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We have examined the relationship between the polarizability for a two-phase (vacuum-dielectric) system and

the use of additional boundary conditions and the like, as regards the response of systems exhibiting spatial

dispersion. As a consequence we are able to derive information about induced-charge and current densities

and the continuity of the field quantities across the interface. It is shown that it is not possible to resonantly

excite longitudinal bulk modes with incident light in the formalism of Rimbey-Mahan. We have derived sum

rules in wave-vector space on bulk polaritons in homogeneous isotropic systems. In the case of
nonhomogeneous perfect crystals in which the bulk response is described by the matrix e(g, g'l, we have

solved formally for the surface impedance in terms of an assumed arbitrary ~(Q, Q'), by means of an

extension of the Fuchs-Kliewer formalism.

I. INTRODUCTION

Spatial dispersion in a medium (or nonlocal
optical response) occurs whenever the induced
polarization or current density at some point de-
pends not only on the value of the electric field
at that point but also on the value of E in a region
about that point. '

If the medium is homogeneous and infinite so
that X(r, r') =){(r-r'), Eq. (1.1) can be Fourier
transformed as

P(q) =X(q) E(q). (1.2)

Natural optical activity (gyrotropy), ' the anomalous
skin effect, ' the unusual ref lectivity spectra of
crystals in the classically forbidden region near
an isolated exciton resonance, ~ and the resonant
excitation of longitudinal modes (plasmons) in thin
films by P-polarized light' ' are all. interesting
consequences of spatial. dlspers1on 1n the dlel. ee-
tric function e{q) =1 + 4tr)((q).

In a real experiment, there is always a erystal-
ambient interface so that translational symmetry
is destroyed and (1.2) is invalid even if the di-
electric is homogeneous. In order to handle this
problem various schemes have been devised using
additional boundary conditions"' (ABC' s), sym-
metry conditions, "or, more recently, there
have been attempts to solve directly for the re-
sponse by negl. ecting altogether the effects of the
surface. ' Roughly speaking, the problem arises
because in the presence of spatial. dispersion
there are muitiple bulk modes (polaritons) of a
given frequency and polarization but having dif-
ferent wave vectors, and the surface couples ex-

ternally incident light to each of them. In this
way of thinking, Maxwell's equations do not pro-
vide sufficient boundary conditions at the surface
to solve uniquely for t,he fields in the dielectric
although it is equally clear that if the polariza-
bility k in {1.1) is known, any problem of interest
should be exactly solvable without the need for
ad hoc boundary conditions. In Sec. II we point
out that most of' the commonly used attempts to
solve problems of this nature are each equivalent
to a particular, if implicit, assumption about the
relationship of the polarizability g of the two-
phase system" to that of the bulk; the two are
not, in general. , equal. The various ABC's are
shown to be a consequence of the particular polar-
izability used. In particular, the method of Ref.
10 originates from the same general formalism
as the method of ABC' s; each formal. ism derives
from different values of a single parameter in-
dicative of a particular choice of macroscopic
susceptibility functions [Eqs. (2.10), below].
However, in principle this parameter must be
determined from microscopic considerations. %e
note that the method of symmetry-imposed con-
ditions is particularly attractive, when applicable,
because the surface impedance, which can be
simply used to solve many electromagnetic prob-
lems of interest, can be evaluated by a straight-
forward integration over wave vector of an ar-
bitrary bulk dielectric function, regardless of
the number of different polariton modes. The
nature of the two-phase polarizability in turn de-
termines the nature of surface charge or current
layers and the continuity of E and B across the
interface. Some of the isolated results of Sec.
II have been published"'" and others have been
communicated to us privately. These results
have not previously been derived from the gen-
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eral formalism of Sec. II which has the advantage
that we are able to deduce properties of the sys-
tem quite generally, i.e., without having to actual-
ly solve the problem in specific instances.
Throughout this article we do not wish to comment
on the validity of the various schemes; instead we
are focusing our attention on their consequences.

In Sec. III, the wave equation in terms of ef-
fective surface current and magnetic current
densities is derived from the general polariza-
bility function of Sec. II. We show that it is not
possible to resonantly excite a longitudinal bulk
mode in the Rimbey-Mahan formalism', it has
been demonstr'ated to occur for the Fuchs-Kl. iewer
formalism, "' and the effect has been observed
in thin metallic films. ' This provides a possible
experimental test of the validity of the various
boundary conditions used. We have explicitly
derived the equivalence of, e.g. , the Rimbey-
Mahan formalism to the method of partial waves
used by Pekar, ' Hopfield and co-workers, 4 and
subsequent investigators. We have also demon-
strated that, although there may be more than
one polariton of a given frequency in the dielec-
tric (bulk), the "strengths" of these polaritons
sum to unity.

