC1,
NaCl, and KCl. For the filled regions we have
used the LCAQ method and for the conduction
bands we have adopted the QPVf approach due to
Kunz. In this respect we used the interpolation
scheme developed by Slater and Koster for the
calculation of the matrix elements of the energy
operator. The disposable parameters that appear
in the interpolation scheme are classified into
two groups: (a) those between the filled, i.e. ,
valence, and localized states and (b) those between
conduction and core-conduction states. It is to be
noted that the matrix elements of the energy oper-
ator are developed with different basis functions
while the crystal potential remains the same for
both the valence and the conduction bands.

The consequences of the present mixed approach
are that it provides information on the core
states, their influences on the valence and con-
duction bands and shifting of the band locations

which i.s noted to change the transition and the
optical properties. It is noted that although the
parameters and the optical constants in the core
bands Iemain more or less constant during the
changes of the mode of admixture, their appear-
ance in the band system improves the upper-band
parameteIs to some extent. The removal of de-
generacies at certain highly symmetxic points,
the changes in the gaps and widths of the valence
band are noted to attain improved values. The
results obtained are compared with Iecent experi-
ments and with theoretical calculations and it is
noted that the present mixed approach yields better
results for the band parameters than the LCAQ
and the QP% approaches can separately.

II. THEORETICAL DEVELOPMENT

The formulation of the present investigatio~ is
oriented in such a way that the matrix elements
of the energy operator between the functions rep-
resenting the filled energy states are derived
from the LCAQ tight-binding approach and those
between the remaining states are accounted from
the QP% approach developed by Kunz for the
alkali-halide crystals. We start with a one-
electron crystal orbital expressed as an LCAQ
of Bloch sums of Hartree-Fock space functions for
free ions given by

g, (k, r) = QG;(k) &u (k, r)

for the wave vector k and where

where y (r —R,) is a real-space function of type
m (specifying c[uantum number and ion type) cen-
tered on lattice site g at R~, the superscript m to
the summation sign indicates that the sum is to be
extended over only those sites g on which a func-
tion of type pal can be located (all 'the anions Ll,
Na', K' sites or cation Cl site) and the factor C
is equal to i = 4- 1 if p is odd on inversion and
i = 1 if p is even on inversion.

The Hamiltonian of the system of electrons is
taken to be

where ~ is the Coulomb interaction between the
nuclei, Qz is the one-electron operator for elec-
tron j giving its kinetic energy and Coulomb energy
of interaction with the nuclei, and Q&~. is the two-
electron operator giving the interaction of electron
j and j'. Qn the basis of this Hamiltonian, Har-
tree-Fock space functions for the crystal satisfy
the following equation.
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Q,g;(k, r, ) + 2 t Q,z0;(k, r, ) p(ra, r~) dva

—J)Q~2$;(k, rm) p(rR, r~) dvz ——e;(k) p;(k, r~),

(4)
where a';(k) is the energy parameter for the func-
tion (C);(k, r) and p(rz, r, ) is given by

This integral can be regarded as one element in
the M~M matrices of all overlap integrals, M
being the number of electrons of each spin. Ac-
cording to Lowdin's result, Eq. (5) for p(r2, r, )
can be written

p(rz, r~)= g g 0 ~(p (r —Rd) (p„(r —Rz),
m, n g, g'

(7)

where 0 (r, R„R„)is an element in the matrix
MxM which is the inverse of the overlap matrix A.

If all the two-center overlap integrals are
small compared to the one-center integrals as
they are found to be for alkali-halide crystals,
the overlap matrix 0 differs slightly from the
unit matrix. In this case the inverse overlap ma-
trix 0 is very nearly equal to the unit matrix.
In view of this the following definitions are useful:

mn mn + ~mn~ nfn ~mn+ ~mn ~ (8)

where 6 „ is the Kronecker 5 and for brevity each
index m or n is temporarily taken to designate
site as well as quantum numbers for the free-ion
function y.

