
PHYSICAL REVIEW B VOLUME 14, NUMBER 6 15 SEPTEMBER 1976

Surface plasmon dispersion of semiconductors with depletion or accumulation layers
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We have calculated the effect on the surface-plasmon-polariton dispersion of a space-charge layer at a

semiconductor surface, representing it by a dielectric function e(cy) that has an exponentially varying part with

a lie decay depth of the order of the layer thickness. Since we are interested in frequencies below those where

interband transitions are important, we have used a freewlectron model for z(m), with the plasma frequency

varying continuously from co~ at the surface to «s» in the bulk. Particular attention has been paid to the

frequency range for which the real part of c vanishes within the sample. Use of a local relation between

dielectric displacement and. electric field is justified, even in this range, by the fact that we use complex a and

the imaginary part varies little with depth. Evaluating the dispersion numerically, with damping included, we

obtain for the dispersion of a depletion layer (co~ & co») a single branch that starts at the light line, is

reentrant at co~„and goes asymptotically to the frequency for which e at the surface e, equals —c of the

medium above. For samples with thick enough depletion layers, additional branches, corresponding to guided

modes, are found both above and below co&. For an accumulation layer (au~ & ao») there is always one branch

which starts at the light line and goes asymptotically to the frequency for which e, = —z of the medium above.

For large enough values of d, a second branch appears, lying between co ~ and eu, curving upward in

contradiction to results obtained earlier. Comparison of this theory with experimental data for InSb, some for

samples with disturbed surfaces, leads to reasonable estimates for the thickness of the surface depletion layers.

I. INTRODUCTION

Measurements of surface-plasmon-polariton
(SPP) dispersion, made on n-fnsb, ' ' indicate that
the space-charge region at the surface of a semi-
conductor does have an effect on the dispersion.
Attempts to calculate this effect have been made
by a number of investigators. In an early calcula-
tion, %allis et a/. ' replaced the space-charge
region by a thin uniform layer with fewer or more
carriers than the bulk to represent a depletion or
accumulation layer, respectively. Cunningham

et al. ' took into account the variation of the dielec
tric constant e within the sample by replacing a

with a piecewise-continuous function. One or mox'e

linearly varying regions of ~ were joined onto one
or more regions of constant e to simulate varmus
types of space-charge variation with depth. Rice
et al. ,"although more interested in the effect of
accumulation or depletion layers on metals, ap-
proximated c by

((0;8) = t y((d ) + be (&d)8, 8 & 0

where z is the depth below the surface, taken as
z =0, and d a parameter of the order of the space-
chaxge region width. Solving the wave equation
using (1.1), they concluded that the presence of
either a depletion or accumulation layer leads to
an extra branch in the dispersion. As pointed out
by them, this could provide a useful tool for the
study of surfaces. However, one of us subsequent-
ly showed, "using (1.1), that the extra, branch
found by them could not exist for the case (be/e (

«j,. It remained a question whether extra branches
could exist for large ~be/e ~, in particular, for the
case where & goes through 0 within the sample.
Kith the calculations to be described below, we
have now concluded that for that case extra
branches can exist, both for accumulation and de-
pletion layers, but they have different properties
from those found by Rice et a/. In the case of de-
pletion layers, where the extra branches are more
properly described as guided modes, "they require
larger values of d (or, more accurately, of the
product of d and the plasma frequency) than were
considered by Rice et aE.

In Sec. II we give a more complete statement of
the problem and our approach to solving it. %e are
again using (1.1) for e but, as will be seen, solu-
tion of the wave equation becomes much more dif-
ficult when the region where ~ vanishes is included.
The use of (1.1) implies a local relation between
Dand E, which is questionable particularly in the
neighborhood of & =0. In Sec, II we show that the
local relation is valid provided complex e is used.
& is taken from a free-electron model, known to be
a good approximation at frequencies below E,/h,
where E is the energy gap, in InSb and GaAs, for
example. Having set up the wave equation for TM
modes in an inhomogeneous medium in Sec. II, we
proceed to solve it in Sec. III. Solution for all
z & 0, for au's above and below the bulk-plasma
frequency and for either depletion or accumulation
layers, requires three series expansions, two
about the singular points and the third at the sur-
face, w'hich is generally a regular point. One con-
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stant of integration is obtained by use of the bound-
ary condition Rt z = —~. The other, of course, re-
mains arbitrary, determined by the input power.
Under some conditions only one series solution is
needed to cover the entire region z = 0, but more
often two or even three series solutions must be
used, properly joined, to constx'uet a general so-
lution. The details of this and the resulting dis-
pex'sion relatlonsq obtained by requiring the coQ-
tinuity of tangential E and H at z = 0, are px'esented
in Sec. IV. The results thus obtained are concise
in form, but the dispersion can only be obtained by
computer. ID See. V we give numerical results for
the dlspersioD Rnd field variation with depth fox' a
number of representative depletion layex' cases.
At first q is Rssum. ed to be real arxd then the ef-
fects of moderate damping are considered. %e
also compare our theory with the available experiment-
al

resultss.
The final section (Sec.VI} is devoted

to representative results for accumulation layers.

A local relation between D and b was used in all
the calculations referred to earliex'. ' Its valid-
ity is discussed at length by Curuungham, Max'a-
dudin, and Wallis (CMW),

' who show that it is
questionable only in regions where carrier eoncen-
tx'ation or electric field vary x'apidly with z over a
distance comparable to the screening length. Cer-
tainly in a region where & goes through 0, result-
ing in the electric field becoming infinite, a local
approximation carrnot be justified. Although CM%
can show that its use leads to correct results for
one particular (limiting) case which can be solved
without this approximation, ultimately they justify
its use overall by noting that it leads to generally
rea.sonable dispersion. Since the dispersion de-
pends on the field everywhere, the fact that the
fields are incorrect in a small volume due to use
of this approximation, they reason, should have
little effect on the dispex sion. This reasoning
should be satisfactory if the region in which the
field divergence occurs is not close to s ~0, where
the continuity conditions are applied to determine
the dispersioD x'elRtioQ. As will be seell, howevex',
when we temporarily assume & real and evaluate
the dispersion for frequencies at which z = 0 is
close to the surfack, the local approximation leads
to spurious results. %e can avoid this by taking
into account damping.

