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The properties of a model classical Hamiltonian describing one-dimensional anharmonic lattices is studied by
a new approach. The Hamiltonian represents particles sitting on one or the other side of a double-well

potential and interacting with each other through harmonic forces. The model can describe order-disorder or
displacive phase transitions. %e look for solutions of the equations of motion of the form

%'(x, t) = X;+&(x, t)4'„&(x, t), where tI)'&(x, t) is the ith harmonic solution of the linear problem and obtain

differential equations for the functions 4"„&(x,t) with the assumption that 0"„& vary slowly compared with tI",.
The solutions for 4"„,(x, t) are shown to be solitons, which are stationary traveling pulses whose properties
have been extensively studied recently. The physical interpretation of solitons seems to be in terms of moving
domains and dislocations, which transfer particles from one side of the well to the other during their passage.
The energy of the solitons is calculated in terms of their amplitude and their velocity. The effect on the

dynamic structure factor of the new solutions is considered. Solitons lead to a frequency width of the phonon

and also give a quasielastic peak —the "central peak. " The height and width of the central peak and of the

phonons depend on the density of the solitons thermally excited and their velocity distribution. The spatial

and temporal correlations due to the solitons increase exponentially with decreasing temperature and start

becoming important about a temperature which is just the mean-field transition temperature of the
conventional theory. In an appendix we study another anharmonic problem by similar methods.

I. INTRODUCTION

Debye's' classic paper in 1914 laid the foundation
for most of the developments in our understanding
of anharmonic (nonlinear) lattices. The basic
principle of solution has remained the same: One
uses as a basis set the solution of the harmonic
(linear) lattice, and treats the nonlinearity in per-
turbation theory. In quantum-mechanical theory,
the solution of the harmonic lattice yields a set of
quasiparticles —the phonons. The phonons are
labeled by the momentum k and polarization X.
The anharmonicity is expressible as interaction
among the phonons. These interactions are treated
in perturbation theory and lead to a shift in the en-
ergy of the phonons and to a finite lifetime for
them. In modern theory, the solution is expressed
in terms of the dynamic structure factor S(k, &u),

which gives the probability distribution of energies
at which the lattice can absorb energy at a wave
vector k.

With anharmonic perturbation theory, many of
the properties of solids such as thermal expan-
sion, thermal conductivity, sound attenuation, etc. ,
are qualitatively and often quantitatively under-
stood. Generalizations of the same basic theory
lead to understanding of even very anharmonic
solids like those of the isotopes of helium.

The microscopic theory of the stability of crys-
tal structures and of their phase transformation
from one to a,nother structure is also based on
anharmonic perturbation theory. "' The question of

the stability of a structure against a perturbation
at a wave vector k is put in terms of the restoring
force at that wave vector. When, as a function of
temperature or pressure, the restoring force goes
to zero, the crystal deforms and acquires the
periodicity represented by k. Equivalently one may
calculate the phonon frequency Id(k). When e(k)
tends to zero as a function of temperature or pres-
sure owing to the energy shifts arising from an-
harmonicity, the lattice tends to be unstable and
the phonon is said to be soft.

In recent years, neutron scattering' ' has re-
vealed that a structural phase transition is often
accompanied, in addition to the soft phonon mode,
by a quasielastic mode (ru =0). This mode has
commonly been termed the "central peak" of the
structure factor S(k, u). As the temperature is
lowered towards the phase transition the central
peak grows in intensity at the expense of the soft
mode. While with anharmonic perturbation theory,
the soft phonon mode is well understood, the cen-
tral peak has remained a puzzling feature. One of
the approaches' taken towards understanding the
central peak draws its inspiration from liquids, '
~here such peaks always occur, and are due to the
interaction between adiabatic and isothermal vibra-
tion modes or due to the interaction of collective
phonon modes with internal modes of the molecules.
The predictions of this approach do not agree with
several features of the experimental results. An-
other reason" proposed is that the central peak
arises simply from the elastic momentum-inde-
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pendent scattering from the defects in the crys-
tals, the strains around which increase as the
phase transition is approached.