Substitutionof Eq. (7} into Eq. (4) gives the fol-
lowing set of Hartree-Fockdike equations for one-
electron functions and their energies:

Q&p;(k, r&}+p 0 '„2 tQ~&;(k, r~) dp (ra —RE)
m, n

xr(, —R,, )dv, -t 666(k, ,)r.(,—R)

&& y„(r —R .) dv = &, k) g;(k, r

Equation (9) then yields the following set of equa-
tions for the unknown coefficients, one set for
each value of the wave vector k;

(6)
yi

As Lowdin ' has shown when the functions (C),(k, r)
are constructed as LCAO of the type used here
the quantity p(r2, r~) can be written out in a way
which does not involve the coefficients of the atomic
functions. Let the overlay integral between the
free-ion functions (p (r —RE) and p„(r —R ) be
symbolized by

R (,R, R )=JR„( —R) 6„( —R )d . (6)

Q[H (k) —t,(k) 0 (k)] G„,(k) =0,

where H „(k}and & (k) are the matrix elements
of the energy operator and overlap, respectively,
between the Bloch sums (d (k, r) and &u„(k, r) ear-
lier defined.

Since we have used the interpolation scheme
developed by Slater and Koster for the matrix
elements of the energy operator, each matrix
element is written in the form

(10)

(m) cosk R,
E (k, , R,)=QE (rR, )x,

p sink R,
Pm=&n

P =-Pn

where P is the parity of the function y and
E (r, R~) is an element of the energy operator as is
appropriate between a function y„and another
function y which is at site Rg relative to site (|t)„

as origin. In the present investigation we have
considered the interaction up to the second-nearest
neighbors. Equation (11) is written in terms of
the second-nearest-neighbor approximation. The
elements E(r, RE} in Eq. (11) are considered as
the disposable parameters in a Slater-Koster rep-
resentation. In the filled region these parameters
are calculated from the LCAO method, but since
in the conduction region this method is not sound
at all we have used the OPW approach of Kunz+
to calculate the matrix elements between the con-
duction and other wave functions except those be-
tween the localized and the valence functions.
The details of the construction of the crystal po-
tential are given in the Appendix.

III. CALCULATIONS

The sequence of the computation of the present
results is as follows: (a) the computations of the
integrals in Eq. (6) for 0 „(k, r, R,} and in Eq.
(11) for E~(r, RE) are performed, (b} the secular
determinantal equations are set up and these equa-
tions are diagonalized taking up OPW elements at
the selected regions of the matrices, and (c)
eigenvalues thus obtained are arranged in a regular
array at the output. It is to be noted that the ma-
trix elements of the energy operator are calcu-
lated with different basis functions while the crys-
tal potential remains the same for both the valence
and the conduction bands. This of course reduces
the computation labor to some extent. In com-
puting the integrals we have used the f function
expansion technique due to Barnett and Coulson
while Corbato's approach is adopted for the pro-
gramming. In this respect the necessary Hartree-
Fock space functions for the anions (Li', Na', K')
and the cation (Cl ) in analytic form are obtained
by fitting the tabulated Hartree-Fock radial func-
tions with a series of Slater's atomic orbitals. '
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TABLE I. Slater-Koster parameters for KCl. The primed notations are for the K' func-
tions. (All energies are in Ry. )

E„„(000)

E (11O)

E (Oll)

E„„(200)

E (2OO)

E (110)

—0.732 15

Q. 001 55

-0.003 01

—0.005 93

Q. 005 13

0.004 37

Valence states

E„(ooo)

E (11O)

E (2oo)

E„„(11O)
E,„,(O11)

E„, (011)

-0.049 31

-0.02179

0.009 31

-O. 047 39

-0.014 37

-0.03571

Conduction states Localized states

E~„a(000) —1.760 07

E„„.(200) -0.002 92

Eyy (2QQ) 0.000 72

Es&f a(200) 0 00Q 17

Esses'(000) 3o 035 12

E~sa(200) -0.000 ll

Eg 3g2„P(002)

E 2, „(011)

0, 003 71

0, 004 23

E3 &„2,„(011) —0.003 15

E„,„,(o2o)

E„, (11O)

0.000 77

—0.000 57

Valence-conduction states E3 2 +,3g2 „2(000)

E3g2 „2 F2 „2(110)

