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Finite-size behavior of the simple-cubic Ising lattice*

D. P. Landau
Department of Physics and Astronomy„University of Georgia, Athens, Georgia 30602 ~

and Institut fiir Festkorperforschung, Kernforschungsantage Julich, 517 Jutich, 8'est Germany
(Received 22 January 1976)

A Monte Carlo method is used to study N X N X N simple-cubic Ising lattices with periodic boundary
conditions and free edges. For both types of boundary conditions the position of the specific-heat maximum
varies for large N as aN ", where X has the scaling value X = v '. Both the thermal and magnetic properties are
shown to obey finite-size scaling. The free-edge data are shown to be consistent with a surface contribution
described by the scaling exponents u, = a+ v, P, = P —v, y, = y+ v. Using the free-edge data we also consider
corrections to scaling in the infinite lattice and discuss "rounding" in real systems in terms of surface
contributions from grains.

I. INTRODUCTION

The expected thermodynamic behavior of finite
systems of interacting particles has been dis-
cussed by Fisher' in terms of a scaling theory
involving the critical. exponents of the correspond-
ing infinite system. According to this finite-size
scaling theory, the free energy of an N&NxN
lattice is given by the scaling ansatz'.

Fpv, T) =x 'v'(nrei)-,

where $ = (2 —u)/v, i = (1 —T/T, (~)(, T,(~) is the
infinite-lattice transition tempex ature, and W

is a scaling function involving the scaled variable
I;. The seal. ing of the correlation length
" suggests 6)= v ' and the appropriate

scaling variable should be x = tN'~". The shift
in the "pseudo-ordering" temperature T, (N)
(usually defined by the maximum in the specific
heat) is given by

5T, =[1—T,(X)/T, (~))=aN ", N-~

where, according to scaling theory, A. = v '. The
possibil. ity that A generally has the nonscaling
value 1=1, however, could not be excluded. '

The finite-size sealing of the free energy leads
to similar xelations for the spontaneous mag-
netization M, the susceptibility y, and the spe-
cific heat C of systems with periodic boundary
conditions (pbc):

I= iv-'i'x'(x),

y T = i' &i ' Y'(x),

C=iV i "Z'(x),

where again x=i¹i".For large x (i.e., i «1
but iV ~) it is necessary that Eqs. (Sa)-(Sc) as-
ymptotically reproduce the infinite-lattice critical
behavior. %ith this constraint in mind it is
straightforward to show that for large ~

Xo(x) = ax',
Y (x)=C'x &,

Z'(x)=A'x ",

(4a)

(4b)

(4c)

X'(x) = ax'+a, x",
Y (x) = C 'x ~ + C;x "~,

Z (x) = A 'x +A,' x

(5a)

(5b)

(5c)

where the new "surface" exponents are related
to the usual ones by P, =P —v, y, =@+v, and o.,
= a + v. Results on NXN Ising square lattices"
have borne out the scaling pl edlctlons in two di-
mensions. However, since v=1 in two dimen-
sions, it was not possible to decide whether
A. = v ' or X =1 was in general cox rect. For the
simple-cubic lattice, however, v=0.64 and the
distinction should be clear. Previous Monte
Carlo studies on simple-cubic Ising lattices with
free edges' yielded a rather contradictory result,
although it was later argued' rather convincingly
that this was because the lattices investigated
(iV ~12) were too small to show the asymptotic
large %variation de-scribed by Eq. (2).

In this paper we show results of a Monte Carlo
study of 8 = 2 Ising spins arrayed on an %XNAN
simple-cubic lattice with

where A',„is the interaction constant for nearest-
neighbor pairs (ij) and o, , g, =+ 1. Lattices with

where 8, C'„and A' are the critical amplitudes
(C+, A' for T&T, and C, A for T&T,) for an
infinite system. Conversely, as x-o, I', Y',
and Z must approach constant values. For sys-
tems with free edges Eqs. (Sa)-(Sc) remain valid
but the large-x behavior must include correction
terms due to the surfaces. In this case the scaling
functions as x- ~ become
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pbc and free edges were considered for %~20.
The Monte Carlo method used was identical. to
the one developed for our squar e- lattice studies
(complete details can be found in Ref. 5) and shall
not be discussed here. Each data point was taken
at least twice using different starting configura-
tions. After "equilibrium" was reached typically
2000-5000 Monte Carlo steps per spin were used
for calculating the averages. Our data wiLL be
presented in Sec. II and the scaling analysis and
discussion wil. l be given in Sec. III.