On a free-electron model, "fox frequencies such
that the mean carrier scattering time ~» 1/u,

(2.8)

with c denoting the velocity of light in free space.
The electx'ic fields E, RQ5 E, may be obtained from

dH»

g4gC dz
(2.4)

F., = —(k,/(oc)H„. (2.5)

In Sec. III our efforts will be directed'to solution
of Eq. (2.8) with e =e, for z & 0, e given by (1.1)
fox' z &0. The location zo where the real part of e
vanishes is given by

contribute to e) and co~ is the plasma frequency. If
the carrier concentration N varies slowly with z,
as is true in the eases of our interest, we may de-

finee

R local plRsmR fx'equency

(2.2)

where e Rrld m + Rre the cha.x'ge Rrld effective QlRss
of the earriex;s, respectively. When the carrier
concentration varies with z, 7' may vary with z,
although not as strongly as &~2 does. Of course, for
a damaged surface, where other defects Rx'e intro-
duced, v might vary strongly with z but we shall
Qot consider such cases quantitatively. Thus for
the ease~ we do ~reat, &„ t e imag nary part of .,
is both slowly varying with z and lax'ge enough, as
will be seen, so that the electric fieg rises less
than an order of magnitude in the neighborhood
where &„, the real part of &, vanishes. Thus even
in that neighborhood the assumption of a local re-
lation between D and E should be satisfactory pro-
vided complex e is used. In what follows we use
complex & unless otherwise specified.

The medium in the upper half-space (z &0) is as-
sumed homogeneous with a dieleetx'ic constant e,
independent of frequency and position. %e look for
solutions xepresenting plane electromagnetic waves
propagating along the x direction with wave vector

For the symmetry of the system we are dis-
cussing, electroma, gnetic wave propagation can be
split into TM and TE modes. In this paper we shall
be concerned only with TM modes. TE modes in
this frequency range are found also to have some
special properties, which have been discussed in
another publication. " For TM modes the ampli-
tudes of the three field components may be taken
Hyy E~y RDd Eg. To obtain the fleldsy eRch ampli-
tude must be multiplied by exp[i(k„x-ref)]. The
magnetic field amplitude then satisfies the following
wave equation":

e((u) =e„(1—&o~&u ')+is„((u~(o ')((ur) ', (2.1) so = cf In[(Q)pg —Qp }/((gag (dp~)] q (2.6)

where &„ is the dielectric constant at high frequen-
cies (but not so high thRt interbBJld trRQsitions

where +» and &~, are the bulk and surface values
of the plasma frequency, respectively,
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III. SOLUTIONS OF TM-MODE WAVE EQUATION

H, (z) =H„,exp(-P~), z &0

with

(b2 2 -2)l/2

(3 1)

(3 2)

Here H„, denotes the value at z =0. Since the pa-
rameter p, must be real and positive, the lower
bound of k„ is the light line, given by k„=~&, co/p.

In the lower half-space, the situation is much
more complicated because of the z dependence of
e given in (1.1). However, since e -e, as z- —~,
the wave equation in that limit approaches that of
the upper half-space with e~ replacing e,. Then

lim H„= (const) exp(p p),
with

(3.3}

Since e =e„ independent of z, for z&0, the wave
equation in the upper half-space is easily solved.
The solution that is finite as z -~ is

Consider now the behavior of the above differen-
tial equation in the complex v space. There are
two regular singular points, one at v=0 where & =0
and the other at v = —1 where z - —~. The region
at infinity (i.e. , ~v~ -~) forms an essential singu-
larity if &~-0. All other points in v space are or-
dinary points. Standard Frobenius methods" can
be applied to solve this kind of differential equa-
tion in terms of infinite series expanded at regular
singular or ordinary points. A series thus obtained
is valid only within a radius of convergence equal
to the distance from the expansion point to the
nearest singularity. If several such series can be
found and properly combined a complete solution
covering the entire region of interest can always
be obtained. In the present case, we are mainly
interested in a strip including the entire real axis
of the complex v space. In the following we shall
present the three solutions needed: one expanded
about v=0, a second about v= —1, and a third about
v=v 40, —1.

p (b2 2 -2)1/2 (3.4)
A. Series solution expanded about the singular point y = 0

H, (z) =F(z) exp(p~), z &0. (3.5)

The unknown function F(z) must approach a con-
stant as z- —~. Introducing a new variable

v = —E (Z)/Eg, (3.6)

we can transform the wave equation for z &0 into
the differential equation

The general solution may therefore be expressed
by The series solution given in this subsection will

be called the v solution. Since v=0 occurs if & =0,
this solution is particularly useful if the real part
of the dielectric constant crosses zero somewhere
inside the medium. This happens for +'s between
the bulk-plasma frequency ~» and the surface-
plasma frequency co~,. Using Frobenius methods
in this case, we find that the function F can be ex-
pressed as

v(v+ 1)F"+ (2+v —1)F' —(o+qv)F = 0,

where the prime indicates d/dv and

(3 7) F =AvFv

with

(3.12)

(y =POd,

q= ge(0 d/C.

(3.8)

(3.9)

(3.13)

Here A„and g are two unknown integration con-
stants, and F, and F, are infinite series given by

v~ = —e ~/E ~. (3.10)

The surface dielectric constant e, is related to e,
by

In what follows we shall make considerable use of
the surface value of v, v„given by F.= g a„v",

n=0

F, =z(q+o') (lnv)F, + g b„v",
n=0

(3.14)

(3.15)

Es f5+ +E (3.11) with the following coefficients

ao=a, =0, a, =1,

a„=—[n(n —2)] '([(n —1)(n —2) + o(2n —3)]a„,—qa„,)=—M,(a„„a„,), n ~ 3

(3.16)

bo=l bi=-o', b. = —(q —4a+o. ')/4,

b„=M,(b„„b„,) —(q+ n')[2n(n —2)] '[2(n —1)a„+(2n —3+2o}a„,], n& 3.

(3.17)
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For real v, the function ln v in (3.15) is replaced
by In/vf.

B. Series solution expanded about the singular point tp = -1

Since v= —1 occuxs as z - —~, the series solu-
tion expanded at v = —1 is particularly useful when
the solution deep in the bulk is needed. For con-
venience, we write (3."I) in terms of a new variable
y defined by

with the following coefficients;

d, =0, d =1,d, =0,

d„= —8'[v, (v, + 1)n(n —1)] '

x {R '(n —1)[(2v, + 1)(n —2) + 2n v, —l]d„, (3.28)

+ [(n —2)(n —3+ 2n) -qv, —n]d„, —q&d„,],
(3.18)

The solution of this equation, obtained earlier in
Ref. 6, will be called they solution. It may be
written

=M,(d„„d„„d„,), n ~ 2

8-x eo

e„=M,(e„„e„„e„,), n~ 2
(3 .29)

F, = g c„y",
n=0

with the following coeff icients

C ) =0~Co= ~~

&, = [n(n+ 2~)]-'[[(n 1) (n

+n(2n —3)+q]c„,—qc„,), n~ 1.