It is suspected that as the phase transition is
approached the amplitude of vibration of atoms
becomes so large that anharmonic perturbation
theory may well not be valid. With this view some
numerical studies"*" of one- and two-dimensional
anharmonic lattices have been performed. These
numerical studies indicate that at least in one and
two dimensions, the central-peak phenomenon is
in principle an intrinsic dynamical property. The
properties of the central peak obtained are, how-
ever, quite different from those observed in real
materials. To clarify the situation, it is of con-
siderable interest to study the problem of anhar-
monic lattices by analytic methods which are not
the conventional anharmonic perturbation theory.
Such an approach is possible now, at least for a
one-dimensional lattice, because of the great
strides taken recently in the solutions of (one
space and one time dimensional) dispersive non-
linear partial differential equations. "

Actually, some of these partial differential equa-
tions pertain directly to the classical one-dimen-
sional anharmonic lattice problem. The one-di-
mensional anharmonic string (lattice) was first
studied numerically by Fermi, Pasta, and Ulam"
with a view to understanding the process of ap-
proach to thermal equilibrium following the excita-
tion of a given mode. In fact, it was observed that
thermal equilibrium is not achieved and that the
energy returned periodically in the initial mode
with a period related to the nonlinearity. Further
numerical studies were carried out by Zabusky
and Kruskal, "who also showed that the one-di-
mensional dispersive string problem could be cast
in the form of the solution to the Kortweg-de Vries
(KdV) equation, first studied in connection with
water waves in shallow channels. The class of
equations of which KdV is one has been studied
extensively"" by mathematicians in recent years
and has some remarkable properties. Any initial
perturbation can be shown to break up into a series
of stationary traveling pulses which pass through
each other without distorting. These pulses have
been referred to as solitons.

Tappert and Varma" showed that in a real three-
dimensional lattice, under certain conditions, the
KdV equation is realized. Further, it was shown
that an envelope or modulation of plane waves in a
one-dimensional anharmonic lattice obeys another
nonlinear equation which has recently been well
studied —and named the nonlinear Schrodinger
equation, which is familiar to physicists as the
time-dependent Landau-Ginzburg equation. This
equation also has solitons (envelope solitons) under

certain conditions as solutions. The solitons were
actually observed in heat-pulse experiments in
NaF at low temperatures by Narayanamurti and
Varma. "

Several problems arise in applying the knowledge
of the solution of the nonlinear equations to statis-
tical physics. One is that the solutions to the non-
linear equations are radically different in nature
from the solution to the linear problem. The for-
mer are generally localized (although moving)
while the latter are plane waves. One wishes to
retain the linear solutions, about which so much is
understood, while studying the properties of the
new solutions, and understand the relative role of
the two as the nonlinearity is altered. We ac-
complish this by first setting up the differential
equation for particle motion for the given Hamil-
tonian. After finding the solution of this equation
we expand the differential equation about it and
look for solutions which are sum of the products
of the ith harmonic of the linear part of the prob-
lem O'I"(x, t) and another function 4'„",'(x, t):

e(x, t) = g q I"(x, t)q &' (x, t) .

Inserting solutions of the form (I) into the dif-
ferential equation, we obtain a differential equation
that 4„",'(x, t) must satisfy with appropriate bound-
ary conditions.

Another problem arises because the solutions of
these differential equations (solitons) are solutions
to boundary-value problems. In trying to make an
equilibrium statistical-mechanical theory for them
we simply characterize a given soliton by its en-
ergy and assume that their density is simply given
in terms of their energy and temperature just as
for any other excitation.

The model Hamiltonian we study represents each
particle sitting in one or another of the minimums
of a double-well potential and interacting with each
other with harmonic force constants. In conven-
tional theory this model describes ferroelectric
phase transformations at which all the particles
sit either on the left or the right minimum of the
double-mell potential. With appropriate choice of
parameters, either order-disorder or displacive
transformations can be described by this model.
We shall call this the double-well problem. In. the
Appendix we study the properties of another an-
harmonic Hamiltonian by similar methods.

It turns out that the nonlinear equations we de-
rive have been used in solid-state-physics ap-
plications before in the theory of ferromagnetic
domain walls by Doring" and others, and in the
theory of crystalline dislocations by Kochendorfer
and Seeger. " Actually physical description of our
solutions is very much in terms of dislocations and



246 C. M. VARMA

domain walls. While this paper was being written,
we learned that some work on this problem has
been done by Krumhansl and Schrieffer. " The
nonlinear solutions of their paper correspond
only to our first approximation, Eq. (9) below, to
which they simply add the plane wave solutions.
Models similar to those discussed in this paper
have also been considered in the context of quan-
tum field theory: See, e.g. , Ref. 21.

II. DOUBLE-WELL PROBLEM

The particles interact with each other through
harmonic springs with force constants of magni-
tude mc'/L'

The behavior of the system depends on the ratio

4 =mc'/AD, ', (4)

which measures the strength of the interparticle
springs to the height of the single-particle poten-
tial barrier. For C «1, the problem reduces to
an Ising model with coupling constant proportional
to mc'. This would give rise to an order-disorder
transition, which in mean-field theory would occur
at T-roc'. For 4»1, we have the case of a dis-
placive phase transition with a mean-field transi-
tion temperature

T„r -[(A,y', )(mc')]'~'.