II. RESULTS

The temperature variation of the internal. energy
is shown for the entire range of lattices studied
in Fig. 1. The data normalized by U0=6N'K„„
for both types of boundary conditions. The effect
of finite size on lattices with pbc is quite smalL
except near to T,(~). On the other hand, the data
obtained for lattices with free edges showed pro-

nounced size dependence over almost the entire
temperature range. The difference in the finite-
size behavior for the two sets of boundary con-
ditions shows up similarly in the specific-heat
data. These results, see Pig. 2, reveaL distinct
differences in both position and height of the max-
ima. In particular, C,„.„„occurs near T, (~) for
pbc but is shifted dramatically to lower temper-
atures for free edges.

Spontaneous magnetization data are shown in
Fig. 3 along with the infinite-lattice curve as
determined from series expansions. As expect-
ed,"finite-size "tails" are found at high tem-
peratur es for both sets of boundary conditions,
but only the free-edge data show significant finite
size effects below T,(~). In Fig. 4 we show the
susceptibility data, ' plotted on a semilogarithmic
scale. The effects of finite size are qualitatively
similar to those for the specific heat (see Fig. 2)
in that both the height and position of the maxima
are affected differently by the two types of bound-
ary conditions.
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FIG. l. Temperature dependence of the internal ener-
gy for a range of lattice sizes: Uo —-6N3E».

FIG. 2. Temperature dependence of the pecific heat
for several different lattice sizes.
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the speclflc-heRt maxima we examine the size
dependence of T, in Fig. 5. The asymptotic be-
havior for both sets of boundary conditions seems
described by Eg. (2) with A = v '. For pbc the
data for N-6 are all in the asymptotic region with
a =0.9S+0.04. The free-edge data, however,
appear to be just entering the asymptotic region
for %=14. Data on smaller lattices' could not
probe the asymptotic region at al. l; large devia-
tions from T,(~) quickly bring T,(N) outside the
infinite-lattice critical region and corrections to
scaling become important. Since the scaling pre-
diction 4T, ~N '~' comes about due to the cor-
relation length E = tot ' reaching system dimen-
sions, the correction to scaling for E should allow
us to estimate the correction to the size depen-
dence of &T,. The expected relation for the cor-
relation length including lowest-order correc-
tions is

$ = g, & "(I+a,td),

kT/Knn
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FIG. 3. Temperature dependence of the order para-
meter for several different lattice sizes.

III. DISCUSSION

A. Size variation of the "ordering temperature"

Using the data presented in Sec. II, we can now
test the finite-size scaling relations presented
in Sec. I. Identifying T,(Ã) with the positions of

and using the estimate of & =0.5 we find that

The actual value of 4 may deviate appreciably
from 0.5„however, our present analysis is too
imprecise to be sensitive to small changes in 4.
Saul et g). '0 provide a good discussion of the pres-
ent evidence supporting this estimate. It should
also be noted that outside the asymptotic scaling
region, the shift in T, may not simply follow the
E/$ criterion. In fact, various definitions of
g may begin to differ significantly. Recent series-
expansion studies'o on the fcc Ising lattice have
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FIG. 4. Temperature dependence of the susceptibility
for several different lattice sizes.