(3.21)

C. Series solution expanded about an ordinary

point@=+, 40, -&

Suppose v, c 0 or - 1. The point e = v, then an or-
dinary point of the differential. equation. For con-
venience, let us define a new variable u by

(3.22)

(3.23)

The solution to be given next will be called the u
solution, and )R~ is its radius of convergence. In
this case we find that the function F' can be written

with

(3.24)

(3.25)

Here A,„and h are integration constants, and I'~
and I, infinite series given by

(3.26)

(3.19)

where A., is an integration constant and the infinite
series I „ is given by

Since this u solution is expanded about v= v„ it is
most useful near the surface.

Each of the above three solutions, v, y, or u,
has its own unique region of convergence. Table I
summarizes 'the various ranges of convel gence on
the real axis of the complex v space for the three
solutions, first in terms of the variable u, then in
terms of the dielectric constant &, and lastly in
terms of the depth z. Under certain conditions
either the e or y solution alone can be used for the
whole inhomogeneous medium. In terms of the
frequency +, we have summarized these conditions
in Table II, Note that different frequency ranges
need to be considered depending on the relative
values of ~~, and ~».

IV. INTEGRATION CONSTANTS AND

DISPERSION RELATIONS

The integration constants (g, h, g„,A„and A,„)
in the series solutions presented in the Sec. III
must be determined by appropriate boundary con-
ditions. As has been discussed above, sometimes
only one solution is needed for all z &0. In such
cases, only the boundary conditions at the surface
and deep in the bulk are needed to determine the
unknown constants. The requirement at the sur-
face is that the tangential electric and magnetic
fields be continuous, and deep in the bulk the fields
must remain finite. " However, in cases that two
or three solutions are needed to cover z &0, ad-
ditional boundaries (not real in the sense of bound-
ing two different media) have to be chosen, one in
each overlap region between two neighboring so-
lutions, and field continuity established there. The
value of v at the, surface, v„determines the so-
lutions required or convenient to use. This infor-
mation is summarized in Table III. Fox all cases
we have found that the dispersion relation can be
written in a general form in terms of the solution
evRluRted Rt the surfRce Rs
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TABLE I. Ranges of convergence fox' the series solutions &, y, ands (& real).

Series
solution

Definition of
variable

Ranges of convergence in terms of

«0 if fv, i
& i or [e,/eJ &l.

~ & d In(-2e&/A~)

if vs ~ 1 or csgb ~ -1
Not valid if v, ~ -1 or e, /&~ ~ 1.

z&o if -2& v, &O or )nz) &)e~).

z &din(e, /ae(

if "s ——2 ~

if v~~=2l

if vs- —~

Z&p if V, ~=2l.

(4 l)

where the prime indicates d/dv and

(4.2)

In what follows we shall study first those cases
where either the e or y solution can be used alone,
and then discuss situations in which multiple so-
lutions must be matched.

Zn = f'n/sn (4.3)

and then choose

noted earlier, I —const as z ——~. Considering
both series, p, and p~, as v- —1, which occurs as
z -- ~, we find that they have the same type of s in-
gularity, diverging at least as ln(l+ v) but no worse
than (l+ v) '. To eliminate the singularity in order
to render p finite as v-- 1, we first define

A. Use of e solution alone for je, j& I

As shown in Table I, the e solution alone can be
used for all z &0 if iv, ( & l, with the applicable fre-
quency ranges given in Table II. The unknown con-
stant g can be determined by the condition that, as

TABLE II. Frequency ranges in which e ox'y solution
ls valid fox all z & p.

(4.4)

In practice, g has to be computed to high accuracy
since, as v- —1,F'„ is obtained from the difference
between two extremely large numbers. In Appendix
A, we show that this can be achieved efficiently
using the following formula

Series
solution

Depletion layer
C0p~ & Copy

au& [( 2 ++2)/2] ~/2

Accumulation layer
~ps ~ ~pa

u & [(+2 ++2)/2] ~/2

TABLE DI. Solutions required (ox convenient to use)
fox' diffexent vs.

Value of ~
~, ~-2 -2&, &P -1&~,&1

at surface

or

co & (2'&& —u& )2 2 i/2

~ ~~ps

cu & (2'&& -cu& )2 i/2

if copy & cop /W2

Solution Q

Matching -2& v &-1
points

v and $

-1& &m& &P

p&v, &1
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This dispersion relation has been studied exten-
sively.

+ o(m'}.

The procedure is to compute first g„ iteratively
using (4.3) to a reasonably large N(dictated by the
accuracy needed), and then include the correction
term given above. The remaining error is of the
order of E '. %'ith g known, the continuity of II,
at z =0 results in

A„=e„,/F „(v,), (4.6)

and the continuity of E„yields a dispersion relation
in the form of (4.1) with F„replacing F In th. e
limit v, -0, which occurs if e,-0 or &-m~„an
approximate dispersion relation can be obtained
by considering only the first few terms of the ser-
ies. Furthermore, if )q(«(o. [«1, which is not
difficult to achieve experimentally, we find that

g =- a. The resulting approximate dispersion re-
lation is very simple:

P/e2 = (o/Ey)[1+ lx(1+ »~ —lnvq)] ~ (4.7}

For real dielectric constants, the ln v, term in the
above expression is replaced by In~», ~. This sin-
gular term will be found to have a profound effect
on the dispersion relation, particularly in the case
of depletion layers. We shall return to this later.

4, =a„/F„(v,) (4 9)

and the continuity of E„results in a dispersion re-
lation also in the form of (4.1) with F, replacing F.

B. Us4: ofy solution for-2&v, &0

Referring to Table I, we find the y solution can
be used alone for all z&0 if —2&v, &0, with the
applicable frequency ranges given in Table II. The
continuity of II, at z = 0 yields

A„=a„/F„(v,), (4.9)

A.,=A„[(F„F",—F„'F,)/(Fg.' —F,'F,)]„„, (4.1O)

[(Fg,' F-,'F,)/(F~-,'-F,'F.)]„„. (4.11)

The dispersion relation is again in the form (4.1)
with F„replacing F.

