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Nonlocal pseudopotential theory of electron transport in liquid metals
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The problem of electrical resistivity pR of liquid metals has been formulated in terms of nonlocal

pseudopotentials, and application is made to liquid Cd. It is shown that in this scheme the first-order effective

mass of the electron enters into Ziman's nearly-free-electron formula of electrical resistivity. Significant

differences in pft values using local and nonlocal pseudopotentials are found. Possible corrections to the nearly-

free-electron theory of pR are discussed.

I. INTRODUCTION

The study of electron transport in liquid metals
provides a sensitive index of the electron-ion
potential and hence of the electronic structure of
the system. Ziman's formulation' of the electrical-
conductivity problem using the Boltzmann equation
has been widely used with the electron-ion scat-
tering represented by local pseudopotentials.
Although this nearly-free-electron theory has
successfully accounted for the observed resistivi-
ties, p~, in a large number of liquid metals, there
exist some quantitative discrepancies. Various
reasons have been put forward in an attempt to
bridge the gap between theory and experiment.
These include possible corrections'~ to the Boltz-
mann equation arising from higher orders of per-
turbation theory and also corrections to the simple
Z iman formula which come from the orthogonal-
ized-plane-wave nature of the electronic wave
functions. ' Also, there has been some uncertain-
ty' as to whether a free or effective mass should

appear in the Ziman formula.
In this paper we examine the role of the nonlocal

pseudopotential in resistivity calculations. It will
be shown that, in the nonlocal pseudopotential
scheme, an effective mass does enter the Ziman
formula. Use of this effective mass, which is ob-
tained from the nonlocal pseudopotential, is anal-
ogous to the inclusion of "core corrections" to the
Z iman formula, of the kind discussed, for ex-
ample, by Faber, ' but the correction factor is
obtainable quantitatively in our treatment.

We have applied the present theory to calculate
the electrical resistivity, p~, of liquid Cd. The
case of Cd is of special interest because of the
following two ma. in reasons: (i) Recently Shyu
et al.' have computed the resistivity for eight el-
ements using their local pseudopotentials which
include many-body corrections. They obtain sat-

isfactoTy agreement with experiment, except in
the case of Cd. However, the electron-ion potential
of Cd is known to have a strongly nonlocal char-
acter. Stark and Falicov' have obtained an ac-
curate nonlocal pseudopotential for Cd by fitting
the band structure to the experimental Fermi sur-
face in the solid. This potential has been used to
calculate the superconducting transition temper-
ature' and also the Knight shift in both the solid"
and liquid" phase, in good agreement with experi-
ment. The effective mass calculated" from this
potential as a function of temperature explains the
sudden change of the Knight shift upon melting.
(ii) Greenfield and Wiser" (GW) have used the
Stark-Falicov pseudopotential' to calculate p„of
liquid Cd and find large discrepancies between
theory and experiment' (a factor of 3.6). They
argue that these discrepancies are due to a severe
breakdown of the Born approximation on which the
Ziman formula is based. The work of GW has
received some attention" "in the literature in
recent years. Evans" has suggested as an alter-
nate explanation of the discrepancy that the Stark-
Falicov potential might not be appropriate to cal-
culations in the liquid phase.

Our result using the Stark-Falicov pseudopoten-
tial for liquid Cd is in disagreement with the work
of GW." In fact, including the effective-mass
correction which GW" have failed to take into ac-
count, we find our result for ps (52 pQ cm) to be
in better agreement with experiment (34 p, Q cm)
than has hitherto been obtained. Thus, we find
no convincing evidence for a breakdown of the
Born approximation for liquid Cd.

In Sec. II we outline briefly the Ziman formula
as applied to nonlocal pseudopotentials. Our re-
sults for liquid Cd are presented and compared
with both experiment and earlier calculations in
Sec. GI. In Sec. IV we comment on some of the
possible corrections to the Ziman formula.
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H is the Hamiltonian in the absence of the external
electric field, f is the Fermi operator, j is a
component of the current operator,

J z(S) " d]) e ztet// -t/h jz test/h

0
(2)

V is the volume of the system, and the trace in
Eq. (1) is taken over one-electron states.