E„2 q2 „&~ (110)

E„„, (ooo)

Exp, sg'-r 2(110)

E, (oo2)

0, 456 12

0.01203

—0.007 00

0.223 12

0.052 93

0.000 58

E (ooo)

E„(2oo)

-2, 013 20

-0.000 09

Localized-valence states

E '„(110) -0.000 35

Es y(110) 0 ~ 000 51

E „(011) -O. 000 21
E„, (0») 0.000 52

E„.„(llo) —o.ooo 59

Some fits were made by Howland and we made all
the fits for our necessary functions. The fitted
functions were adjusted slightly to make them
mutually orthonormal (and orthogonal) to the nu-
merical inner functions in the case of Cl . In the
OPW portion the core states are formed from the
core-state solutions to the free-ion problem.
These core states are then formed into Bloch
functions and linear combinations of the Bloch
functions are formed according to the symmetry
group of the wave vector k for the point ion in the
first Brillouin zone for which a solution is desired.
This symmetrization of the basis functions to the
one-electron crystal orbital reduces the labor of
computation. Our computer programs are oriented
in such a way that secular determinants are set
up for each k value before the call of the subrou-
tine for diagonalization. Owing to the nonorthogo-
nality of the free-ion Hartree-Fock functions e(k)
comes in the off-diagonal elements. This ap-
pearance of the energy parameter e(k) in the
off-diagonal elements creates a complication;
but owing to the advantage that in the outer func-
tion approximation for the alkali-halide crystals
overlapping of space functions for n=2, 3 and
l= 0 with respect to others is very small, some
off-diagonal elements containing ~ between
functions of highest and lowest quantum numbers
»z fls, s,, Q„~„,etc. , may be neglected. In
this respect it is noted that the largest overlap in-
tegral between any two of the free-ion functions

which are separated by a normal KCl lattice dis-
tance is only - 0. 70 as compared to one for the
maximum overlap. Similar values are obtained
for LiCl and NaC1. The overlap integrals for the
basis functions located at the second-nearest
neighbors are found to be below - 0. 02 and in
some cases, for example, 02s 3~y +3s 3y etc. ,
these values are not above -0.001. Beside these
small values of the atomic and diatomic overlap
integrals, since most of the off-diagonal elements
viz E~(k),. E„,(k), etc. , contain sine functions,
they vanish automatically along the directions in
which the components of the wave vector k are
taken to be zero. It is noted that for the cases
in which e(k) appears in the off-diagonal elements
the secular determinants are solved at those
values ot' e(k) for which the determinants are zero.

IV. RESULTS AND DISCUSSION

The numerical values of the matrix elements
of energy operator are presented in Tables I-III.
Since the effect of the admixture of inner states
to crystal orbital is the principal aim of our in-
vestigation, we have calculated the band param-
eters from matrices of different orders and the
results are plotted in the graphs on a comparison
basis.

In the present mixed approach the valence-band
widths of LiC1, NaCl, and KCl are found to be
0. 14, 0. 072, and 0. 06 Ry, respectively, as shown
in Tables IV-VI. But when the order of the matrices
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TABLE II. Slater-Koster parameters for NaC1. The primed notations are for the Na'
functions. (All energies are in By. )

Valence states

E„„(000) —0.81931

E (11O)

E 011)

E (2oo)

E (2oo)

E„,(11O)

0.005 03

-0.003 26

-0.003 71

0.002 85

0.007 31

E 3,'„2(O11)

E„, (o2o)

E, (110)

E„, (o11)

E„~2 2(11O)

P.00249

0.000 83

-0.000 49

0.000 62

O. 003 21

Valence-conduction states

Eg,3,2 „2(002) p. 002 78

E (ooo)

E „(110)

E (2oo)

E, (11O)

E, (011)

E,„(011)

E3 2 2
3

2 2(ppp)

E„2 „2 „(11O)

E„„(ooo)

-0.072 13

-0.021 31

0.01125

-0.050 21

0.017 93

-0.048 01

0.616 81

-0.011 23

-0.013 25

0.290 21

E„„xq(002)