In Sec. IV, the response of a two-phase system
in which the dielectric is a perfect crystal but
nonhomogeneous is derived from an extension
of the Fuchs-Kliewer formalism, i.e., we have
solved for the surface impedance (in general,
a matrix) a knowledge of which allows one to
solve for either the ref lectivity or the dispersion
of a surface excitation. '4"

II. BOUNDARY CONDITIONS AND THE TWO-PHASE
POLARIZABILITY TENSOR

A. Relationship of the hvo-phase polarizability tensor to
the bulk polarizabiTity tensor

Consider a two-phase system consisting of
vacuum in the half-space z & 0 and some dielectric
medium in the half-space z& 0 which we need not
assume to be homogeneous. We will assume,
however, that z =0 represents a sharp boundary
between the two media and that the "properties"
of the crystal persist up to the surface. We wil1.

also assume that the plane z = 0 would be a mix ror
plane if the crystal were continued into z& 0. The
significance of this last assumption will become
apparent later. In cases where one assumes the
dielectric to be homogeneous and isotropic, this
represents no additional restriction because every
plane is then a symmetry plane. Quite generally,
one may relate the induced polarization density
for the two-phase system to the electric field as

(2.1)

It wil. l be convenient to assume that al.l fields
vary as e ' '. P is defined in terms of the in-
duced current density as P = (i /(())J, and we have
defined X in terms of the fieMs'6 rather than the
potentials" so as to avoid divergences in re-
ciprocal space. Unless y„, is a & function, the
response of the system is nonlocai (hence the
term spatial dispersion). There is, in general,
more than one normal-mode solution to Max-
well's equations (bulk polariton} for a given fre-
quency. Early attempts to solve for the xeflectiv-
ity of the two-phase system assumed the field
for z& 0 couM be expanded in terms of bul. k normal
modes, and to do this one needed an additional
boundary condition (ABC), over and above those
given by Maxwell's equations, ' in order to solve
uniquely for, e.g. , the ref lectivity 8((()). Intuitive-
ly, one ought to be able to solve for any electro-
magnetic quantity of interest once g„, in Eq. (2.1)
is specified, even though y„, is not a true response
function. Actually, all attempts to solve for the
nonlocal response (the surface impedance, say,
or the ref lectivity) involve an implicit assump-
tion about the relationship of the vacuum-solid
polarizabil, ity tensor g„, to that of the bulk polar-
izability g~; this latter quantity is much simpler
to calculate directly from some realistic model
(the Lindhard function, "one-oscillator models, ~

etc. ) than is the former. The assumption is pres-
ent in articles'9 employing a "mirroring" of the
crystal into the region z( 0, in articles"' em-
ploying ABC' s, and it is AnPlicifly assumed in
recent articles purporting to have avoided the
use of additional boundary conditions altogether. '
This relationship has been recognized before" ";
we wish to amplify on that relationship, keeping
strict track of the tensorial character of g„, , so
that we may draw conclusions about the continuity
of the fields at z =0, induced-charge and current
densities and the like. Neglect of the tensorial
character of X„, suffices for normal-incidence
light on an isotropic medium when all vector
quantities are assumed parallel to the surface;
however, it fails to correctly determine the na-
ture of any field components normal. to the sur-
face, as occur in the non-normal incidence of
light (especially photoemission") or in surface
excitations.

Consider, for example, the method employed
by Fuchs and Kliewer' (FK} for specular reflec-
tion of electrons at the inner surface of a metal.
This is equivalent to the assumptions'

Xz (xyz; x' y' z' )

)('„, (r, r') = +gz(xyz; x' y' —z') ~ o. , z, z') 0, (2.2)
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where Xz(r, r') is the bulk polarizability (which
we do not assume to be homogeneous) and n is
the matrix for mirroring across z =0:

j. 0 0

K=l 0 1 0

0 0

Substituting in (2.1) and changing the dummy vari-
able z '-- z ' in the second term, one can write

system leads to an expression for the surface
impedance of s-polarized light which is identical
with that obtained for diffuse scattering. '4 Equa-
tions (2.2) and (2.5)-(2.9) may be summarized
as

z, z'&O, X„,(r, r')=X, (r, r')

+Uxz(xyz; x'y'- z') a

(2.10a)

P(r) = Xz(r, r') E „„(r')d'r', (2.4)
=Xz(r, r')

+U~ xz(xy-z;x'y'z')

(2.10b)

E(xyz), g& 0

E,«(xyz) = n. E(xy -z), ~&0

[E, (xy —z), E (xy —z), —E, (xy —z)],

z& O. (2.5)

The problem has now been recast into a form
in which, as far as the right half-space (z & 0) is
concerned, the left half-space (z & 0) appears to
be fill.ed with the same polarizable medium and
with an electric field mirrored according to (2.5).
As pointed out, ' this guarantees that if free elec-
trons are the polarizable entities, they will. be
specularly reflected from the inner surface. We
wish to emphasize that (2.4) and {2.5) are a math-
ematical trick from which one must not directly
draw conclusions about real surface-change den-
sities or the continuity of E. Similarly, Rimbey
and Mahan9 (RM} have proposed a treatment ap-
plicable to specular reflection of (Frenkel") ex-
citons from the surface, which is equivalent to

X..(r, r') = Xz (xyz; x' y' z')

—Xz {xyz; x' y' —z') ' 5, z, z' & 0; (2.6)

this is of the form (2.4) if

E,jxyz) =[-E„(xy—z), —E„(xy —z), +E, (xy —z)],
z& O. (2.V)

Agarwal et «;, Maradudin and Mills, and Bir-
man and Sein' have claimed to have avoided the
need for any ABC, mirroring, etc. However,
their treatment is simply the approximation

The parameter U =+1 for the FK formalism, '
U = —1 for the RM formalism, e and U = 0 for the
formalism of Ref. 10. Equation (2.10b) holds only
if the @ =0 plane would be mirror plane of the
bulk"; if ( u( 7 ) is any member of the space group
of the crystal then

n ' ~ Xz(Z ~ r+r, a r +T) n =Xs(r, r ).