We shall assume, following Greenwood, ' that in
evaluating the conductivity to leading order in the
scattering the Hamiltonian H in Eqs. (1) and (2)
may be replaced by H, + W where H, is the one
electron kinetic energy and W is the liquid-metal
pseudopotential. We shall refer to this as assump-
tion A. Now, working in the representation of
plane (pseudo) waves lk) it follows" for j diagonal
in the

I
k) representation that, to leading order in

the scattering,

J-*=(klJ'(0'}Ik)

II. FORMAL THEORY

A. Boltzmann equation

Although there are a number of careful discus-
sions of the Boltzmann equation for various systems
in the literature, for the purpose of the discussion
to follow it is useful to outline some of the salient
features. We shall adopt the approach of Berger
et al."taking it to leading order in the scattering,
and applying it to the case of a nonlocal pseudo-
potential in a liquid metal.

The starting point is the Kubo formula for the
diagonal part of the conductivity tensor

j-', h(2tt)' dE,
PV dk

' dA' W k' ' ~ 1 —cos8kk ~

The integration is over the solid angle 0' with
kept equal to I"I.

(5)

B. Role of the effective mass

To obtain 0"' to leading order in the scattering
it is sufficient to replace J'(0') in the Kubo for-
mula in Eq. (1}by the expression (5) and to retain
only the leading contribution

I []f(E&)/sE1]5~~. to
the factor Sf/SH. Then Eq. (1) reduces to

pg= z = . 2 dQ' y Wk'

x (1 —cos8-„-„,) (6)

where k~ is a vector on the Fermi surface. Note
that the density of states factor [dEJdk in Eq. (5)]
cancels with a similar factor from the trace in
Eq. (1) so that there is no effective mass contri-
bution to the resistivity from this source.

In order to assign a value to the matrix elements
j-„=$ Ijlk) we need to know what current is carried
by the pseudowave lk). This current is carried
by the true wave function [))h which corresponds to
the pseudowave

I
k). The pseudowaves

I
k) which

have been used as a basis in deriving Eq. (6) from
the Kubo formula are by definition eigenfunctions
of the diagonal Part H„of the pseudo-Hamiltonian
H, +W, i.e.,

(klff~lk'& = 5 -((kla + Wlk'&) =EI5.h

is the solution of

where

x (J„' Jf)&(E--E„), - — -,

0=j —'Z(1 -—5-„-)I(kl &lk'& I'

(3)

where Eh is the same as in Eq. (4).
Now note that the true wave functions P which

correspond to pseudowaves
I
k) are eigenfunctions

(with same eigenvalues E-„) of the true Hamiltonian
H, + V' which corresponds to the pseudo-Hamilton-
ian H~.

It has been shown by Faber" that with the above
definitions

E;= (klan. lk&+(kl ~1k& (4)

If Eq. (3) is decoupled by replacing I(kl Wlk')I '
by its thermal average (denoted ( )„)over the
positions of the scatterers, it becomes the Boltz-
mann equation of interest. Assuming that
(I $ I Wl k'& I')„depends only on the magnitudes of
k, and k' and on the angle 8&&, between k and k',
and that E& is spherically symmetric (these con-
ditions hold for both local and nonlocal pseudo-
potentials in the liquid metal), the Boltzmann
equation has the solution

l cm

P &V~r = —V-E (6)

dr tII)+Vtt) —p Vtt)*

for the current carried by P[; reduces to —(e/
h)V& E&. Thus our identification of j-„with this
current gives

j.= —(e/k) V. E.=——ev. .

from which it follows that the general expression
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The proof of Eq. (8) given by Faber relies on dis-
regarding the difficulties which arise when one
considers the effects of exchange and correlation
of the conduction electrons. However, approxi-
mations of this kind are already inherent in the
form chosen for S'by Stark and Falicov' and we
shall not go more deeply into this matter in the
present paper.

Given these limitations, the result of Eq. (9)
does not contain explicitly the true wave function

$~ or the potential V' appearing in the above dis-
cussion, but only H~, i.e., Eqs. (6) and (9) give
the natural separation of H, + 8' into two parts H,
and H, + 8'-H„, the former part determining the
properties E„and.j-„of the ba, sic states Ik) and the
latter giving the scattering between them.