D. Matching u,e, andy solutions fory, ~~1

If v, ~ 1, we may choose to use only u and v so-
lutions and match at a point between 0 and 1. But
we have found that much faster computation can be
achieved if all three solutions are used. The en-
tire range of —1& v& v, is divided into three pieces
by two matchmg points v, and v, which satisfy
—1 & v, & 0 & v, & 1. The y solution can then be
used deep in the bulk (in —1 = v & v„,), the u solu-
tion near the surface (in v, & v & v,), and the v so-
lution in the middle (in v, & v & v, ). Applying the
boundary conditions, we find that the five integra-
tion constants satisfy the following matrix equa-
tion:

C. Matching u andy solutions for y, 4-2
According to Table I, the u solution alone should

be valid for all z &0 if v, ~ —2. This is true pro-
vided the integration constant h can be properly
determined, the problem being similar to that of
determining g in the v solution. However, for
some obscure reason, we failed to obtain reason-
able results using the u solution alone. Fortunate-
ly, the difficulty can be entirely avoided if we
choose a matching va, lue v, satisfying —2&v
& —1, to join the u andy solutions so that the con-
tinuity of the tangential electric and magnetic fields
is maintained there. Thus the u solution was used
nea, r the surface (in v, & v & v ) and the y solution
deep in the bulk (in v & v & —1). The unknown in-
tegration constants are found to be

F,(v, ) —Fg(v, ) —F,(v, )

F,'(v.,) -F,'(».,) -F.(...)
F~(v, ) F,(v.,)
FP» .) F,'(v, )

—F,(v, )

-F.'(v, ) h F~(v, )

(4.12)

with A„given again by (4.9). The dispersion re-
lation is still in the form, 4.1) with F„replacing r .

As noted above, the use of either one or more
solutions in different ranges of v„which is sum-
marized in Table III, is not unique but may be more
convenient. When more than two solutions are

joined, we are free to choose the exact location of
the matching points. Such freedom turns out to be
extremely valuable for double checking the numer-
ical results. As an important example, it is worth
noting that in the case of ~v, ( &1, although the v so-
lution can be used alone as treated in Sec. IVA, we
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can do as well by matching y and v solutions to-
gether at an arbitrary matching point between —1
and 0. In fact since g needs to be computed to very
high accuracy, as noted earlier, it is very often
faster to obtain it through matching y and v solu-
tions rather than using Eq. (4.5) and iteration.

V. DEPLETION LAYERS

Since cr «e~, except for a small region close to
where e„vanishes, we first evaluate the dispersion
for real &. Even this requires lengthy computer
calculations, as indicated in Sec. IV. In this sec-
tion we present some typical results for depletion
layers at the surface, first for real e, then for
complex e. A few of the results of this section have
been reported in preliminary form. "

A. Dispersion for real e

For a depletion layer the surface value of plasma
frequency co~, & co~b. Note, however, that or~, cannot
equal 0 as assumed by CMW. ' Just what v~, is de-
pends on the location of the band edges relative to
the Fermi level at the surface, which is affected
by surface states, external fields, exposure to am-
bients, surface treatments, etc. Consider an InSb
sample similar to those investigated in Ref. 1, with
bulk carrier concentration N~ in the range (1-7)
x10"/cm'. With a.n average m* for electrons of
0 03 p?2 p ~ p being the free- electron mass, and
E = 16, this leads to t'd» in the range 8 x 10"-2
x10"sec '. At room temperature in InSb the ther-
mal-equilibrium. product of electron concentration
N and hole concentration P is -5x10"/cm'. " The
hole concentration in the bulk is then -10 'N, for
the sample we are considering. Since the average
hole mass is 0.16m„ larger than the electron
mass, the hole contribution to u» is negligible.
If the bands were flat to the surface, &~, would
equal co». Usually, however, the bands curve up-
ward in going from the interior to the surface, so
that N and P at the surface are smaller and larger,
respectively, than their bulk values. At 77 'K in
an InSb sample with undisturbed surface the cur-
vature of the bands is considerable, the Fermi lev-
el at the surface lying at an energy —3E below the
edge of the conduction band. " If the Fermi level
were similarly located at room temperature, the
hole concentration at the surface would be -5000
times the electron concentration there, and the
hole contribution to +~, would be much more im-
portant than to co». With E = 0.18 eV at room tem-
perature, we estimate the hole contribution to co~,
to be -2-4x10" sec ', with the electron contri-
bution perhaps T'p as large. Thus co~,/co» could
range from about —,

' to ~for samples with Nb be-
tween 1 x10"/cm' and 7x10"/cm', not far from

the flat-band value of unity. There is, however,
another consequence of a large hole contribution
to co~, : The total plasma frequency, which is the
sum of electron and hole contributions, may no

longer be represented accurately as a constant plus
a single exponential decreasing monotonically f rom
bulk to surface. Equation (1.1), on which our cal-
culations are based, would then not describe the
situation well very close to the surface. Qf course,
we do not have information about the location of the
Fermi level at the surface at 300 'K in any particu-
lar InSb sample, even one with an undisturbed sur-
face. Knowing the energy gap and the electron and
hole masses, we can, however, determine that the
minimum value of ~p, for InSb with a depletion lay-
er is approximately «» at this temperature. Thus
we expect cu»& z~, & 0.1z» for depletion layer sam-
ples.

Without knowledge of the curvature of the bands
at the surface it is not possible to calculate d. At
77 K, for an undisturbed sample with N, = 1
x 10"/cm', the information on the location of the
Fermi level given above leads to d= 250A." For
larger Nb, d would be smaller, decreasing approx-
imately as ~N~ At room. temperature the energy
gap is considerably smaller and, for the same lo-
cation of the Fermi level relative to the conduction
band edge, d would be considerably smaller. We
estimate it as no more than 100A for N, in the
range (1-7)x10"/cm'. If the bands were less
curved, d would be even less. For disturbed sam-
ples d would, of course, depend on the nature and
the extent of the disturbance. In one study of an
InSb sample with a grating cut on its surface, the
authors obtained evidence, through etching, for a
surface layer depth of 0.1 mm. '

We conclude that for InSb samples with N, = (1-7)
x 10"/cm' and undisturbed surfaces, ~»/~» at
room temperature is probably in the range T'p--,'

and d is likely to be no more than 100A. For dis-
turbed samples d could be much larger. Values
of &u»/ru» between the minimum and unity should
be realizable by introduction of suitable electric
fields or ambients. Much smaller ratios of co~, to
co» should be obtainable —in fact, usual —in ma-
terials with larger values of E„such as GaAs,
since the thermal equilibrium NP product is pro-
portional to exp(-E /kT). " The smaller NP prod-
uct will also result in Eq (1.1) bei.ng a better ap-
proximation when the Fermi level at the surface
is below midgap. In addition, d would be larger for
larger bandgap materials.

As can be deduced from the dispersion relation
(4.1), for given e, and e „the dispersion depends
only on the dimensionless quantities m/w», ck,/
a&», &u»/u», and &a&» d/c. Our results will there-
fore be given in terms of these quantities. In Fig.