We note that it does not make sense to speak of
specular reflection of the excitation at all unless
~ =0 is a symmetry plane. This does not repre-
sent a restriction in cases where a cubic crystal.
is presumed isotropic and homogeneous because
every plane is a symmetry plane. Similarly

E,«(xyz) =Uu E(xy —z), z& 0

and since B = (1/i&a)v & E

B„gxyz) = —Un .B(xy —z), z & 0.

(2.11)

(2.12)

Although there are many treatments of the non-
local response of a two-phase system which do
not fit (2.10a),"we will. show that many of the
formalisms are of the form (2.10a) or can be
simply modified therefrom.

B. Limiting values', |0'),dP;(0+)/dx. ,

and the continuity of E,8 across the surface

It is of interest to see under what conditions
the fields are continuous across the boundary
z =0. Of course, the source-free Maxwell's equa-
tions guarantee that B and &„, are continuous.
Consider

or

X..(r, r') = Xz(r, r'), z, z' & 0 (2 5)
c'v &&B = 4«J d+ E/Bts

BP BE= 4TI' —+ —.
Bt Bt

(2.13a)

(2.13b)

E,„,. (xyz) =-0, z& 0.

It appears that this assumption neglects the re-
flection of the excitation (exciton or electron)
from the surface; it can be shown, however, that
(2.8) applied to a vacuum-homogeneous-dielectric

By Stokes's theorem, the tangential. component
of 8 is continuous whenever I'„, (and &„~)are
finite at the surface. According to (2.13) and
(2.1}, P, ~(z =0) =P„,(z-o+) whenever x„, is
finite, or at least no worse than a 6 function.
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which has a Fourier transform

Pw(q) =- [y(~)/~']qxq«. (2.15)

The (transverse) polarizability tensor has a con-
tribution 1'w-yq'/ur' which means that

x, (~)- [
diverges worse than a ~ function. In this ease
there is a surface current density J„(r)=M„,6(w)
and the tangential component of B is not continu-
ous. (For this reason, it is customary to define
H = c'8 —4@M whose tangential. component is con-
tinuous. ) In the following, we will assume that
g~ is no worse than a & function; for an isotropic
system this is equivalent to a,ssuming lim, y, (q)
is finite. It is clear that the long-wavelength
magnetic susceptibility in an isotropic system,
ll(~), is derivable through (2.15) from [ 'de( q~)/
dq'], ~, i.e.,

1 d'e, y(e) 1, I
8w dq' ,-0 &u' 4wu' p(u&)

'

We see that any material. exhibiting spatial dis-
persion is "magnetic"; however, our treatment
becomes invalid only if e, (q) diverges for large

Tile eontlnlllty of Eg (w 0 ) ls different fol' the
three cases U =+1,0. Since there are no external
charges intx oduced in the system

v'E = —4m%' P (2.18)

(~ E[ may be assumed to decay into the bulk. ) A

connlex exampl. e occurs for the classical. local
treatment of a homogeneous magnetic system,

M = (1/4w)[c' —I/y(&u)]B =y(~)B,

i - i — iy(ur)P (r) = —J (r&= —&xM= &xB (2.14)ht ~ M

= [y(~) /(g2] q x V x E,

and it is at this point that we have used the as-
sumption that ~ =0 represents a mirror plane of
the crystal. Equation (2.1) gives

P(xy0') =(I +Un) '~ Xa(xy0;x'y'&')

E(x' y' z') d'r', (2.22)

which clearly implies (U =+1, FK)

P, , (xy0'} t 0,

P, (xy, 0') =—0.

(2.23a)

(2.23b)

In general, then, the tangential. components of
P (or J) are not continuous in the FK formalism
(though they may be in special eases) but the nor-
mal component always is. As a consequence of
the latter, the normal. as wel. l as tangential com-
ponents of E are continuous at the surface and
there is never a real induced surface-charge
density, in the FK fox'malism, if z =0 represents
a mirror plane of the crystal. . Similarly from
(2.10b) with U =+1 (FK)

BP„'dP, BP, 8P,llm
88 88 Bx 8$

(2.24)

and the remaining derivatives evaluated as ~ -0'
are not zero except in special eases. It will be
noted that SP„(0 )/Sa =0 is identical with Eq. (16)
of Ref. 21 in which they have in effect derived
(2.2) for a model Wannier exciton; their formalism
is therefore equivalent to Fuehs-Kliewer for nor-
mal incidence. Ting el, aE."have, however, ap-
proximated y~ as a scalar so that for non-normal
incidence their results mil. l be quite different.