In this limit a continuum model is quite appro-
priate. Accordingly we use the substitution

where subscript denotes partial derivatives and
obtain from (1) the classical continuum Hamiltoni-
an

We consider the following classical Hamiltonian

w, A, , A4, mc'
2

y';+
2 y;+ 4 y;+ 2L. (3;, -y;)

(2)

where y,. is the displacement of the particle at the
ith double-well site. The particles have a mean
separation L. A, (0 and A, )0 define the single-
particle double wells with minima at

Equation (7) is the special case of an equation
which has been misnamed the sine-Gordon equa-
tion,

4„—c'4„„+sin% =0. (7a)

$=(c' —v')' ' dy'(A, +A, y" +A, /2y") ' '

where A, and y are constants to be determined by
the boundary conditions.

We focus on two kinds of solutions of (7) with
obvious boundary conditions:

and

y($) =y, sech($/v2 $0) (10)

y($) =y, tanh(g/v2 $,),
where

],= [m(c' —v')/A, y,']'t'. (12)

Exact solutions" of Eq. (7a) have revealed
that it is one of the class of equations in which
any given initial perturbation breaks up into a
number of solitons [of the type (11) and (12)]
which retain their velocity and shape as they pass
through each other. The same can be shown to be
true of (7). We can therefore write down as the
first solution of Eq. (7),

This equation has been extensively analyzed" and
exact solutions have recently been obtained. "
Solutions take the form of traveling "kinks, "which
(in the traveling frame) are constant everywhere
except in a small region where they change sign,
and of traveling "breathers, "which are zero
everywhere except in a small region. Both the
"kinks" and the "breathers" are solitons. The
kinks and breathers are also solutions of (7).
Equation (7) can, of course, be trivally solved by
looking for stationary solutions in the variable

( =x —vt.

In terms of $, equation (7) becomes

(c —v ) yt) =A~y +A~y

which can be solved as an elliptic integral,

1 rn, mc', A» A4 4H= — dx —g+ y+—g+—$2 ~ 2 4 (6)
y(x, t) =y, (x, t) = Q y, (h;),

where
The equation of motion following from (6) is (with
~ =1) ~,. =x -x,. —v, (t t,), . -.

y« —c'y,„+A,y +A4y'= 0.
In the linear limit, the dispersion is given by

(u'(k) = c'k' —2A, . (8)

where y, is of the form (10) or (11), and x, , t,are.
the birthplace, birthtime, and velocity of the ith
soliton.

The solution of the type (10) has all the particles
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far to the left of $ = 0 in the left well and all the
particles far to the right of $ = 0 in the right well.
It may be likened to a moving domain wall. The
solution (11) ha.s part'cles both to the right and to
the left of $ =0 in one side of the double well and
those in the vicinity of $ = 0 on the other side. The
statistical distribution of particles on the left or
the right well is then determined by the density of
excitations of the type (10) and (11) present in the
system as will be discussed in detail later.

Since Eq. (7) is a nonlinear equation, it can have
many solutions besides those we have so far dis-
cussed. In particuiar, small oscillations of "pho-
non" nature must be present. We now wish to dis-
cuss other solutions as perturbations over (13}. If
one linearizes the equation of motion about solu-
tions of the type (13) for the sine-Gordon equation,
one obtains theremarkable fact'2' 3 the solitons
present ref lectionless potentials to the plane
waves. The same is not true for Eq. (7). Here
we do not pursue this problem. Instead we wish
to consider the effect of the nonlinearities on the
phononlike solutions. We do this by considering

6'N =g —gG y (14)

where c is a small parameter, and expand (7)
around y, . The distribution of y, is determined
by the first solution of (7), i.e. , by the "kinks"
and "breathers. " w(x, t) satisfies

w„—c'w„, —2A~+3 Ae, y, 'w+A, e'w'=0. (15)

We look for solutions of (15) which go to the pho-
nons in the linear limit

the modulation of the linear solutions of Eq. (7).
Numerical studies of modulation envelopes of an
equation related to (7) have been performed by
Tappert and Hardin" and soliton behavior for the
envelopes was observed.

We wish to consider the solutions of (7) about
the first-order solutions (13). To do this we make
the approximation of replacing (10) by a step func-
tion and (11) by a rectangular function. In other
words, we approximate (10}and (11) by
+ (x —&&t) ~y, ~, where + is a function of (x —&&t).

We now introduce

w(x t) —&p"'(X T)e'"0" "0"'+c c +e[(p"'(X T)+(p"'(X, T)c""0" 0"+c.c.]+
It is assumed that the variation in (p "&(X,T) occurs on a time and space scale slow compared to that in the
phonon par t. Accordingly we introduce

T=&t, X=&x.