0.17992

0.000 78

C onduction states Localized states

Exex. (000) —1.1235

Exixi (200) -0.002 13

Ey„.(200) 0.000 89

s'x' (200) 0 ~ 000 13

E (000)

E (200)

-2.239 51

0.000 10

E (011) -0.000 28

E„,,(11o) —o.ooo 67

Localized-valence states

Es x(110) —0.000 42

E .„(110) -0.000 63

is changed these values are noted to change to
some extent. From the heavily drawn curves in
Figs. 1-3 it is noted that when the core and the
inner functions are excluded from the one-electron
crystal orbitals the valence bands broaden, fol-
lowed by a change in the shape of the energy sur-
faces. This broadening of the valence bands is

expected owing to the absence of the localized
basis. But when we consider the uppermost filled
s states of the anions and the three Cl 3P states
as the basis, then the valence bands are noted to
contract. From this phenomenon it can be con-
cluded that the center of gravity of the entire
band system remains constant and the shifting in

TABLE III. Slater-Koster parameters for LiCl. The primed notations represent the Li
functions. (All energies are in Ry. )

Valence states

E„„(000) —0.898 72

E„„(110) 0.00985

E„„(011) —0.003 98

E (200) —0.003 16

E (200)

E (110)

0. 001 00

0. 012 08

E„(020)
E„(11O)
E„(011)

0.009 11
—0.000 41

0.00073

Es 3 2~2(110) 0.00423

Valence-conduction states

Es 3 2~2(002) 0.001 39

Es 3 2~2(011) 0. 001 25

Ess(000

E „(11O)

E (200)

E (110)

E (011)

E (011)

E3s2~ 3,2~2(000)

E3 2 2 3 2 „2(11O)

Ex2~2, x2-P(1 10)

E (000)

E~ 3 2 „2(110)

—P. 083 86

—0.016 03

O. 012 03

—0.053 32

P. 01987

—0.065 32

0.770 31
—0.007 52

—P. 318 62

0.330 61

P. 11007

E (002) 0.008 11

Conduction states Localized states

E„p(000) —P. 703 11

Eyy(200) —0.00187

E„.g (200) 0.000 92

Esi ~ (200) —0.000 11

Es's'( 0) 1 003 95

E (200)

E (000)

—P. 000 07

—0.987 15

E (200) —0.000 03

Localized-valence states

E „(110) —P. 000 47

Es.~(110) —0. 000 71

E „(011) —0.000 31

E„' (11o) —0.000 73
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TABLE IV. Comparison of the published parameters with the present investigation for
KCl. (All energies are in Ry. )

Bef. (Theor. )

Ref. 4
Ref. 6
Ref. 12
Bef. 15
Ref. 14
Ref. 14a
Ref. 23
Present

Ref. (Ezpt. )

Valence-band
width

0.1120
0.0604
0.058
0.190
0.064
0.057
0.106
0.060

Gap [E(I'q) -E(I'f5)]

0.500
0.502
0.640
0.651
0.062

0.680

Valence-band
location

0.78 -0.88
0.40-0.50
0.69 -0.76
0.71-0.90
0.68 -0.73
0.86 -0.92
0.80-0, 90
0.72-0.79

Conduction band
location

lower upper

0.18 -O. 73
0.24-1.00

0.03-0.46

Ref. 17
Ref. 7"
Ref. 13b
Ref. 21
Ref. 22

0.050
0.103
0.062
Q. 180
0.350

Ref. (Theor. }

0.630
0.643
0.801

0.68-0.74
0.72 —0.83
0.76 -0.86
0.72-0.90
0.40 -0.60

sM-like band gap

K

0.4-1.5

0.08 -0.40

Ref. 12
Present

0 ~ 37 + ~ + 0 ]3 ~ ~ ~

0.26 0.24 0.25 0.15

Parameters for the localized bands not shown in the table.
"Semiempirically deduced results.