FIG. 5. Variation of the "ordering temperature" with
lattice size.
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The data are considered in view of these two pos-
sibilities [Eqs. (8) and Eq. (10)] in Fig. 6. The
plots of (6T,)N'~" vs either N '~" [see Eq. (10)]
or N V'" [see Eq. (8)] should yield asymptotically
linear behavior with intercept a and slope a'. In-
cluded in this figure are the Monte Carlo results
and exact values ( for N= 2 and 3) of Binder. '
From Fig. 6 we see that it is not possible to make
a definitive decision, although the plot made as-
suming an t" correction term appears to be
slightly superior over a wider range of Ã. It
would also be desirable to determine whether or
not the next-order correction terms in Eqs. (8)
and (10) are negligible; however, this would re-
quire knowledge of the next-highest-order cor-
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FIG. 6. Size dependence of the "ordering temperature"
with corrections to scaling included: present Monte
Carlo data, 0; Monte Carlo values from Ref. 6, +;
exact results from Ref. 6, ~ .

shown that the lowest-order correction to scaling
for the high-temperature susceptibility vanishes
for S= &. While there is no compelling reason
why it should also vanish for the correlation
length, the susceptibility result suggests that the
possibility should be considered. In this case

g =g,e '(1+a,t")
which leads to

(10)

rection to $. It is clear from Fig. 6 that no matter
which form is actually realized, that corrections
to scaling will be important for N&10 and may
not be negligible even for N=20. Including both
the experimental. errors as well as the uncertainty
in the correction we estimate the amplitude of
the dominant term in the temperature shift
a =6.2+ 0.8.

B. Bulk finite-size scaling

The finite-size scaling of the bulk properties
for lattices with pbc are shown in Figs. 7-9. The
scaling plot for the magnetization was made with

P =0.312 and @=0.64. The solid line gives the
predicted asymptotic behavior [Eq. (4a)] with
slope B =1.5't (as determined from series ex-
pansions'); the agreement with the data is clearly
quite good. As x-0, X'(x)=1.11+0.03. The
scaling of the susceptibility is also quite good as
shown in Fig. 8. The solid line for T& T, cor-
responds to the asymptotic form given by Eq.
(4b) with amplitude C+ =1.058 as determined from
analysis of series expansions. " The uncertain-
ties in both the critical amplitude and critical
exponent are much greater below T, because of
difficulties in the analysis of the low-temperature
series. The best estimate ' ' yields C = 0.195
with exponents ranging from y =1.25 to 1.31. In
our finite-size scaling plot we have assumed ex-
ponent symmetry and taken y =y' =1.25. The
low-temperature-data scale will but yield a best
fit of C = 0.155 a 0.015, which is clearly below the
series value. We feel that the series result is
unlikely to be in error by anywhere near the
amount of the discrepancy; it is more likely that
the Monte Carlo susceptibility data are system-
atically too low by a small amount (as occurred
with the square-lattice data').

Since the specific heat diverges so weakly the
divergent portion does not completely dominate
the "background" except very close to T, . In the
t region covered by the Monte Carlo data the
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FIG. 7. Finite-size scaling plot of the order parameter
for lattices with pbc. The solid line describes the pre-
dicted asymptotic large-x behavior given by Eq. (4a) with
B =1.57 and P =0.312.
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specific heat of an infinite lattice is well described
byl4

where the nonsingular part approximated by the
constants 6' cannot be neglected. Using the ser-
ies-expansion estimates'4 b' = —1.242, A+ = 1.136,
we find that the singular portion of the high-tem-
perature specific heat (C/R —5') scales quite
well and, as shown in Fig. 9, agrees with the pre-
dicted large-x scaling form. For T&T, , how-
ever, there are again uncertainties in the asymp-
totic critical form. Baker and Gaunt" estimated
A = 8.16+0.2 but this was based upon a value of

In addition, the background term 6 was
not given. In Fig. 9 we see that if b is set to
zero and the value n = 8 is chosen that the data
do not scale. The large-N data l.ie instead sys-
tematically above the small-N data. As h be-
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FEG. 8. Finite-size scaling plots for the low- and high-
temperature susceptibilities for lattices with pbc. The
solid lines describe the predicted large-x behavior given
by Eq. (4b) with C+ = 1.058 and C =0.195 and p = p' = y
=1.25. The dashed line is a best fit to the data with
C = 0.155.