Similarly, if U = —1 (RM) in (2.10b) it is easy
to see that

ya(xy0; x' y' —&') o. =5 a '}Is[a(xy0); n(x' y' z')] a
= n ~ }la(xy0; x' y' x'),

(2.21)

&, (xyO') —E, ( 0xy) = —4w[P, (xyO') —P, (xy0 )]

= —4wP, (xy0'), (2.19)

which means there is an induced surface-charge
density

P„ , (x, y, 0+}= 0,

P( xy0)e , 0

(2.25a)

(2.25b)

v. (xya) = —4wP, (xy0' }6(z) (2.20) o+
(2.26)

in addition to any induced bulk-continuum charge
density. To compare the three different cases,
we first assume that ga(r, r') is well behaved,
i.e. , that it is finite, continuous, differentiable
and has no 6-function (or worse) contribution. We
will come back to the case of a background local
susceptibility later. The second term of (2.10a)
evaluated at the surface gives

Equation (2.25a) was originally considered by
Pekar to be the additional boundary condition
pertinent to the Frenkel excitonic problem; in-
deed it has been dex'ived from a model Schro-
dinger equation for excitons, "again in the ap-
proximation that g„, =y„„,I. We have seen here
that the boundary condition P„=O is equivalent
to the choice (2.6}. Equation (2.25b) demonstrates
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lim p(xyz) = —4vV. P(xy0') =0.
z~ p+

(2.27)

A much stronger result for the case of a homo-
geneous cubic dielectric will be discussed in

Sec. III.

that there is an induced surface-charge density
given by (2.20) except in the case of s-polarized
light. The normal component of the electric field
is in general, then, discontinuous. Equations
(2.26) together imply that the induced charge den-
sity near (but not at) the inner surface is zero.

Note that in the case U&*1, nothing in general
can be said about the limiting values for any of
the aforementioned quantities; the generalized
extinction theorem"'" does apply, but to evaluate
it one needs specific and analytic information
about the functional form of Xz(r, r') and this must
be done on a case by case basis. The case U =0
has been evaluated in terms of the two-phase
eigenmodes. We can see that the induced sur-
face-charge density is, in this case, formally
half that of RM jf the electric fields are assumed
to be identical for z& 0.

o(surface) = —4vP, (xy0') = —4vn ~ Xz(xy0, x' y' z') E(x' y' z') d'r'
8 &p

(U =0). (2.28}

We note that U t + 1 does not conform to an ABC
of the form AP„+ BdP„/dz = 0 except in special
cases. This was explicitly demonstrated for
U =0, in which the ABC depends on the eigen-
mode. " We note also that Eqs. (2.10) do not cor-
respond to the method of the "dead layer" either. 4

The results (e.g. , ref lectivity or surface-ex-
citation dispersion) for different values of U are,
in general, quite different for a given Xz(r, r').
In all cases, the polarizabil. ity tensor has the
property

X„(r,r') =X~„,(z')5(r —r') (2.31)

X„,(r, r') =Xz(r, r') —a Xz(r, K r') o.'. (2.32)

in which X„„(z'-—~) =0 and X„,(z'-+~) =Xz
(constant); there is no discontinuity in P, and
therefore no true surface charge density. We
return to this point in Sec. IIIB.

Is there a situation in which P(0') =—0, i.e., all
components vanish at the surface, as originally
envisioned by PekarV' Formally, this situation
can exist if

lim X„,(r, r' }= Xz (r, r' }, (2.29) If one further assumes g~ =g~I, then

and so it is not true that one can neglect the dif-
ference between g„, and g~ just because that dif-
ference is appreciable only near the surface. In
fact, in many cases of interest the bulk damping
parameter is so small that the contribution from
the second term on the right-hand side of (2.10a)
is comparable to that from the first.

It must not be thought that because J, (P, ) does
not go to zero at the surface for Ut+1 that this
necessarily represents a gross unphysicality in

the formalism. It does not imply that the induced
charge is jumping out of the surface —only that
it is piling into a surface layer of zero thickness.
This surface charge density is simply a result
of imposing an infinitesimally sharp boundary
separating vacuum and bulk dielectric. The fact
that one has attempted a partial microscopic
treatment of the e —m response does not neces-
sarily negate the consequences of a sharp bound-
ary. For example, the surface charge density
always associated with a local. response function

X»»s [XB(r r ) Xs(xyz»x y z )]I» (2.33)

which is equivalent to the (RM) formalism (2.6)
or (2.7) applied to normally incident light on aho-
mogeneous dielectric but not otherwise. Similar-
ly, the + sign in (2.33) would guarantee dP(0')/
dz =0. Equation (2.32) cannot be cast in the form
(2.4), (2.11); it does not represent specular re-
flection of the excitation for the simple reason
that the polarization/current density (a vector)
is not the same as, e.g. , the exciton wave func-
tion (a scalar) although the two are closely re-
lated. It is not mathematically possible to choose
the phase of g~y reflected P-polarized or lon-
gitudinal vector wave such that all components
vanish at the surface (except at normal incidence).
In articles employing the approximation g~ = g~I
there is therefore some ambiguity as to how one
should proceed for non-normally incident light.