SURFACE PLASMON DISPERSION OF SEMICONDUCTORS. . .

1 we show the calculated dispersion for w = ~, i.e. ,
e real, ~~dc =0.1, and three different values of
ru»/&o». The value ro»d/c = 0.1 corresponds to
d= 1500k. for &u»=2x10"/sec, thus many times
as large a value of d as expected fox undisturbed
InSb samples. This large value of d has been
chosen because it allows the structure to be ex-
hibited more clearly and, as discussed above, it
is not unreasonable for disturbed samples, which
may have still much larger d.

As can be partly seen with the help of the inset
in Fig. 1, for ~»/&o» = 0.6 there is one branch that
follows the light closely up to ~ = ~p, and then ap-
proaches very closely the horizontal line +/ru»
=0.6, although always staying below it. For this
branch «0 everywhere, although it is very close
to 0 at the surface. This is the usual surface-
plasmon branch, or branch I in the nomenclature
of Rice et a/. " Because the behavior near wp, is
completely dominated by e being very close to 0
at the surface, it was particularly reassuring to
find that the y solution gave the same x'esults as
the v solution for this case. In the limit o' large
k„(beyond what is shown in Fig. 1) branch I curves
down and goes asymptotically to the frequency ru,

I I I

~3K (0.92)

I I I

~x (1.0)
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0.75—
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FIG. 1. Dispersion innormalizedunits for the case of a
depletion layer on a sample with fd»d/c =0.1, e =16, e2 =1,
7 =~, and ~p /fdp&-0. 6, 0.92, 1.0. The latter is shown
as a dash-dotted curve. The result for m»/up &

= 0 is
shown for reference. The inset is an expanded view of
the neighborhood of co =cops for ~ps~~pb —-0.6.

at which e, = —1, i.e. , e»[e„/(e„+ I)I'~'. This is
readily deduced as follows, from the use of (4.1)
with they solution. In the limit k„-~, (F,'/F, ), =o

approaches a constant value, but n —~, so the ex-
pression in angular brackets in (4.1) approaches
unity. The resulting dispersion relation can only
be satisfied by e,-—e„'which is —1 in this case.
The branch labeled II(0.6) lies everywhere above
w =0.6u», thus corresponds to & being positive at
the surface, having gone through 0 just below it.
Where branches I and II are close to each other,
v, ( is very close to 0. The existence for small
v, ~

of a, closely spaced pair of branches, almost
symmetric with respect to v, =0, or co =&p„ is the
result of the lnv, term in Eg. (4.7). For the case
of real z, now being considered, lnv, becomes
In)v, (, which is so large for (v, [ close to 0 that it
dominates the right-hand side of (4. I) and thus the
behavior of the dispersion. It should also be noted
that for real & no dispersion curve can cross the
line ~ =~p, . This is the case because the ln term
is infinite at v, =0, which corresponds to E„being

infinite at z =0, making it impossible to satisfy the
dispersion relation.

We also find a third branch, labeled III(0.6),
which joins II(0.6) nea, r ck,/&o»=0. 62. The same
type of structure, with a pair of branches just
above and below v =up, and a higher third branch,
is always found for &p, values less than 0.6+». In
the limit ~p, -0 branch III corresponds to the dis-
persion curves calculated by CMW, although theixs
differ in detail since they approximate c by a piece-
wise linear function.

For ~p, =0.92&» the dispersion consists of branch
I for w&+p, plus a closed loop for up, -u&+». %'e

may still define branches II and III by taking as the
boundax'ies between them the two endpoints where
the loop is tangent to a vertical line. The case Lp,
= 0.8u, shown in Ref. 16, has a branch II-III
structure intermediate between those of 0.6 and
0.92&@». For &u»d/c ten times as large, the case
shown in Fig. 2, we see the same types of struc-
tures with the branch III's in general closex to the
branch II's. The structure formed by branches
II(0.6) and III(0.6) now also appears to be a closed
loop, with the joining at somewhat larger A„ than
shown. From the experience of seeing many such
structures, plus the results of an integral equation
approach, we believe that the closed-loop behav-
ior for branches II and III is quite general, although
the joining may come at very large k„. In general,
the loop shrinks gra. dually with increasing ~»/ca».
It disappears for some frequency (dp, close to (d»,
and for frequencies beyond this only branch I ap-
pears. For the parameters of Fig. 2 the value of
cup, for which it disappears is in the range 0.9'»
& p, & 0.8u», while for those of Fig. 1 it disap-
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tremum at z =z,. At the same place E„, according
to (5.2) shows a logs. rithmic singularity and E, di-
verges as v '. The singularities are, however, due
to use of real & and will be seen to disappear when
we introduce damping.

To demonstrate the behavior of the fields, we
show in Fig. 4 H and E, vs z for the three branches
at the same value of k„. In all cases, for large
enough z we expect, according to (3.3), decay as
exp(p~). For branch I, essentially the usual plas-
mon branch, H, and E„both decay monotonically,
more or less as exponentiaks, below the surface.
For branches II and III both H, and E„rise initially
below the surface and, as predicted, H, has a max-
imum and E„-~ at z =z, before decaying exponen-
tially. The difference between II and III is that c = 0
is closer tothe surface in the former case, corre-
sponding to smaller

l v, l.

1.5

Hy /Hys

—Y

Hps

1.0

XE

Exs

0.5

I 1

0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C. Effect of damping

As discussed earlier, for v~ » 1, &~, defined in
Eq. (2.1), is small compared to ss except in the
neighborhood where e„vanishes. Thus the effects
of damping will be significant only for a close to
&g» or lvl «1. In that neighborhood the dispersion
is given by (4.7). In obtaining the results discussed
so far in this section we have considered lnv, to be

replaced by lnl v, l. The effect of complex e on the
terms in (4.7) will be by far the largest on the ln
term, so we will neglect the effect on the other
terms. The real part of lnv, becomes ~a ln(v', s
+ v~), the subscripts R and I denoting real and
imaginary parts. Damping will have signif icant
effect where lv~l. a lv, sl. For cur»1 and &u =&@»
we find from Eq. (2:1)

(v„/v, „)= [2r((u» —~u)) '. (5.4)

ln regions where u is so close to ur» that lv~/v, sl
~ 1 it is likely that the dispersion relation (4.7)
will no longer be satisfied for complex e because
the ln term is prevented from approaching ~.
When lv~/v, „l &1 the dispersion should be little
affected. We should, therefore, get a good approx-
imation to the effect of damping by eliminating
those portions of the dispersion curves for which

lv~/v, sl ~ 1. This wipes out the portions of
branches I and II that were very close together,
resulting in the three branches forming a single
reentrant curve. Figure 5 shows the dispersion
of Fig. 1 after the introduction of what. seems phys-
ically reasonable damping, corresponding to 7 = 5
x 10 "/sec, for ~» = 10"/sec, or T = 10 "/sec for
~» = 5@10"/sec, etc. In the .k„region where I and
II were very close together the dispersion is rep-
resented by branch III. At large k„, for u & w~„
branch III goes over into what is left of branch I.
The asymptotic behavior in the limit of large k„
is that of branch I, i.e. , the dispersion approaches
the limiting frequency e~, [e /(e„+s, )]' '. The re-
entrant feature for u~, close to co» and the
approach to the asymptotic behavior should be ex-
perimentally detectable.