Equation (15) then becomes

Kg g.
—O'N„„-2A,N + 362,JOCU'+ 6'A, Ã'+ 6'N ~~ —C'6'%XX+ 26', ~ —2e'CN, X = 0. (17)

Inserting (16) in (17) and equating dc, first-harmonic, and second-harmonic terms, we get, respectively,

«(-2A, &p&0&+3A, y, ~(p&» ~') +0(&') =0, (IS)

(-(u'+ c'a'- 2A )(p"'+ e(-2t&d «»" + 2ik c'(p"')+ e'(A,
~

(p "&~'&(&"'+(p"' —c'&p"'+ 3A y (p"'(p'"*) +O(e') = 0

e(-4a&,'+4c'k,' —2A, )(p "&+3&A,y,«»" 2+0(e') =0. (20)

Using the linear dispersion given by (S) in (20),

(p"' = --'(A y /A. )(p"" (21)

Using (8) in (19) and introducing new scales From {19)we also get

(p(o + —(A /A )y ~&(&(l) ~2 (23)

we get on keeping terms to lowest order in &

t&&&&l&+ (C 2/2(d )(p&&& A
~

&&&
&l)

~

2~ & & 0 (22)

The solution for the displacement can therefore
be written as

y=y, (x, t)+(x, t) ,'{A,/A, ) iy, i
i&p"&]'-

+ (p (l)(X T)e&(kx ut ) + c c +. . -. (24)

Equation (24} represents our solution to the double-
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well problem, where we have explicitly displayed
the "dc" and the "first-harmonic" solution to the
problem. We now study Eq. (22) for the modula-
tion envelope.

III. BEHAVIOR OF ENVELOPE SOLUTIONS

Consider the equation

fq, +pq„+q~q ~'q =0, (25)

which is the same as Eq. (22) of Sec. II. The solu-
tion of Eq. (25} depends in an important way on the
sign of Pq. For the double-well problem pq is
negative; for the other problem we will discuss,
it can have either sign, but the phase transition
is favored with a negative sign.

For Pq &0, one family of stable solutions of (25)
consists of plane waves. Other stable solutions
can be obtained by noting that for Pq &0, Eq. (25)
can be reduced back to the KdV equation. This
can be accomplished by following the procedure of
Taniuti and Yajima" and introducing functions p
and 0 through

y=p' 'exp gd$/2p . (26)

Substituting (26) in (25) and separating the real and
imaginary parts, one gets"

Exact solutions of (35) have also been ob-
tained. '"" From our point of view, the impor-
tant result is that given an initial condition, the
solution breaks up into a definite number of sta-
tionary pulses of the shape (37) characterized by
the amplitude A (and velocity C and width n), which
pass through each other without any change in their
parameters, so that unless the solitons overlap
we can write the solution as

o((, 7) = P o,($ —t,. —C,.(f f,.)], (38)
i

where o,. is as in (37) and (, , t, are arbitrary space-
time points. Since p, is proportional to 0'y y also
behaves as in (38). We thus conclude that the en-
velope soiutions for the double-wellproblems are
solitons. Since in what we will do next, we make
use of only the general properties of the solution,
we do not go back here to the physical variables
and rewrite expression for cp" in terms of
them. At the end of Sec. VI we shall express
the characteristic parameters & and C in terms
of the parameters entering the Hamiltonian.

For pq &0, plane waves are subject to modula-
tional instability. This case has been treated be-
fore." The exact solution has recently been found

by Zakharov and Shabat. "
pg+ (p&)g = 0 i (27) IV. PHYSICAL DESCRIPTION OF SOLUTIONS

P =Pp+PPI+P P2+ '
)

0 =OP+/ g, +P g2+

and also introduce new scales

(29)

(30)

(31)

(32)

Substituting (29)-(32) in (27) and (28) and carrying
on the asymptotic analysis, we get that

y=o. +(2~Pq p.)"',
p, (&', r') = (2

~
pq ~/p. ) '"-o,(&', r'),

and 0, obeys the Kortweg —de Vries equation

R201 '+ 0 Io I( + " 0 I( ('( =

(33)

(34)

(35)

where

Q2
P2 2~pq~

Pp Pp
(36}

The stationary solution of Eq. (35) are solitons:

o, =A sech'[($' —C7')/4],

with C = A/3 and n' = 126'/A.