Finally, we consider the useful situation in
which part of the response is considered local
and part is nonl. ocal, e.g. ,

X..= X,.,6(r - r'}, (2.30)
Xz(r, r') = XL5(r —r')+ XN~(xyz, x' y' z'), (2.34)

is eliminated with a smoothly varying, position
dependent, but local, response function which implies
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P(r) =X/ K(r) D(r}= E,«(r) + 4«P(r)

+ [ XN„(r, r') + UXN~(r, n r') a] ~ E(r') d'r'

(2.35a)

e(r, r') E,«(r') d'r',

e(r, r') = &(r —r')I + Xz(r, r'),

(3.1a)

(3.1b)

= P L(r) + PN„(r),

and therefore

(2.35b)
h(Q) = E «(r)e 'o ' ' d'r,

dg
space

(3.lc)

o(surface }= —4«n ~
X L

~ E (xy0')5(z) (2.36)

(2.37)XL = lim Xe(q)

and this quantity, the amount of background non-
local response, determines the entire surface
charge density in FK formal. ism.

A primary conclusion of this section, then, is
that the method of ABC' s, the method of imposed
symmetry conditions, and the method employed
in Ref. 10 all originate from the same common
formalism [Eqs. (2.10)] but with a different value
of the parameter U. The appropriate value of
U that makes (2.10) a valid approximation for a
given system must be determined from micro-
scopic considerations.

III. SOME RESULTS FOR A VACUUM INTERFACING
A HOMOGENEOUS ISOTROPIC DIELECTRIC

A. Wave equation in the two-phase system in terms of effective

surface current densities and magnetic current densities

By means of Eqs. (2.10) and (2.11) the two-
phase problem may be simply related to an equiva-
lent bulk problem in terms of effective fields
(which are the true fields for z) 0). We make
the following definitions:

in addition to whatever is contributed by the re-
maining terms discussed previously. The quan-
tity PN~ =P —PL obeys the relations derived above
[Eqs. (2.23)-(2.26)] as z-0', depending on U.
For a homogeneous isotropic dielectric we note
that in terms of the Fourier transform of Xz(r —r')

&'(Q, ) = — ~(Q)e"' d Q. ,2 1T
(3.1d)

where Q, is the component of Q in the x —y plane

Q=(Qg, Q. ) (3.1e)

It therefore follows that

E. (xyz)=
( i

&(Q)e' ''d'Q, (3.2a)

E (xy0') = h'(Q )e' &' "' d Q . (32b)eff (2 «)2 t t

2
—,~(Q) = [V x VxE,«(r)]e 'o ' ' d'r. (3.3)

To express (3.3) in terms of Z(Q) one must in-
tegrate by parts' being careful to handle terms
like, e.g. (E, means x component of E„,}

For a homogeneous isotropic dielectric, trans-
lational symmetry implies that Q, is an eigen-
value of the problem; whether the problem is the
ref lectivity of incident light i Q, i

= (v/c) sin8 or
the dispersion of a, surface excitation ~(Q, ), dif-
ferent values of Q, do not mix. Moreover, since
the plane of incidence (the plane normal to the
surface and passing through Q, } is a mirror plane,
the electric field may be assumed, by group theo-
ry, either to lie in this plane or be perpendicular
to it. Al. l quantities vary temporally as e ' '

Maxwell's equations reduce to

J
"B2E . ' B'E ""B2E„. g," e '~~'dz =,"

& '~~'dQ, +. 2" e ' g'dZ
Z BZ ~+ BZ

=(-iQ, )' E, (x z)e 'o~'dQ, + * e 'o~' —E,„(xyz)(-iQ }e ' ~'BE„

+ * e 'o~' —E„(xyz)(-iQ, )e
BZ +

Q2 E„(xyz)e 'o"dQ, —(1+U) * +iQ, (U —1)E, (xy0').BE, (xy0') (3.4)

Expressions like E„S( xy)0/ SzSE, (xy0')/ex
can be eliminated from the right-hand side of
(3.3) in terms of the magnetic field. The result
1s

(~'/e')~(Q)+Qx [Qx Z(Q)]

= (- ia/c)(1+ U) n x B' (Q, )

—i(1 —U)ax[nx«~'(Q )], (3 5)
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where n =z is the unit vector normal into the bulk.
To this point we have assumed z = 0 is a mirror
plane of the crystal but have not assumed the crys-
tal to be homogeneous. Proponents of diffraction
theory will recognize the first term in the right-
hand side of (3.5) as due to an effecti»e surface
current density and the second as the curl of an
effective magnetic current density. " Inasmuch
as surface plasmons couple to light waves in the
presence of a rough surface, an extension of Eq.
(3.5) may prove useful for calculations of the
properties of surface plasmons in that regard.