As noted earlier, damping also wipes out the
singularities in the electric fields. For E„/E„„
to a good approximation [see Eq. (5.2)], the actual
peak height will be reduced from ~ to Inl v, (z,)l/
lnlv, „l, since v, at the surface is not far from 0
for the cases being discussed. From the defini-
tions of v and s (z) we deduce that Inl vz(z, ) l

= lnl v~/
(v,z+ 1)l. The quantities v~ and v,s may be cal-
culated from ur, &u», ru», and 1/err For m»r = .50
in the two cases of Fig. 4 we obtain v,l/(v, s+ 1)
=0.05. With v, =0.425 for II, 0.238 for III, we
conclude that the peak in curve II is just about fully
suppressed, w'hile that in III is not. For curve III
E,(z,)/E„, = 2. Neither the location of the peak nor
the fields away from z =z, are much affected by
the smalI damping characteristic of large |d7.

FIG. 4. Electric and magnetic field amplitudes, nor-
malized to the surface values, versus normalized depth
below the surface for the case ~~d/c=1, e =16, e2 ——1,
r =~, &u&8/u& &

—0.8. The fields are shown for ekj&u& &

=3, which corresponds to co/co&& —-0.79371 for branch I,
0.80912 for branch II, 0.84215 for branch III.

D. Comparison with experiment

The parameters in Fig. 3, as noted earlier,
were chosen to more or less resemble those of
the sa,mples in the surface-plasmon dispersion



2474 CHENG C. KAO AND ESTHER M. CON%'ELL

I.00
i I I

0.95 —~:
O

~ Qp~s /Q)~b= t 0

0.85—

0,80—

0.70—

0.60—

0.55
0

I I l

4 5 6
I

7 8
I

9 I0

FIG. 5. Dispersion in normalized units for the deple-
tion-layer case of Fig. I with finite 7 (damping) corre-
sponding to Q3p & T = 50(v = 5 & 10 sec for cup &

——1.0 /sec) ~

The number associated with each curve is cu»/(dp &
for

that case.

studies of Ref. 1 and 3. Qf course, wp, is not
known but, as discussed earlier, on the assurnp-
tion of an undisturbed surface &o»/&o» in the range
&--,' is not unreasonable. If we correct for c being
complex, with a r'easonable v for the InSb samples
concer"ned, the horizontal dashed lines at (dp„rep-
resenting branches I and II, disappear. The dis-
persion for &u»d/c =0.02 is then given by the solid
line, actually branch III, for the k„range shown.
The dispersion in this range of A„ is not particular-
ly sensitive to ~p, for, as noted earlier, it would
not be possible to distinguish, on the scale used„
between branch III for any &p, 0.3&& and branch
III for (dp, = 0. In the experimental study of Ref. 1,
Marshall et gl. used an inscribed line grating on
their samples, with grating spacings in the range
10-30 pm, to introduce the SPP's. Their results
were compared with the predicted dispersion for
a sample homogeneous to the interface. The data
were found to follow the light line well at low fre-
quencies, but in the region where the dispersion
curve falls below the light line and in the plateau
region, the points lay below the homogeneous sarn-
ple dispersion by several percent. In the later ex-
periments, ' a prism was used to introduce the

SPP's, leaving the lnSb surface undisturbed. In
this case the experimental points in the plateau
region are found to lie within about —,"% of the homo-
geneous sample dispersion, still below it. Fischer
et gl. ' attributed their earlier data to a depletion
layer created by mechanical destruction of the
surface required to create the grating. They state
that, for the earlier data, "it is, in fact, possible
to fit the experimental points by a dispersion curve
which is calculated for a surface having a depletion
layer of about 1 pm in depth, "with average carrier
concentration in this layer assumed at least an or-
der-of-magnitude lower than the bulk. They com-
ment, reasonably, that "The value of 1 pm, as de-
duced from a simple step model for the depletion,
however, appears surprisingly large for such
heavily doped semiconductors. "

To compare these experimental results with
those in Fig. 3, we note first that, for the small
values of d in the figure and fixed (dp„ the amount
by which the more-or-less horizontal region of the
curves for finite d lies below the curve for the
homogeneous sample (d =0) varies linearly with d.
As mentioned earlier, for sr» = 2 x10"/sec (N~
= 7x10"/cm'), &u»d/c =0.02 corresponds to
2= 300 A, while ru»d/c = 0.043 corresponds to
650 A. Consistent with the statement just made
above, for ck, /w» between about 1.5 and 3, &u»d/c
= 0.02 lies -2-,';'/(, below the homogeneous sample
curve while e»d/c =0.043 lies a little over 5% be-
low. To achieve a dispel s1on eul ve ly1ng %'1thln
--,'% below the homogeneous sample curve for
&o»/&u, s 0.3 would require ds 60 A. If ~~,/~»
were larger, d could be somewhat larger. The
fact that Eq. (1.1) might not hold very close to the
surface for this ease because of inversion, i.e. ,
P &N at the surface, should matter little since d
is so small. Thus the experimental data for the
ease of prism introc'uetion' correspond more or
less to our expectations for a sample with undis-
turbed surface at 300 K. For the case of the sam-
ples with the gratings we deduce from Fig. 3
d-350-400 A for re~, /&u» = 0.1. This is clearly a
more reasonable result than the 1-pm depth from
the step model.

Clearly, comparison of SPP dispersion with
theory provides a technique for learning about the
depth of disturbance in samples with disturbed
surfaces, even when these depths are relatively
small. In addition, despite the small d values, it
should still be possible to get some information on

vp, if the experimental data were taken to larger
For one thing it might be possible to observe

the reentrant feature predicted at + =up, . Even if
this is not possible, it should be possible to get
information, even for undisturbed surfaces, from
the approach to the asymptotic frequency &,
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=re»[e„/(e„+e,)]'~'. Data could easily be taken
to much larger values of k„ than attained in Ref. 1
and 3 by means of recently developed holcgraphic
techniques for making gratings with much smaller
spacings. Such gratings can be made with spacings
less than —,

' the wavelength of the argon blue laser,
thus 50 times smaller than the finest used in Ref.