(37)

ox+&og = 2PqP)+P (P (P Pg)g]g ~ (28)

Now we introduce a small parameter p and write

The solution of the problem is given by Eq. (24).
The "dc" part of the solution consists of two parts:
y, (x, I) given by Eq. (13) and y"'(X, T) given by
Eq. (23). y, (x, t) has the properties of a number
of moving domain walls and moving dislocations,
whereas cp~"(X, T) has the properties of a, moving
dislocation or of moving vacancy-interstitial pairs.
Other differences between the two types of disloca-
tions are (i) y, (x, t) can have an arbitrary velocity (the
distribution of velocities is to be determined by
temperature as discussed in Sec. V), whereas
y'D'(X, T) has for its minimum velocity, the group
velocity of the phonon we are considering or more
generally, the average group velocity of the pac-
ket of phonons excited at a given temperature.
We may generally expect most of the former to
move slower than the latter; (ii) the latter are
always rarefactive, as may be deduced from the
negative sign in Eq. (34)—they may generally be
called antisolitons. The former may be both soli-
tons and antisolitons.

In Sec. V we will characterize these nonlinear
solutions by their energy and obtain their density
and distribution in velocity at any temperature
simply in terms of the energy as for any other ex-
citation. At very high temperatures their density
will be of order unity (normalized to the density
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of particles) and the particles will therefore be
randomly in the left or right of their double wells
and flipping at a random rate. As the temperature
is decreased the density of solitions decreases,
and ordered regions of particles to the left or
right double well emerge. These regions will be
moving randomly to the left or right, however.
At very low temperature the motion of y, (X, T)
will lead to uniform motion of domains, but
the motion of p'0'(X, T) at the much larger
thermal group velocity will still flip parti-
cles from left to right and restore them back to
left (or vice versa) around the pointX —v,T=O.
Its effect on the slowly moving domain wall will
be to spoil the uniform motion and Brownian-like
motion will result. (Such behavior has recently
been seen in numerical simulation experiments by
Koehler et al. ) As T-O, the density of the solu-
tions approaches 0 and the ordering of the whole
lattice results. We will show in Sec. V that the
temperature at which the correlation among the
positions of the particles first begins to appear
is just the mean-field transition temperature of
the conventional theory.

The random hopping of the particles from left
to the right under the influence of solitons will, of
course, yield a central peak in the structure fac-
tor. Its intensity and width will be determined by
the statistics of the solitions as discussed in Sec.
V.

Now we turn to the physical nature of the "ac"
part of the solution in (24). From Eqs. (26), (34),
and (37), we can conclude that the effect of the
envelope is to provide a phase shift and an ampli-
tude change to the "phonon" at the position X—v T
=0. Since this happens randomly the phonon will
acquire a width.

g(x, t)= Q g[x —x, —v, (t —. t,.)], (4l)

where

= S,(k, &u) + S,(k, &u}, (42)

and

S,(k, ~) = (f(x, t)f(x', t'))(, „, (43)

S,(k,, &u) = (g(x, t)g(x', t') e" 0"' ""') ~„„~, (44)

and by ()&„„,we mean the Fourier transform of
the quantity in the angular brackets. First con-
sider S,(k, &s). Noting that the Fourier transform
of p(x —vt) is of the form 5(+ —kv}p(k), where
p(k) is the transform of p(x), it is straightforward
to derive that

S,(k, &o) = P„(w/k)P, (k)P (&u)
~

f(k)
~

', (46)

where P,(k) is the Fourier transform of the prob-
ability P,(x) describing the distribution of distan-
ces between solitons in spa, ce and PP~) is the
Fourier transform of the probability distribution
Pr(t) describing the time distribution of solitons
at a point, and P„(v) is the probability distribution
of velocity of solitons. Since the solitons are non-
interacting, the distribution functions Pgt) and

Px(x) have the Poisson form:

Pr(t) =(I/r, )e ' '0 (46)

where v, is the mean time for solitons crossing a
given point,

where x,. and t,. are the starting position and start-
ing time of the solitons.

We are interested in calculating

S(k, (u) = (y(x, t)y(x', t')) (, „)

P((u) = 7,/(I + ur'r0), (47)

V. FREQUENCY SPECTRUM AND THERMODYNAMICS

In contrast to Sec. II—IV, where we rigorously
demonstrated that the envelopes of the linear solu-
tions to the anharmonic problems we are consider-
ing are solitons, this section is somewhat heuris-
tic and relies on the physical features of the solu-
tion discussed in Sec. IV. We hope to take up the
more precise development of this section at a
later data.