B. Properties of solutions for the case of homogeneous
cubic dielectrics

If the bulk dielectric is assumed homogeneous,
translational symmetry requires e(r r ) = E(r —r ),
and the relationship between I) and 8 is

5y(Q) = e(Q) &(Q),

where e(Q) is the Fourier transform of e(r). Iso-
tropic symmetry further requires (every axis
is a symmetry axis)

e(Q) =e, (IQI)QQ+e, (IQI)(1 —QQ). (3.7)

In this special case, Eq. (3.5) can be written

2 2

—,&&(Q)QQ+ —, &, (Q)-Q' (I —QQ) &(Q)

(1+U) n xB' (Q, )

(3.9)

The solution to (3.8) is, therefore,

—z (1 —U)Q x [n && 6' (Q, )] . (3.8)

The matrix in brackets on the left-hand side can
be inverted by inspection; it is essentially the
Green's function for the problem. "

ic'(1 —U)
g(Q) — (1 +U)Q ~ [n&B (Q, )]Q ~ ', +, , Qx(Qx [nxB' (Q~ )]] —

2 2 2 Qx[nx b' (Q~ )].
t

(3.10)

We have the important result that all solutions
to Maxwell's equations incorporating RM sym-
metry conditions (U = —1) are such that

1
p,.„~(xyz)= —V. E=—0, z& 0'. (3.11)

[Equation (3.11) refers to effective fields, which
are the true fields for z& 0, but cannot be used
to deduce surface charge densities. ] We see from
(3.11) and Sec. II that in the RM formalism all
of the induced charge density (if any) resides in

a zero-thickness layer at the surface; this is ex-
actly the situation that occurs in a local theory,
and as mentioned earlier, we do not consider this
to be an unphysical result. However, if one rec-
ognizes that the re are no sharp boundar ie s in na-
ture, the RM formalism predicts that all the in-
duced charge density is confined to the transition
region (a few angstroms) between vacuum and di-
electric; presumably, the RM formalism is quite
sensitive to the nature of the transition region.
The exact opposite case holds for the FK formal-
ism; there is no induced surface-charge layer
and there is an appreciable bulk charge density
extending on the order of hundreds of angstroms
into the bulk for typical electron-gas parameters. "

One of the more unusual aspects of the FK
formalism is that it predicts the resonant ex-
citation of longitudinal plasmons by incident (trans-

verse) e —m waves (P polarized only). ' This
was predicted by Sauter, Forstmann, and by
Melnyk and Harrison for thin films. ' Such ab-
sorption has been observed in silver films and in

potassium films' 2nd is predicted not to occur
by the RM formalism by (3.11). (This is antici-
pated by the RM expression' for the surface im-
pedance Z~ which does not depend on e, .) This
is not a serious objection as the RM formalism
was devised for Frenkel excitons. " However,
Eq. (3.11) predicts that it is not possible to ex-
cite longitudinal excitons either; it would be of
great interest to see if obliquely incident P-polar-
ized light would be resonantly absorbed for fre-
quencies ~= u, (q) in thin slabs of materials
having an appreciable exciton oscillator strength,
e.g. , on CuBr or ZnO in which the ratio of oscil-
lator strength to damping is so large that sur-
face excitons can be observed. "

The only exception to (3.11) occurs if, for some
Q, and u, there is a Q, such that &, (Q, , Q, , ~) =0
and the inverse of the matrix in square brackets
in (3.8) does not exist. However, it may further
be shown that this situation can occur only if
Q, =0. The resul. tant expression for the surface
impedance (U = —1) does not depend on this "plas-
mon"; the plasmon does not affect the ref lectivity
of an external e —m wave and is itself unaffected
by it. Similarly, surface excitations do not cou-
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&(Q) = (c/Id)Qx h(Q), (3.12)

pie to this mode either.
From (3.10) and the additional relation (if U=- 1)

one can deduce the surface impedance for s- or
P-polarized light, in the RM or the FK formal-
ism,"as has already been reported for the four
cases, e.g. , U =+1 (FK)

B, (xy0+} cv ~ „(Id'/c )e, (Q) (a'/c')e, (Q) —Q Q' (3.13)

in which the variation of the fields in the x —y
plane has been assumed to be e'~»»; Q'=Q„'+Q', ,
and e'oP =1 can be assumed because E;"(z) is
continuous across z =0. One then matches the
tangential fields in the bulk to their values in the
vacuum

E, (xy0+)/B, (xy0')=E, (xy0 )/B, (xy0 ), (3.14}

q. The limit 0 is very important in (3.18) other-
wise the integral vanishes.

Equation (3.18) arises naturally in either the
RM or FK formalism. Consider P-polarized light
in the x zplan-e (q, =q„x). With U =+1 (FK) one
can solve for B„(z)by means of (3.12), (3.10),
and (3.2)

thereby determining either the ref lectivity" for
a particular frequency (d and angle of incidence
[Q„=(a/c) sin&] or the dispersion of the surface
excitation Id(Q„)."'" As indicated in Sec. II,
such a procedure is valid only if e, (Q) does not
diverge as Q' for large Q—otherwise B, is not
continuous across the vacuum-solid interface.

B8 ca fag~ d
4II'i .„q' —(uP/c')e, (q, Id)

Similarly for U = —1 (RM) one can solve for

E x g = " ' ' e"»"}- 4p 2
(
./2)

(3.19)

(3.20)

F(q. ) = f(z)e '"'« (3.15a)

f(o')-f(o )-—f'(o')-f'(o )
q, qg

OO If"(z)e "*'dz

Therefore

(3.15b)

C. Sum rule on bulk polaritons

Consider the Fourier transform F(q, ) of any
function f (z) which has a single jump discon-
tinuity at z =0 but is otherwise "well-behaved. "
We can integrate by parts twice to obtain the fol-
lowing:

In order that the theory be consistent, i.e. , that

E, (x, 0')=,E;e"** (3.21)

as in (3.2b), there is a requirement that e, sat-
isfy (3.18). This will always be the case if e,
does not diverge as q' or worse, which is the
same condition that ensures the continuity of
tangential B.