2I

E. Guided modes

For samples with &a&»d/c~ —,
' (with e„=16, e, = 1,

a&» = 0) we found additional branches in the disper-
sion corresponding to guided modes, i.e. , modes in
which the field amplitudes are oscillatory below
the surface before decaying exponentially as z-

These branches always start at the light
line, k„=We,sr/c, sometimes for &u &u». They are
discussed in another publication. "

VI. ACCUMULATION LAYERS

In the case of an accumulation layer (~»&&u»)
there can be no guided plasmon modes, but a sec-
ond surface-plasmon branch has been found. One
branch of the dispersion due to an accumulation
layer, with &o»/&u» = 1.2, has already been shown
in Fig. 2. We label this branch I because it looks
like a natural continuation of the depletion-layer
series with increasing su~, . However, unlike
branch 1 for depletion layers, it may, and in this
case actually does, rise into the frequency range
where e is positive in part of the sample. This
branch was also described by Rice et al. ' and by
CMW. Note, however, that although both these
sources plotted results for cases where the dis-
persion curve attained frequencies greater than

ar», so that c goes through 0 inside the sample,
they used only solutions valid for e & 0 everywhere.
They nevertheless got reasonable-looking disper-
sion for this branch because they happened to
choose cases where e =0 is far enough away from
the surface sothat the solutions at z = 0, which de-
termine the dispersion, were not much affected.

As seen in Fig. 2, branch I for &~, =1.2~» starts
from the light line at low frequencies, rises above
the limiting frequency for the homogeneous sam-
ple, and above co», until it comes close to the cor-
ner where the line n =0 crosses the light line, and
then flattens. The fact that the limiting frequency
co, for an accumulation layer must lie above the
homogeneous sample curve I(1.0) was pointed out
by Rice et al. ' and by one of us' for the case
~Ae/e,

~

&(1. By the same type of reasoning as was
used in Sec. VA for depletion layers, we can show
that, if they solutionis valid at the surface, in the
limit k, -~ the limiting frequency &u, = v»[e„/(e „
+e,)] ' is also attained for accumulation layers.
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FIG. 6. Dispersion in normalized units for an accum-
ulation-layer case with cu&&d/c =1, ~„=16, &&

——1, v = ~,
and m»/cu&& values of 1.1, 1.2, 1.3.

However, as can be deduced from Table II, for
accumulation layers the y solution does not con-
verge for co~, &~»» nor even for cu somewhat
less than ~». We have been able to show, by
means of an integral equation approach, "the above
expression for &, is nevertheless valid in these
frequency ranges also. Although we do not plot
Fig. 2 to large enough values of k„ to demonstrate
this for I(1.2), our calculations verify that it is
heading for such a value of ~, .

To see the second branch for the parameters of
Fig. 2 requires an expanded scale in the neighbor-
hood &o/&u»=1. This is shown in Fig. 6 for three
values of u&»/&v», the other parameters being the
same as those of Fig. 2. For &~,/ro»=1. 1 we find
a second branch, labeled II(1.1) in the corner
formed by a =0 and the light line. As ~»/~» in-
creases, branches I and II come closer together.
At ~~, = 1.3 &» and beyond there is a sharp kink in
both branches I and II, separating regions of dif-
ferent slopes. Similar behavior can be observed
for varying u»d/c. In Fig. 7 we show the disper-
sion curves for several values of e»d/c with u»/
cu» fixed at 1.2 and the other parameters the same
as Fig. 6. At co»d/c=0. 1 a tiny branch II appears
in the corner formed by the light line and n =0.
With increasing &u»d/c we find branches I and II
moving closer. For ~»d/c~ 1.5, the two branches
show the sharp kinks seen in Fig. 6 for w~, = 1.3~».
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Thus, for a depletion layer, when q, &0, 8, initially
increases below the surface (z &0), as seen in Fig.
4. For an accumulatjon layer, when &, =0, H, in-
itially decreases. The latter behavior can be seen
in Fig. 8 for several different sets of parameters.
For m = 0.9w» we see below the surface a mono-
tonic decrease of iV, (z), ultimately as exp(p~).
%hen cop, »»», q, &0, and &, &0 and there is the
additional requirement that II, go through an ex-
tremum at e ~ = 0, or z = z, . This, combined with
the requirements on the initial slope and of ultimate
exponential decay, leaves two possibilities for the
magnetic field behavior: (i) H, decreases below
z = 0 until it goes through 0, reaches a minimum
and then decays as exp(p~); (ii) H, starts de-
creasing below z =0 but with increasing depth de-
creases less rapidly until its slope changes sign
and it increases. It then goes to a maximum at z,

FIG. 7. Dispersion in normalized units for an accum-
ulation-layer case with &~ =16, F2=1, 7'='0, ~»/~p&
=1.2 and ~» d/c values of 0.1, 0.5, 1.0, and 1.5.

Note that co vs k„ for branch II curves upward, in
the opposite direction from that claimed by Rice
et gE. for an accumulation layer. '

The small range of frequencies in which branch
II appears in these figures is due to the large val-
ue of e„. Branch II must be contained between w»
on one side and n =0 on the other. The z =0 line
crosses the light line at ar =~»[e„/(e„—1))"~'. For
large e„ the crossing frequency is only slightly
larger than w». In a material with smaller &„
there would be more of a frequency range for
branch II, which should make it easier to observe.

It is also noteworthy that there is no special
feature or structure, for either of the accumula-
tion-layer branches, associated with u = ~p, or

Presumably the reason for this in the former
case is that, when u crosses ap», the zero in e„
enters the sample at large negative z, far from
the surface, and thus does not particularly affect
the fields at z =0 and the dispersion. No effect can
be expected at co =~p„where the zero reaches the
top surface, since the dispersion curve does not
reach such high frequencies, the limiting & being
determined by the condition ~, = —1. As a corol-
lary, the dispersion shown for the accumulation-
layer case, calculated for real e, will be essential-
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FIG. 8. Electric and magnetic field amplitudes, nor-
malized to the surface values, versus normalized depth
below the surface for the cases cup&d/c=1,

1, v'=~, cops/i4)pl, -—1.2 and ~/~p~ ——0.9, 1..03, 1.1, as
indicated. The values of ck„/up& are 0.94373 for I
(0.9}, 1.21603 for I(1.03), 2.79301 for I(1.1), and 1.15231
for II{1.03).
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and subsequently decays as exp(p~). These two

possibilities coincide with branches I and II, re-
spectively, as shown in Fig. 8 for a case with

a& = 1.03m». The extrema come at the same ~z/d~

for these two branches because the parameters
that determine z, [see Eq. (2.6)] are the same for
the two. For u = 1.1+» only branch I occurs, and
the field variation is compressed in ~z/d~ since
~„=0 is closer to the surface. Corresponding to
the extrema in H„, there are singularities in E„,
which of course are removed by the existence of
damping. These singularities differ from those
seen in Fig. 4, the depletion-layer case, in that
the singularity in E„here is of the opposite sign
to the extremum in H, of the same branch. This
occurs for branch II because where H, goes through
a minimum, dH, /dz vanishes and therefore E„goes
from positive to negative. In the case of branch I,
even though H, becomes negative, its derivative
vanishes only where e = 0, so E, belonging to
branch I must stay positive.