At this point one should note a serious short-
coming of the local pseudopotentials which have
been used in the past in resistivity calculations.
A local pseudopotential cannot give the correct
dependence of Ef =(kIH, Ik)+(kIWIk) on k, since
in the local pseudopotential scheme (k

I
WIk) is in-

dependent of k (and equal to ',Ez). Th—u—s if the
less sophisticated local pseudopotential is used
instead of the correct nonlocal one in calculating

jf from Eq. (9), there is no contribution to jf or
vg from the pseudopotential S', and v„- and j„-
reduce to their free-electron values. This dif-

ficultyy

does not arise if the nonloc al pseudopotential
is used since in that case the correct dependence
of (kIWIk) on k is not suppressed. Thus

Kk —~8k
( I I )m,* m X & k „„(10)

and an effective mass which is different from the
free-electron mass should be used in the Ziman
formula.

It is easy to see from the above derivation of
Eq. (9) for jf that inserting the current in Eq. (10)
into the resistivity in Eq. (6) has the same effect
as applying the "core correction" factor

k Jt $SVJMr

found by Faber, ' to the conventional Ziman formula
(where the free-electron Fermi velocity is used).
In fact, Faber has pointed out" that the above core
correction factor is equal to (m,*/m)' where m,"
is the first-order effective mass defined by Eq.
(10). Faber's rough estimate' of the size of the
core correction factor, which was made by ap-
proximating P- by an orthogonalized plane wave
is consistent with the value of j-„which we obtain

from Eq. (10). It should be emphasized, however,
that such core corrections are not consistent with
the use of a local pseudopotential and should not be
considered as a valid remedy for the shortcomings
of the latter. Neither is it correct, as has been
pointed out by Edwa. rds'0 and others (who worked
with local pseudopotentials) to use the exact
eigenvalues of H, + W in place of Eg in Eq. (9).

III. CALCULATIONS AND RESULTS

In order to compute the electrical resistivity
we approximate the total pseudopotential of the
metal by a sum of pseudopotentials centered at
individual ion sites R„. The pseudopotential ma-
trix elements can then be written

&kI WIk') = —ge*"-" ~
N .(Ik- k' I)+ &k

I ~NL Ik'&], (ll)

where w~ and ~» are, respectively, the local
and nonlocal parts of the single-ion pseudopoten-
tial. For Cd the nonlocal pseudopotential of
Stark and Falicov has the following form

(k
I toNL

I

k') = —g(2l+ l)X,Ti(k) T,(k') P,(cosg», ),
0

(12)

where 00 is the volume per atom. The summation
over the orbital angular momentum l is carried
out over the outermost occupied core orbitals of
Cd. The parameters A. , and the local form factors
w~(q) were determined empirically from the
Fermi-surface data. T, is the Bessel transform of
the radial part of the lth core orbital, R,

&,(k) = ' dr j,(kr) R,(r)r'.
0

It is important to note that while the nonlocal
part of the pseudopotential in Eq. (12) can be gen-
erated for continuous values of momentum transfer,
q = Ik —k'

I
from the information available in the

literature, s the loca, l pa.rt, wi(q) is available only
for four reciprocal-lattice vectors that cover the
range 0.8 &q/2k+ &1. However, Allen et al.' have
used an interpolation procedure to compute wi(q)
for 0 &q/2k' &1 for their calculation of electron-
phonon mass enhancement in solid Cd. In our
present calculation we have used the form factors
of Allen et al.' after suitable volume renormaliz-
ing"'2 for the appropriate density of the liquid.