comes more negative the data for all N values
begin to approach a single curve. For —4.0-b
~ —2.0 the data scale equally well. For 5 ~ —4.0
the tendency for the large-N data to fall beEou

the smal. l-N data begins to appear. With the
"central" vaLue 5 =-8, however, (C/A —5 )

scales quite well yielding an asymptotic slope
=8 and an amplitude A. =3.2+0.9. This value

of A yields a ratio A /A =2.8+0.8 which is
significantly greater than other estimates. The
renormalization-group estimate" obtained to low-
est order by e and e expansions yieLds A /A'
=1.83; and using series expansions Fisher and
Tarko'6 found that the ratio of the correlation
function amplitudes (which one expects to be the
same as the specific-heat amplitude ratio) is
1.61~0.06. In addition, Barmatz et aLr, ."have
recently emphasized that Eq. (11) is correct only
to lowest order and that from a thoroughgoing
scaling viewpoint one should use the corrected
expression

C/R =A'I "(1+D f)+ 5',

where b' =6 ! If we adopt the constraint b

=1.242, we find that A =1.93+0.08. The ratio
A /A' = 1.70+ 0.0'I now agrees well with other
estimates.

C. Surface finite-size scabng

Similar plots of the free-edge data showed that
the scaled data all lie on single smooth curves,
but tests of the surface contribution can be ob-
tained only by analyzing the difference between data
points and the infinite lattice values as outlined
in Eqs. (5a)-(5c). In Fig. 10 the surface contri-
bution to the magnetization is analyzed in a finite-
size scaling plot. The solid line has the theoret-
ically predicted slope 13, = P —v. The data are
consistent with the predicted asymptotic behavior
with B, =2.3 +0.2 but only over a very narrow
range of x. For x «2.8 additional correction terms
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FIG. 10. Finite-size scaling plot for the correction to
bulk behavior of the magnetization for lattices with free
edges. The solid line shows a best fit to the data using
the predicted surface contribution B,x ' with p, = p —v

and yielding B,=2.3+ 0.2.
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FIG. 12. Finite-size scaling plot for the correction to

bulk behavior of the high temperature specific heat for
lattices with free edges. The solid line is a best fit to
the data using the predicted surface contribution A+x ~~

where n, = n + u yielding A ~+ = 0.85+ 0.10.

become important. By comparison, the deviation
from asymptotic behavior due to finite-size cor-
rections al.one in the pbc data dis not occur until
x&0.5 (see Fig. 7). The corrections to the sus-
ceptibility both above and below T,(~) are ana-
lyzed in a finite-size scaling plot in Fig. 11. Above

T, the data obey finite-size seal. ing quite well
with an asymptotic slope equal to y, =y+ v and
amplitude [Eq. (5b)] C,' =1.4+0.2. Below T, the
situation is complicated by the uncertainty in the
asymptotic infinite-system amplitude C . Taking
C =0.155 as determined from our pbc data in

Fig. 8, we find reasonable agreement with the
predicted asymptotic slope and an amplitude
C, =1.8+0.2. Use of the series-expansion value
C = 0.195 would lower the large-x points, thus
tending to increase the asymptotic slope. In any
case it is clear that the surface contribution to
the susceptibility is much more symmetric than
the bulk susceptibil. ity itself, i.e. , C, =C, while
C =6C

Because of the uncertainty in both A and b

we have not ana, lyzed the low-temperature spe-
cific heat. Above T, , however, since both A'
and b' are well known from series expansions
a good test of the finite-size scaling of the surface
contribution can be made. The result, shown in

Fig. 12, indicates that the correction to the bulk
specific heat is well described by the surface
contribution with a, = a+ v and amplitude A,+ = 0.85
*0.10.