With several solitons present the "dc" and
first-harmonic displacement of an atom in the
double-well problems can be written

S,(k, u) = y',
~
g(k —k, )

~

'P„(k —k, )Pr(u —&u,)

x P„[((u—~,) /(k —k,)], (48)

and we get a central peak of width 7', ' and intensity
proportional to r, P„(k) w.ill of course have the
same form as Pr(~) since we are dealing with
stationary traveling waves. f(k) is a. function
peaked around k = 0 and of width proportional to the
inverse soliton width. A remaining problem is to
evaluate 70 Before proceeding with evaluation of
r„we note that S,(k, &u) can be easily evaluated,
using the convolution theorem, to be

y(x, t) = f(x, t) + g(x, t)e'0" "o".
In turn f(x, t) and g(x, t) can be written as

f(x, t) = g f[x —x,. —v, (t —t,.)], .

(39)

(40)

where y, is the amplitude of the mode of wave vec-
tor k, . Thus we see that the phonon under consid-
eration develops a width in frequency proportional
to &0 due to the random modulation effect of the
solitons.
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y = y„sech[(x —vt)/x, ],
y=y tanhj(x- vt)/x, ],

(49a)

(49b)

To calculate the energy of the solitons, we sim-
ply insert the soliton solution in the appropriate
Hamiltonian (6) and integrate to get the energy.
If we characterize the soliton solution by Eq. (10)
or (11)

y is restricted to be y„as seen in Eqs. (10)
(12), and the width for v «c is

x, = u 2y, 4'~' for y, (x, t), (55)

where C is given by Eq. (4). For q'o'(x, t} and
y'"(x, t) we find from Eq. (37) that on identifying
the parameters P and q of Eq. (25) with those in

Eq. (22)

P~ my
~ + I 2&m&py

0

2]

(56)

where p„p2 are numerical constants of order
unity. The energy of the envelope soliton for
y "(x,t) is also given by Eq. (50) since it can be
written a.s (49a). As discussed earlier, however,
its velocity is not arbitrary.

Having obtained the energy of solitons in terms
of their velocity v and amplitude Yp we can do
thermodynamical calculations by introducing the
partition function

g Tre-E(y~, v) /ItT (51)

From (51}we could calculate the free energy,
entropy, and density of solitons excited at any
temperature. This step is on somewhat shaky
grounds, since all the methods of deriving solitons
have been"nonequilibriurn" methods. We persist
nevertheless to calculate ~0 with this approach.

From (51) we note that the density of solitons
with velocity v is N(v) - e " " ~~r, where M* is
the effective mass of a soliton. The average ve-
locity (v) of solitons is therefore given by

which for long wavelength (k-0) reduces to
(12/2'~')'~'y, 4'~'. Thus to within numerical fac-
tors of order unity the width of the envelope soli-
tons is the same as the solitons of the first-order
solution.

C measures the ratio of the strength of the
harmonic coupling among the particles to the
strength of the double-well potential barrier. For
4 « I, we have the order-disorder problem; for
C» 1, we have the displacive problem. Actually
our method of solution in which we keep only the
low-order harmonics (i.e. , assume nonlinear
terms small compared to the linear terms) has
the implicit assumption that 4» 1, and, there-
fore, is applicable only for the displacive case.
The width of the solitons, Eqs. (55) and (56), then
is much larger than the interparticle separation,
which is consistent with our starting point, to wit,
a continuum model. The energy E, for the double-
well problem is given by using (56) in the second
term of (50),

(52) E - (A~'mc )'~' (57)

Tp the average time for solitons to cross a given
point, is then given dimensionally by

7, = 1/p(v) = p '(M*/kT)'i',

where p is the average density of solitons per
unit length.

Using (51) and integrating over the velocity, we
see that

Now it can easily be shown that the mean-field
transition temperature for the displacive case is
given also by Eq. (57). Our result then is that the
correlations begin to be impor tant from about the
mean-field transition temperature, as would in-
deed be expected.

We also write down the mass and velocity of the
solitons for the double-well problem,

Zp/er (54) M* =m ( y, /L) (A, y' /mc')' ~', (58)

where Ep is the "potential energy" of the solitons,
i.e. , the second term in Eq. (50) for the energy of
a soliton in the double-well problem. We there-
fore see from (53) and (45)-(48) that correlations,
both sPatial and temPox'a/, increase exponentially
with temperature and the characteristic tempera-
ture below which they become important is E,/k.