A striking feature of the dispersion in Figs. 6 and
7 is the presence of the sharp kink in both I and II
for the highest values of &o~,/&o». With the help of

Eq. (6.1) it can be seen that for these curves, as
k„moves toward the kink from smaller values, the
magnitudes of the initial downward slopes of H, for
branches I and II move toward each other, becom-
ing almost identical at the kink. Beyond the kink,
with further increase in k„ the initial downward

slopes move away from each other, that for I get-
ting steeper, II less steep. For the curves without

the kink ~e, ~
is not large, the initial descent rates

are not large and they continue to steepen with in-
creasing k„until branch II is cut off by reaching
the n =0 line.

Samples to test the predictions of this section
should be attainable, for example, by introducing
donors into n-GaAs by diffusion or ion bombard-
ment.

VII. CONCLUSIONS

We have extended the theory of SPP's on semi-
conductors to cover actual surfaces, having deple-
tion or accumulation layers, with a physically rea-
sonable model. For depletion layers we find, when
moderate damping is included, that the dispersion
corresponding to SPP's has a single branch. Like
the case of the homogeneous sample, this branch
starts by following the light line. For k„not much
larger than a&»/c it goes into an approximately hor-
izontal region that lies below the plateau for the
homogeneous sample case, the more so the larger
the width of the depletion region and the smaller
co~,. With increasing k„, the dispersion curve drops
further below the homogeneous sample plateau and

may display a reentrant region for & = ~, . Asymp-
totically it goes to the limiting frequency &u»[e„/(e„
+e,)]'~'. For the frequencies at which e &0
throughout the sample, i.e. , v &v~„ the magnetic
field behaves much like that of the usual SPP, de-
caying essentially exponentially inside the materi-
al. Actually, for the depletion layer the initial de-
cay is somewhat less rapid than exponential. For
& between u~, and ~», the magnetic field peaks
about where the real part of e goes through 0. In
this frequency range, therefore, we can consider
that we have an SPP bound to the interface between
positive and negative &„.

For large enough ru»d/c there may be, in addi-
tion to the SPP branch just described, a series of
guided-mode branches, both above and below w»,
for which the amplitude H, oscillates below the
surface before decaying exponentially. The SPP
bound to e~ = 0 may be thought of as the fundamen-
tal mode of this series.

For accumulation layers there may be two
branches to the dispersion. The one at lower fre-
quencies, which is always seen, begins for u «~»
by following the light line. At frequencies ~~ co»
it departs from the light line and rises above the
homogeneous sample dispersion to go asymptotic-
ally to &u~, [e„/(e„+e,)]'~'. This branch may lie
higher than co» since ~~, &co» for this case. The
second branch, which we have seen for &u»d/c
~ 0.1, generally lies above the first, for large e„
occupying the corner formed by the intersection of
the light line and the line k, = (~/c)[e, (&u)]'~'. For
the accumulation-layer case when co&co», so that
e & 0 throughout the sample, the magnetic field be-
haves much like that of the usual SPP, although,
in contrast to the depletion-layer case, the initial
decay is more rapid than exponential. When +~,
) co & (d» branch I, and branch II also if it exists,
has an extremum where e~ =0. For branch I this
point is a minimum, for II a maximum.

We have compared our results with two sets of
data on lnSb dispersion at room temperature. For
the first set the SPP's were introduced by means
of a grating ruled on the surface while in the sec-
ond set a prism was used. For both sets the data
fall below the dispersion for a sample homogeneous
to the interface, indicating the presence of a de-
pletion layer. By application of our theory to the
experimental results, the depletion layer d was to
be -350-400 A for the ruled samples, c 60,% for
the others, which is not unreasonable for an un-
disturbed surface.

Much more could be learned about surface layers
by measuring SPP dispersion at lower tempera-
tures and for large-gap semiconductors, where the
d's are larger. The experiments could be made to
yield information about su~, as well as d if they were
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carried to much larger A„values. As indicated
earlier, with holographic techniques it is possible
to make photoresist gxatings with periods smaller
by a factor 50 than the smallest spacing used in
Ref. l. Interesting information could also be ob-
tained by observing the effect on the dispersion of
introducing electric fields, ambients or particular
surface treatments to affect co~,.

APPENDIX A: INTEGRATION CONSTANT g

The integration constant g in the g solution is
given by g„, defined in (4.3), as n- ~. We derive
here the approximate formula (4.5) to facilitate its
computation. Substituting (3.16) and (3.1"1) into

(4.3), we can arrange the result to give

g„=g„,+ {g„,-g„,)ll-qf„, [(n —1)(n —2)+a(2n- 3)] '} '

——,'(q+a')(2n —3+2a}[(n—1)( n- 2} +a( 2n- 3) fq„-,] '+(q+a')(n+ 1)[n(n-2)] ', (A1)

fn = Sn-i/Sn

Let the difference between t%'o successive g„s be denoted by

Then (Al) can be transformed into

h„= E(n —1)(n-2)+ a(2n —3) -qf„-x] ' [qh„-,.f„-x +-,'( q+ a'
)[ (n —2}l 'E(n —2)'(2a —1)+2(n —1)(a -qf. )]}.

Um h„= (q + a') (2n') '[2a —1 —n '(1 —6a + 4a' —2q) ].

Returning to (A3), we may write

lim h„= (q+ a')(2a —1)/(2n').

Because of (A6), {g-g,) vanishes rather slowly,
according to n ', for large n. If the first two high-
est-order terms are kept, (A4) becomes

A'=kg+ Q "n . (A 6)

The substitution of (A 7) into (AB) then yields (4.5).
The two series in (4.5), which are related to the
Riemann g function, converge rather quickly.
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