TABLE V. Comparison of the published parameters~ w&th the present investigation for NaC1.
(A11 energies are in. Ry. )

Ref. (Theor. )

Ref. 1
Ref. 2
Ref. 3
Ref. 31
Ref. 12
Ref. 15
Ref. 14
Present

Ref. (Expt. )

Ref. 7b
Ref. 13~
Ref. 21
Ref. 22

Valence-band
width

0.30
0.251
Q. 2477
0.082
0. 100
0. 195
0.074
Q. 072

0.100
0.070
0.230
0.360

Gap R(l', ) -E(l „)1

0.550

0.700

0.723
0.70
0.892

Valence-band
location

0.80- 0.84
0.69-0.72
0.73-0.76
0.81—0. 90
0.76 - 0. 86
0.80 —0. 92
0.72- 0.80
0.82 —0.90

0.S1-0.91
0.80 —0.87
0.76 —1.01
Q. 53 —0. 90

Cond uction-band
location

lower upper

0.08-0.80
0.23 —l.00
0.15 —1.5

0.04-0.65

~ ~ ~

0.18-O.35

Ref. (Theor. )

Ref. 12
Present

g-d band gap

I Z

0.47 ~ ~ . 0.16 Ry
0.34 0.32 0.32 ~ ~ ~

~Parameters for localized bands have not been introduced in the table.
Semiempirically deduced results.
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TABLE VI. Comparison of the published parameters with the present investigation for
LiCl. (All energies are in Ry. )

Ref. (Theor. )

Ref. 12
Ref. 31
Ref. 15
Present

Ref. (Expt. )

Ref. 7'
Ref. 13"
Ref. 21

Valence-band
width

0, 160
0.092
0.592
0. 140

0.120
0.150
0.380

Hef. (Theor. )

0.64
0.68
0.90
0.780

0.750
0.693
0.900

Valence-band
locations

0.82 —0.98
0.80 -0.90
0.78 -0.84
0.88 —l.00

0.86 -0.89
0.79 -0.83
0.85-0.88

g-g-like band gap

Conduction bands

lower upper

0.15-1.00

0.17 —l. 6
0.02-0.81

0.07 -0.36

Ref. 12
Present

0 47 ~ ~ 0 30
0.41 0.37 0.38

Parameters for localized bands have not been introduced in the table.
Semiempirically deduced results.

band location is confined within the key levels of
different bands. Apart from the consideration of
these changes it is noted that the widths obtained
from the 14th ordered secular equations are in
agreement with experiment.

There are several recent calculations available
for the comparison of KCl band structure. In a
very recent calculation the present authors 3 ob-
tained a width of 0. 1065 Ry from an LCAO ap-
proach. De Cicco in his augmented-plane-wave
approach obtained a width of 0. 0620 Ry for the
same band. Qn the other hand, Howland by an
LCAQ tight-binding calculation obtained a width
of 0. 112 Ry. Qf course, when the Cl 3P functions
were taken only as the basis the bandwidth broad-
ens considerably. In the QPW approach Kunz~
obtained a width of 0.058 Ry. These values are
not consistent with the recent ab initio band cal-
culation of Kunz and Lipari ~'6 in which the cor-
relation effects of polarization are taken into ac-
count.

Experimentally it is known that the very recent
work of Pong and Smith~~ is the only published
bandwidth which is a direct experimental result,
In this measurement, the KC1 valence band is
found to be 0. 18 Ry wide while our calculation
gives 0. 060 Ry.

A few theoretical predictions are available for
the comparison of the valence-band width of NaCl.
The present value of 0. OV2 Ry agrees well with
Kunz's+'3 result. But the ab initio approach of
Kunz and Lipari~ '~ does not agree with the present
value which might be due to the polarization effects
taken into account by them. Qn the other hand,
the semiempirical pseudopotential approach of
Fong and Cohen~ supports the present result as

shown in Table IV. The widths obtained by Phil-
lips7 and Roessler et al. ' are consistent with the
present calculation. But the experimental value
(0. 23 Ry) for NaC1 due to Pong and Smith does
not agree with our result (0.072 Ry).