At this point it is useful to express y and x„
which determine E, in terms of the parameters
entering the Hamiltonian. For y, (x, t), the first
solution of the nonlinear equation, the amplitude

and from Eqs. (37) and (33), the velocity of the
envelope solitons is

v = c =
vg+ c(yp /yo),

where y~ is the phonon amplitude. The velocity
is thus effectively equal to the group velocity of
the phonon. An extension of the techniques used
here to the case of envelope of an incoherent col-
lection of phonons can be made to show that in
that case v will be given by the average group
velocity of the phonons.
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VI. DISCUSSION

In Secs. II and III, we have shown quite rigor-
ously that the solution to the double-well problem
can be expressed in terms of the solitons and a
modulation of the solutions of the linearized
problem by solitons. %'e have physica, lly inter-
preted these stationary traveling pulses as moving
dislocations and moving domain walls. In Sec. V
we have roughly estimated their ener'gy and quite
heuristically calculated their effect on the vibra-
tional spectrum. We have found tha, t these pulses
lead to a central peak in S(h, &u) as well as "pho-
non" damping. In an appendix we will show that
the same general properties of the solutions are
true for another one-dimensional anharmonic
Hamiltonian. We suspect that for any a,nharmonic
and dispersive one-dimensional problem, solitons
a.re a significant part of the solution.

%e have used asymptotic scaling methods in
Secs. II and III and in the appendix to obtain our
results. The scaling methods perform the fol-
lowing functions: stretch the scale of time with
respect to space, stretch the space-time scale
of one solution with respect to another, and order
solutions with respect to decreasing amplitude.
Numerical solutions'~'22'" of similar partial dif-
ferential equations have revealed that the solu-
tions obtained by asymptotic scaling methods are
correct even for amplitudes of solutions that are
comparable in successive order. In other words,
the first two functions of the scaling methods are
much more relevant that the third, and we may
trust our solutions for envelopes even at large
amplitudes. One of the shortcomings of the
development in this paper is that we started with
well-defined phonons and derived their modulation
envelope due to the nonlinearities, but did not go
back and see how the phonons get modified by in-
teraction with the solitons. Presumably, if we do
so we will find additional damping of the phonons.

Does this development have any relevance to
phenomena observed in real three-dimensional
lattices'P At present we cannot answer this ques-
tion definitively one way or the other, but are in-
clined to be pessimistic. In one dimension solitons
occur for arbitrarily small displaeements in a
nonlinear lattice. We guess that in two or three
dimensions, one must exceed a critical displace-
ment before dislocations and domains can occur.
Also, in two and three dimensions stable solu-
tions of the dislocation or domain-wall form occur
only for very special ehoiees of nonlinearity and
dispersion. In one dimension, dislocations and
domains are point objects and behave as particles;
in two or three dimensions they are lines or planes
and probably do not have a simple relation between

APPENDIX: ANOTHER ANHARMONIC LATTICE PROBLEM

Here we consider the classical Hamiltonian of
a linear chain of particles with lattice constants
h. In terms of y, , the displacement from equilibri-
um of the ith particle,

0 2
2 ~y~g+ a2(ye+ i —ye) + as(yi+ x

-
ya )

+a~(ye+i -y~) (Al)

To generate a, differential equation for the motion,
we write

y, „=y hy„+ (-,'h') y„,+ ( -', h') y„„„

(A2)

The equation of motion is then given by

y«=c'I. y, (1+~py. +n'. )+h'y....j (AS)

where the subscripts indicate partical derivatives,
and c' = a, h, /m, 5p = a,h/a„and q = a h/a, . 0 is a
small parameter which serves to make the cubic
nonlinearity small compared to the quartic. Since
we will be dealing with Eq. (AS) rather than the
difference equations arising from (Al), our re-
sults will be meaningful only for phenomena oe-

their energy and their velocity. The general phe-
nomenon of domain formation of course occurs in
most three-dimensional (structural) transitions
and on general grounds movement of doma, in walls
is much easier near a phase transition. However,
we do not expect that in two and three dimensions
domains and dislocations have any solitonlike
property. Moreover, in one and two dimensions
domains and dislocations are thermodynamic
objects (with energy proportional to the size of
the system) while this is not true in three dimen-
sions. %e expect that in real three-dimensional
structural transitions the growth and dynamics of
domains and dislocations is determined by defects.

One can look at our solutions for the one-dimen-
sional lattice in a rather amusing way. Landau"
showed the absence of phase transition in a one-
dimensional system by arguing that by subdividing
the system into domains, the entropy gain more
than compensates the energy loss but it has not
been show'n how this dlv181on 1nto subdomalns
comes about. The solutions obtained here —the
solitons —are merely the dynamical objects which
subdivide the system into such domains and it is
satisfying to generate solutions which have been
postulated on equilibrium statistical-mechanical
gl ounds.