D. "Rounding" in critical phenomena

The results obtained in the previous sections
can also be said to shed light on the "rounding"

observed in the critical behavior of real mag-
netic systems. The data on lattices with pbc de-
scribe the effect of finite size alone. We have
already seen that "rounding" or deviations from
the asymptotic large-lattic e behavior bec ome
evident when the scaling variable x is less than
a minimum value x, but in all cases x, = 1. In
order for rounding due to finite size to become
visible for t &10 ', the system size must be small-
er than N=(x, /t)"=83. In a real crystal with lat-
tice spacing ap 5 A this would imply that grain
sizes of -400 A or less would have to be typical
in order to account for rounding. Such small
grains are highly unlikely; moreover, pbc are
certainly unphysical. Although grain boundaries
will not be completely independent of neighboring
grains, the assumption of free edges should be
a more realistic approximation. For x &x, the
bulk terms in Eqs. (5a)-(5c) reproduce the in-
finite-lattice critical behavior. The second, or
surface, terms behave differently and must be
small or the total result wil. l differ from the
asymptotic critical form. Using the amplitudes
found in the previous section we find that the val-
ues of x for which the surface terms are less than
1% of the bulk terms are much larger than x, and
are on the order of 2.5x10'. With t =10 ' this
now means that for N&12 000 rounding will. appear

0

due to the surface contribution. For ao = 5 A this
implies a grain size of -6 p. m, which is quite
reasonable. (A value of N-2800 would now pro-
duce rounding at t = 10 '.) This effect would be
qualitatively similar to that which can be simu-
lated" by assuming a Gaussian distribution of
T,'s in microcrystals where each grain obeys
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the infinite-lattice critical form but with a shifted
T, . Gur data also show that each different grain
size will have a different T, but that all T, 's will
be shifted belolo T, (~) rather than being sym-
metrically distributed. These shifts will still be
quite small since the asymptotic size dependence
of T, (Ã) yields d T, =1.3X10 ' for X= 1000. Note,
however, that only the very large grains wouM
effective1y follow the infinite-lattice critical form.
The others would be rounded by the surface con-
tribution. Although this model. is clearly over-
simplified, the surface contribution will probably
be larger in real systems. Since grains will not
have perfectly smooth sides, the fraction of spins
which a,re in the "surface" wil. l. be substantially
greater than for N~N~N cubes and the rounding
will be magnified correspondingly. More distant
than nearest-neighbor exchange and dipolar cou-
pling will also increase the effect. Surface effects
could therefore be at least in part responsible
for experimentally observed rounding.

The data which have been presented here show
that the finite-size scaling theory developed by
Fisher describes the size behavior of the simple-
cubic Ising lattice. Since v '4 1 wehavebeenable
to decide between ~ =1 and ~ = v ', a decision
which was not possible in two dimensions where
v=1. For lattices with pbc simple corrections
to bulk behavior are well described in the aymp-
totic large-+ limit using infinite-lattice exponents
and amplitudes. The range of the scaling variable
s=t+'~' over which the asymptotic form is fol-
lowed is considerably smaller than for the square

lattice (e.g. , for the order parameter @=0.2 is
the limiting square-lattice value, whereas here
x = 0.5 is appropriate). For lattices with free
edges, the corrections to the bulk critical be-
havior are well described by surface exponents
predicted from finite-size sealing theory. Surface
amplitudes have also been determined and, in
the case of the susceptibility, the high- and low-
temperature surfa, ce amplitudes are found to be
much more symmetric than the bulk ampl. itudes.
The variation of T, with N for lattices with free
edges suggests that the lowest-order correction
to scaling for ( in the infinite lattice is -t~'
rather than - t". We have also presented evi-
dence that the rounding in real systems may be
due to the surface contributions to grain behavior.
Finite-size scaling makes equivalent predictions
for both cubic-shaped systems as mell as for thin
films and the probabil. ity that A. is different in these
two cases is quite small. . Gur present results then
also imply that the shift exponent for thin Ising
films is ~= v '. This result has already been
checked by direct study. '9'0 We conclude then
that the finite-size behavior in all two- and three-
dlmenslona, l Ising systems ls well understood.
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