In the case of LiCl the present valence-band
width of 0. 14 Ry is found to be consistent with
0. 16 and 0. 12 Ry due to Kunz and Phillips, re-
spectively, whereas the ab initio approach of
Kunz et al. does not agree well with our calcula-
tions. The semiempirical interpretation due to
Roessler and Walker" suggests that the value
should be about 0. 15 Ry. Qn the other hand, the
optical data obtained recently ' yield results
consistent with present calculation. The experi-
mental value (0.380 Ry) obtained by Pong and

Smith for I.iCl does not agree with calculated
value (0. 14 Ry).

The values for the band gaps obtained are 0. 78,
0. 73, and 0.68 Ry for LiCl, NaC1, and KC1, re-
spectively. The experimental gaps for LiCl,
NaC1, and KCl as collected by Brown et &l. 7 are
0.69, 0. 64, and 0.64 Ry, respectively. Qur re-
sults are comparable to Kunz's~~ calculations. Qn
the other hand, the ab initio values due to Kunz
and Lipari" are 0. 90, 0. 70, and 0. 64 Ry, re-
spectively. They suggest that this improvement
is due to their consideration of correlation effect
and for NaC1 they" have obtained a gap of 0. 63 Ry
using an improved dielectric function. The gap
for KC1 in our investigation is not in good agree-
ment with 0. 50 Ry due to De Cicco. The empiri-
cal pseudopotential results for NaCl and KC1 due to
Fong and Cohen are consistent with ours. Roessler
and Walker' obtained a value of 0. 64 Ry for KC1.
Semlempll ically, Phillips obtained 0.635 and 0.63
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level. Of course the locations of the conduction
states may be shifted upward by changing the order
of admixture of basis functions. In Figs. 1-3 it is
noted that when the inner functions are excluded
from the crystal orbital the s-like conduction
states shift upward over an energy range of about
Q. QQ4 By. In this respect when we have taken
only the five d-states of Cl as the basis this up-
ward shifting is noted. Thus it may be suggested
that one may obtain the lower states of the conduc-
tion bands at or above the vacuum level by ex-
cluding the inner orbitals froxn the crystal orbital
and taking into account the empty states in the

.24-

20-
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04-

-04 =

0—

—.80
r x Lr X Kt

Wave Vector

FIG. l. Band structure of KCl. Heavily drawn and
the dotted curves represent E(k } for the 9th and the 14th
ordered equations, respectively. Dashed curves in the
valence band are obtained from the Cl" 3p and K' 4s as
the basis~ while those ln the conduction region are ob
tained from the five d states of the cation as the basis.

CO

UJ —.t6—

Ry for KCl and NaCl, respectively, which agree
with the present ealeulation.

In the case of conduction bands, the s-like key
levels in all the cases are found to lie below the
vacuum level. For LiCl, NaCl, and KC1 the pos-
sible s-like states that are obtained at the center
of the Brillouin zone are 0. 045, 0. 121, and Q. 065
Ry below the vacuum level. In this respect,
Kunz's~ OPW results are comparable. But. De
Cicco obtained s-like conduction states above the
vacuum level, I.ately the a6 ~nitro approach due to
Kunz and Lipari~ suggests that states for s-like
conduction bands are possible below the vacuum

I A, L I Z KI'

Wave Vector

FIG. 2. Band structure of NaCl. Heavily drawn and
the dotted curves represent E(k} for the 9th and the 14th
ordered equations, respectively. Dashed curves in the
valence band are obtained from Cl" 3p and Na+ 3s states
as the basis while those in the conduction states are ob-
tained from the five d states of the cation as the basis.
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FIG. 3. Band structure of LiCI. Heavily drawn and
the dotted curves represent E(k) for the 9th and the 14th
ordered equations, respectively. Dashed curves repre-
sent E(k) only for the Bp states of the anion as the basis.

basis. The uppermost d-like conduction states
for LiC1, NaCl, and KC1 are obtained around 0. 81,
0. 65, and 0. 64 Ry, respectively. Of course, for
different modes of admixture these values are
found to change symmetrically. This phenomenon
suggests that as long as one is concerned with the
conduction bands, the range of energy for the loca-
tions of the key levels does not significantly respond
to the entrance of the inner states to the crystal
orbital. This phenomenon is expected due to the
appearance of lower values of the off-diagonal
elements in the conduction region. Experimental-
ly the locations of the conduction bands have some
interesting features. Phillips in his semiempiri-

cal approach predicts that the conduction states
below the vacuum level are possible which is in-
terpreted as a consequence of photon energy
around 12 eV. But in a very recent photoemission
study by Pong and Smith2~ it is predicted that when
photon energy in the range 19-23 eV is used no
conduction state exists below the vacuum level.
In this experiment the bottom of the conduction
bands is always found above 1.0+0. 2 eV of the
vacuum level for LiCl and KC1 crystals. Of
course, this value of the bottom energy for NaC1
is found to be 1.0+0.3 eV. This interpretation
does not agree with our calculation.