The "sum rule" (3.18) takes on an interesting
form if e, (q} can be continued onto the entire
upper-half complex q plane, as can be done with
isolated oscillator models' or the Lindhard func-
tion. '8 e, (q) may have poles, as it does in the
former, or branch cuts, as it does in the latter.
Let q, be any complex number which is a zero
of the denominator of the integrand of (3.18), i.e.,

f(0') -f(0 ) =i lim q, F(q, ). (3.16) lim q ——, e, (q, Ie) = —(q —q, ).
a~a c'

S

(3.22)

As an example, consider

—(Id /c )e (q ~) (3.1'I)

[Since e, (q) is even in q, q, and —q; are zeros
of the left-hand side of (3.22) with the same value
of A, .] For each pair (q, , —q, ), there is one and
only one value of q, =+(q', —q', )'~' in the upper
haLf-plane such that"

Since f is an odd function, (3.15) gives

r q, e "~0 dq,
q' —(w'/c'}e, (3.18)

if &, does not diverge as q' or worse, for large

q,'+q', —(uP/c2)e, ((q2+q2)' ', Id)=0.

We are now able to close the contour of (3.18)
with an infinitely large semicircle in the upper
half-plane. The resultant sum rule on the bulk
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polariton modes is

g A, (cu) = 1,

where A, is defined by Eil. (3.22):
1 {d Cl6g

A, ((u) c' d(q')

(3.23a)

{3.23b)

[In (3.23a) integration of (3.18) around branch
cuts, if any, is included in the sum. ] The sum
rule (3.23a) must be satisfied by any bulk dielec-
tric function e, (q) to be used in either FK or RM
formalism; the only assumptions in deriving
(3.23) is that e, can be continued onto the entire
complex-q plane and that &, does not diverge as
q' or worse for large q. We interpret (3.23) as

K
e, (q, u) =e„—

0

which has two polariton modes g =1, 2

(3.24)

saying that the "strengths" of the bulk polariton
modes must sum to unity; this must not be taken
too seriously because q, and A, are, in general,
complex, possible pure imaginary.

Are there examples of functions e, (q, a) which
can explicitLy be shown to obey (3.23)'? Trivially,
if &, is independent of q, then the single mode

q, = {+/c)We, completely exhausts the sum rule
with A, =-1. An important nontrivial example can
be found in the commonly used one-oscillator
dielectric function. '

{1+ii&~)(d —u)&k[[(l —Qe~)(d —u)2] +4ixK(d ]'
(3.25a)

1 aE+2 i2(~2 C2q2 )2

A,. (cd) (uP —id2 —ac'q ',. )'=1+ =].+
EA

(3.25b)

It is straightforward to demonstrate

A, (~) +A2(~) =—l. (3.26}

A longitudinal function ei of the form (3.24} can
easily be shown to satisfy (3.31); in this case
there is only one zero, q, .

where Eg ls the background "local." contribution
to the dielectric function,

e„= lim e, (q). (3.28)

Integration of (3.27) in the upper half-plane gives

In this particular case, A, is real. and positive
if there is no damping. The transverse Lindhard
function, with or without generalization to finite
lifetimes, "has branch cuts due to the logarithm;
we did not directly verify (3.23) in that case.

There are, of course, many such sum rules.
Consider, for example,

D. Connection with the method of partial waves

In this subsection we specialize for simplicity
to the case of normal incidence with RM symmetry
conditions (U = —1). As mentioned previously,
this symmetry condition is equivalent to the ad-
ditional boundary condition used by Pekar' and
later by many others (normal incidence only).
The solution, the function E(z) for 2& 0, appears
to be quite different for the two cases. In the
former we have from (3.20)

qe'" dq
( ): 4y, 2 { 2/ 2} { }

(U= 1) (3,32)

whereas in the latter the field was assumed to be
expanded in bulk normal. modes

g [e, (q, ) —1]A, = e„—1 (3.29) E (2) =Q E e "i*

qge ~ dq~ gg

q'e&(q) e&(") ' (3.30)

in the absence of branch cuts.
Sum rules for the longitudinal polaritons are

less infor mative. Consider

where the E; 's are not known a P~io~i but are
determined from the boundary condition. Under
the same condition as applied in Sec. III C, the
contour in (3.32) can be closed in the upper half-
plane to give

or

(3.3 la)

Es
E„(2)= " QA, e"i', (I? = —1) (3.34)

where
1

lim e, (q) = —(q' —q', ). (3.3 lb)

where q, ,A, are defined in (3.23). This is the
same form as (3.33) except that the relative sizes
of the components are already known from (3.23b).
lf we define E~, &„as the amplitude of the in-
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cident and reflected waves, respectively, and

&, = (E'„/4v')4, , then we have from the continuity
of tangential E:

(3.35)

A. cg; (d,

= PA, (ic/cq; ).