Acknowledgments are due to J. Noolandi and
F. D. Tappert for helpful discussions.
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$= e'(x —cf), &=&'ct/k, y/k= hv,

and substituting

(A5)

in (A3), we get

curing over a spatial scale large compared to h.
In (A3) we have gone beyond the continuum approxi-
mation, since the (linear) dispersion is given by

(d'(k) =c'k'(I - k'k') .
equation (A4} has been reexpressed in the form
of the KdV equation earlier"'"' by other methods.
We present the multiple-scaling method requix'ed
to do so here. We wish to study waves traveling
to the right and therefore expand Eq. (AS) along
the characteristic x —ct. Introducing

number of solitons given by the KdV equation is
equal to the number of bound states of the eigen-
value equation

, +v(x, o))e(x)=x„e(*) . (A9)

Further the amplitude of the solitons is simply
2X„and their velocity is equal to -4)(„.

Interesting as these results are, they do not
seem dix ectly applicable to the statistical physics
of our problem since they have nothing to do with
the solution to the linear problem —the phonons.
(We shall continue to use the word phonon, though
strictly speaking it is applicable only to the quan-
tum-mechanical problem. ) As discussed in Sec. I,
we resolve this difficulty by looking for solutions
of the form

+o)(iI r l)c((llo( idoT )+ c c

+ ()[4((o)(~t r a) + y(o)(gr r 1)e?(())o(-uog )+ c c ]
+ o(()') .

(A7)

[Note that in (A3), we have assumed the cu»c
anharmonicity to be small. Similar results can
be derived without this assumption with a slightly
different scaling. ]

As in Tappert and Varma, "we ax'e interested in
high-frequency solutions (relatively strong dis-
persion). Accordingly, we choose a= 1, t) =3 in

(A7) and obtain after one integration

Here ko is the wave vector and ~, the energy of the
vibration of the linear problem that we wish to
specially study, and 4"' is a modulation of the linear
solution. An equation for 4 "' has been given by
Tappert and Varma" following the methods of
Taniuti and Yaj ima and othex's. Fox' complete-
ness we present the derivation here. The basic
assumption is that )I(("($', r ') varies in a, slower
fashion than e""0~ "o' ', Accordingly we introduce

(d~ + (P5(d + q (d }(d(+ q (d((( = O(E' ), (AB)

where (d=()(. This is the famous (modified) KdV
equation (with q = 0, it is the KdV equation).

Exact solutions of the KdV equation have been
recently obtained2'2' by the inverse scattering
method. Any given initial perturbation breaks up
into a number of solitons, which xetain their
velocity and shape as they pass through each
other. A most remarkable development" is the
result that for an initial perturbation V(x, 0), the

(d+ 2(p()(d + (IP(d ) + —(d(((+ 5(d& ~ + 25(P5(d + (((6 (d)(d(i

1g2 &3+ 8 gag + 8

Inserting (A10) in (All) and equating the coeffi-
cient of the dc term, the first harmonic, and the
second harmonic, we get, respectively,

~-'(@(o)+ ) f, ~@(()~o )+ O(~o)

—i((d, + —,'k'o)0'" '+ 5(4()) ——,
'

k o%(()) + ()'[ 2 iko(k((! (), + —,
' P(2iko@")e")+ 2 jk,y(o'4 ")+)

(I(Sik e( ) @( ) )) + O(() ) =0 (A13)

(.[-i(2~, + 4k',)e(»+ —,'p(ik, e")')]+ O(P) = 0 .

From (A12), we see that the linear dispersion in
the frame of reference in which g and 7 are defined
as

COO p k ()
3

which is merely a reexpression of (A4). We now
move with the group velocity (),= d(d/dk = —&k'oby
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introducing new variables

z = ('+ ~k 7', s = 6w ' .

Then Eq. (A12) yields

y(0) (p/3f 2) ~@(()
~

2

and Eq. (A14) yields

@(2) (p/6f 2)@(()2

Using (A15) and (A16}, Eq. (A13} becomes

'&p('~ = —
/p |I&( &y —'

/p ( p2/6/2) ~ly&» ~2|p&'&

(A15}

(A16)

FIG. 1. Illustrating phase difference between particles
on one side of a soliton compared to the other for the
"dimerization mode" of a linear lattice.

From (A10) the dc and first-harmonic strain are
given by

~= —(P/3k') ~%'"'~'+(0"'e''0( " ''+c.c.} . (A18)

Equation (AI'l) for the present problem has exact-
ly the same form as Eq. (25) in Sec. III, and its
solutions are given by Eqs. (26) and (38).

The important points to note here are that ~ is
a strain rather than a displacement and that there
is no first-order nonlinear "dc" solution in the
present problem. If the results are expressed
in terms of displacement the soliton solution leads
to a phase shift (and change in amplitude) of the
phonon. This phase shift for a zone boundary
phonon is illustrated in Fig. 1, where particles
on one side of the soliton are oscillating out of
phase with respect to the other. A ain solitons
may be interepreted as domains and dislocations.
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