In the present investigation the gaps between
the s- and d-like conduction bands for KC1, NaCl,
and LiCl are found to be 0.26, —0. 34, and -0. 41
Ry, respectively. On the other hand, at K the
respective values are 0. 22, 0. 32, and 0. 38 Ry.
It is interesting to note that at I in the lower part
of the conduction bands for NaC1 and LiCl the key
levels of the +- and d-like bands are found to
undergo hybridization, whereas a distinct gap of
0. 15 Ry for KC1 is obtained. From the topological
viewpoint of the conduction bands, the present re-
sults are comparable to those due to Kunz, ~ al-
though there are certain qualitative disagreements.
A comparison of gaps at certain highly symmetric
points is presented at the lower parts of Tables
IV-VI.

We may also mention that the band structures
for KCl, NaC1, and LiCl that we have obtained
exhibit an indirect band gap which has not been
obtained by other authors. Unfortunately this in-
direct band gap is not supported by known experi-
mental data. The optical absorption data of Tee-
garden and Baldini or, Eby et al. do not ex-
hibit any low-energy temperature-dependent tail
which would be present if an indirect band gap
were present.

It is interesting to compare the ranges of en-
ergy in which the key levels are found to occur
with those3 ' experimentally measured. In
Tables IV-VI a comparison is given from which it
is noted that our results are consistent with most
of the recent experiments. The deviations which
are noted in case of localized bands might be due
to our outer function approximation in the filled
region. It is clear, however, that in cases where
correlation effects are negligible the mixed ap-
proach can produce a better description of the va-
lence and the lower part of the conduction bands
than the LCAO and OPW methods can independent-
ly. And if correlation effects are greater, then
to satisfy Pong and Smith's experimental pre-
diction one must take into account the polarization
effect exclusively. Of course, we are waiting for
further interpretations of their results since these
conflict with most of the previous experiments.
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APPENDIX: CONSTRUCTION OF THE CRYSTAL
POTENTIAL

xrT( I)dvI —rQEIT„(, -R)

&& p(ra, r&) (p„(ra) dv~ dva, (A1)

where we have taken one and two electron, one-
and two-center integrals to build up the energy
elements.

In constructing the crystal potential and intro-
ducing the correlation effects to it we start from
the expression of the crystal charge density.
The electronic part of this charge density is split
into two parts:

P( a) QP ( a)+Pov( p) (A2}

In Eq. (A2), p, (ra) is the spherical electronic
charge density of a free ion at site g and is given
by

p, (ra) = —2+9 p(ra)* Wp(ra)

and pov(r, ) is what is called the overlap charge
density, given by

(A3)

po «(ra) = —2 g $p, q p(ra)* y, (ra) . (A4)

In this Appendix we give a brief analysis of the
construction of the crystal potential and develop
the matrix elements of the energy operator. The
matrix elements E „(r, R,) that appear in Eq. (11)
are given by the following equation:

TP

E (R)„=r,r (,—R) (Q, ~ 2 QI p(r„))

On a particular site g, the free-ion electron
charge density

—2+((()p(ra) &p (ra }

and the nuclear charge Z, together give a net
charge z, which is +1 for Li', Na', or K' and —1
for Cl . Since the sum of z~ over the two ions in
a single unit cell is zero, the sum of nuclear
charge and free-ion charge distributions through-
out the crystal gives a net charge zero. The ef-
fect of the overlap charge density

—2 Q k p, dip(ra) ('P, (r, )

is to shift the electron charge from the density
predicted by a simple superposition of free-ion
charge densities. This shift decreases the elec-
tron charge density in regions of maximum over-
lap between pairs of free ions and it compensates
by forcing an increase in the electronic charge
in the region of a nucleus. This redistribution of
charge arises from orthonormalizing the one elec-
tron functions and it can be described as an ef-
fect of the exclusion principle. In the present
approximation it is essentially this distribution of
charge which provides the repulsion between ions
in the crystal and which causes the crystal energy
bands to rise as the interionic distance decreases
bel, ow its normal values.