Inserting Eq. (11) into Eq. (6) one finds

p~=
2 2,"' dx(1 —x) (oi[W2k~(1 —x)'i']+ —QX,(2(+1)P,(x) W(k~) I[ 2 k~(1 —x)'t'],3~a„, 4n

(14)
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where the liquid structure factor I(q) is defined by
the thermal average

O. O
.0

In our computations we have used the experimental
interf erence functions. "

Using the free-electron value for v-„we compute

p„ from Eq. (14) to be 72 p, & cm. As pointed out
above the effective mass correction does enter in
the leading order in the nonlocal pseudopotential
treatment. We find the effective mass in Eq. (10)
to be 0.85m. Including this effective mass cox-
rection in Eq. (14), our theoretical value for ps
is 52 p.A cm whereas the experimental value is
34 pQ cm.

At this point it is interesting to compare our
nonlocal results with those obtained from local
pseudopotentials and w'ith the nonlocal result
of Greenfield and Wiser." Using the model po-
tential of Animalu and Heine as listed by Haxrison"
w'e obtain p~=6 p. Ocm in marked contrast with
both experiment and our nonlocal result. Using
the pseudopotential values of Shyu et a/. ' we re-
produce their value of p~ =20 p.G cm. The sen-
sitivity of p~ to the choice of pseudopotential has
already been pointed out in the literature. Our
findings furthex confirm this point.

Recently Qreenfield and Wiser" using a Stark-
Falicov pseudopotential' have calculated p~ of
liquid Cd to be 3.6 times that of the experiment.
They interprete this discrepancy as "evidence" for
the breakdown of the Born approximation for liquid
Cd. However, our result using the Stark-Falicov
pseudopotentials differs from that of 6%" and is in
much better agreement with experiment. The
source of the discrepancy, we believe, is pxobably
due in part to nuxnerical error in QW's calculation.
We find no substantial evidence for the breakdown
of the Born approximation.

To further illustrate the delicate role of the
pseudopotential in liquid resistivity calculations,
we present in Fig. 1 (a) comparison of the local
and nonlocal pseudopotentials and in Fig. 2 the
integrands of Eq. (14) for local and nonlocal pseu-
dopotentials. It is obvious from these figures that
the node of the potential plays a crucial role in
determining the magnitude of the resistivity. How-
ever, the position of this node is arbitrary to a
certain extent, depending on the model selected.
In comparing theory with experiment, care must
be taken in choosing a potential that has been
shown to describe several other electronic prop-
erties well. The Stark-Falicov potentiala seems
to meet this criterion. Although our present non-
local result for p~ is nearer to experiment than
previous calculations there still remain appre-

CL -0.'l—

—-0.2-

FIG. 1. Pseudopotential form factors (in By) for
scattering on the Fermi surface ( ~k) = (k' ~= ks); dashed
line, and dash-dotted line are, respectively, local po-
tentials of Animalu and Heine, and Shyu et aE. Solid line
is the nonlocal pseudopotential of Stark and Falicov.
Note that these curves do not contain volume-renormal-
ization factors.

ciable quantitative differences between theory and
experiment and further work is necessary to bridge
this gap.
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FIG. 2. Integrand of Eq. (14) as a function of x, the
cosine of the angle between k and k'. Dash-dotted line is
obtained by using the local pseudopotential of Shyu et al .,
while the solid line corresponds to that using thenonlocal
pseudopotential of Stark and Falieov. Note that these
curves do not contain correction due to volume-renor-
malization of pseudopotential form factors.

IV. DISCUSSION

At the present time there is no satisfactory theo-
ry of the leading corrections to the Ziman formula
in Eq. (14). Attempts have been made by Springer'
and Ashcroft et al.' to go beyond the leading order
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in perturbation theory in conductivity calculations.
Their work is based on the assumption that the
pseudopotential W may be treated as if it were a
true potential even in such higher-order calcula-
tions. Their results should not be considered ac-
curate because of the objections to the use of this
assumption as discussed by Greenwood, ' and also
because of their use of the local potential approxi-
mation which as we have seen is not capable even
of giving the correct electronic effective mass for
the calculation.

There have also been suggestions that even the
assumption A as stated in Sec. II, might need to be
modified. For example, Austin e~ al. ~ have sug-

gested that an additional normalization factor may
be needed in the expression for the transition prob-
ability obtained in the conventional way from the
matrix (k~W~k'). Still other corrections have been
proposed by Faber. Work is in progress on these
aspects of the problem.
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