In atomic units, the one- and two-electron op-
erators are given by

8
Qq --—V q+ V(r) = —Vq-, Qta =—-, (A5)

r12

where V'1 is the Laplacian operating on the co-
ordinates of electron one, 2, is the nuclear charge
of the ion at site g, and r~ is the distance between
two electrons.

On using Eq. (Al} and the electronic charge
density represented by Eq. (A2) the matrix element
takes the form

E (R,)=f2 (—R,,) (- lr, )v,„(,)d, E p„(,—R,) '— "—p,.(,)—dv,)p„(r,)dv
0 s ~ rid r12

fp (,—R) pr( „,)= V„(,)dv, d, I (,—R) — =p (,)dv)p„(, )dv,
E =OpS r~ r12

((p (r~ —Rd) pd, (rar r~) = 9pR(ra) dv~ dva — 2P (r& —R ) pov(ra, r~) = (P„(ra) dv~ dva
E %p(( r13 r~

(- ) P 2[PE (rp)+Z ]
( )d g ( R )

2Z, +PE, (ra) —Pov(ra}
8' WO, z Wf0, r~

(Ae)
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where the basis with quantum number n is taken
to be at the origin and where the exchange and

overlap exchange charge densities p, (ra, r, ) and

pov(r„r, ) are defined by

p, (ra, r&) =+V&(ra)' Wo(ri}

pov(ra ra) = Z4.ea(ra}" W.(»} (AB)

respectively. In Eq. (A6) the exchange energy
terms are named as follows: Exchange energy

(V)„=—g 1 (rq —Ra} pa (ra rg}

y„(ra}dv, dva .
r@

Coulomb exchange energy

(AQa}

rr
(V)c * &

~

p (rg R,) p;(ra, rg)
i%)fa ~

x —s„(ra)dv, dv, .
r~

Overlap exchange energy

(A 9b)

(V)„„=—
~ rP (r, —R,) Pov(ra, r, )

2x —y„(ra) dv, dv»
r~

(A 9c)

where (V},„ involves only contributions from site
g and the origin; it is atomic or, diatomic terms
depending on whether R, is or is not zero. The
last two terms (V)c,„and (V)„„depend on the
presence of the atoms or, atom pair in the crystal.

The crystal Coulomb correction term that appears
in the matrix elements in Eq. (A6} as an autocor-
relation effect is given by

(V), = p cp (r, —R,) — ~ y„(ra)dv„

(AlO)
whose physical significance is that it is a nonlocal
term and it approaches zero rapidly with in-
creasing r.

The crystal potential which is developed by the
crystal charge density consideration requires some
discussion owing to its usage both in the valence
and the conduction bands. It is assumed that the
valence electron wave function is that which chief-
ly arises from a C) 3P orbital. To form the po-
tential one had an electron in a given unit cell as-
sociated with a Cl ion at the center of that cell.
This cell center is considered to be the origin.
There are five other valence electrons in that
unit ceil. In the other unit ceQs there are six va-
lence electrons. The Cl core electrons and the
electrons associated with the alkali are the same
in all unit cells. Thus the valence electrons in
question see a potential formed from three types
of contributions. These are (i) the halogen ion
at the origin, (ii) the short-range part of the other
alkali and halogen iona, and (iii) the long-range
parts of the other alkali and halogen ions. In this
regard it is to be noted that the degree of self-
consistency of the potential that we have used has
not been checked.

The effect of this potential is that the electron
in question sees a potential which is due to all the
remainder of the electrons in the lattice. Thus
this potential is different from the one usually
used in which the electron in question is considered
to be an extra electron in the lattice.
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