(3.39b)

(U =+ 1) (3.40a)

(3.40b)
which appears in Pekar's and subsequent work
based on ABC' s. Similarl. y one can solve for
P, (z) in the RM formalism since P(Q) = [ e(Q)
-I] E(Q)

E ) [E&(q, (d) —l]qc
16w 5 3 ~ q —((d /c )e& (q, (v)

(U = —I). (3.36)

Integrating in the complex plane as before, and
using the definition n, =cq, /~ =[e, (q, , &u)]'~', we
have

P„(z)= Q(n', —1)E,e"i*, (3.37)

1 g(d
"" ~~ei 0 dq

Ziii 7lc -w (id /c )eg (q)
(U = —1) (3.39a)

which is also of the form used in the method of
partial waves. Pekar's ABC is that P„(0')=0,
l.e.,

0 = g(n', . —I)E,. (3.38)

which is simply Eq. (3.29) if we do not allow for
a "background" local contribution to e, ; this ABC
has been derived for a model Frenkel" exciton,
again in the neglect of the tensorial character of

If there are onl.y two bulk normal modes
(polaritons), Eqs. (3.35) and (3.38) alone are
enough to solve the problem exactly. It would

appear that if there are more than two bulk modes
[as occurs, for example, if the dispersion in the
denominator of (3.24) includes quartic terms in

q] one would need another boundary condition at
the surface; this is not so because the one con-
dition U =- j.-P„=O is enough to solve the probl. em
exactly with the result that the E; 's are given
by (3.29) and (3.23c). This is because the polar-
izability (2.6) does contain more information than
just P„(0+)=0.

Similar results hold for the Fuchs-Kliewer
formalism, ' i.e. , one retrieves the method of
partial waves introduced by Sauter' by closing
the contour. The situation is complicated by the
continuum of electron-hole excitations which
manifests itself as a branch cut in the transverse
dielectric function for the free-electron gas.

To conclude this section we present the FK and
the RM resu1ts for the normal-incidence surface
impedance Z„=E„(0')/B,(0') in terms of which
the normal-incidence ref lectivity may easily be
calcu lated. '

Inasmuch as &u/cq; is the impedance of each bulk
polariton, we see that the boundary condition
P, (0') =0 (RM or U = —1) implies that the surface
impedance consists of the individual mode im-
pedances (weighted by their strengths) taken in
parallel and the boundary condition dP„(0')/d z
=0 (FK or U =+1) is equivalent to a series circuit
of bul. k polariton impedances.

IV. CALCULATION OF THE SURFACE IMPEDANCE
MATRIX FOR A NONHOMOGENEOUS PERFECT CRYSTAL:

THE LOCAL FIELD EFFECT

Even in a cubic crystal. , it is possible that in-
cident P-polarized light can induce a reflected
component having s polarization and vice versa,
except along symmetry directions.

We begin by considering Eq. (3.5}and we im-
mediately specialize, for sake of definiteness,
to the case of FK boundary conditions, U =+1

( '/")~(Q}.Q [Q.b(Q)]

= (-2iid/c) nxB' (Q, ). (4.3)

But here B(Q) is not so simply related to h(Q) as
Eq. (3.6). Instead we have

&(Q) =Z &(Q, Q+K) &(@+K),
K

where K is a bulk reciprocal lattice vector. We
will assume that in real space e(r, r'}=6(r —r')I

(4.4)

In this section we wish to consider the surface
impedance for a two-phase system consisting
of a vacuum and a crystal which is nonhomoge-
neous. As in previous sections we assume that
z = 0 still represents a sharp boundary between the
two and that this plane would be a mirror plane
of the bulk crystal. . We define the surface-im-
pedance matrix Z(Q, ) by

—n x [ n x g' (Q, )] = E (Q, ) ~ [n xB' (Q, )], (4.1)

i.e., Z is a 2&2 matrix relating the tangential
components of the surface electric field to the
tangential components of the surface magnetic
field. If the dielectric is assumed homogeneous
and isotropic, then E is automatically diagonal
in terms of P-polarized and s-polarized com-
ponents.

(Z, 0'}
(4.2}
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+4m''s(r, r'), where lie does not have any 5-func-
tion (or worse) singularities. Although transla-
tional symmetry in any direction with a component
normal to the surface is destroyed, there are
still bulk translation vectors parallel to the sur-
face giving rise to a surface reciprocal lattice
(taken to lie in the z =0 plane). (The surface plane
ean be represented by integral-valued Miller in-
dices. ) Because of this symmetry, the Q vectors
occurring in the Fourier analysis of the fiel.ds
are always of the form

Q =q, +G, +Q~ =q +q„+K,

@+K]=q +G +QN =q +q~+K)

and Eq. (4.3) becomes

(4.6a)

(4.6b)

g T(q, +q„+K, , q, +q„+K, ) ~ $(q,+q„+K, )
IC

= —nxB, [q, +(K', )], (4.7)

a Q„'~~n such that G, +Q„' is a bulk reciprocal lat-
tice vector. Therefore

Q =q, +G, +Q„, (4.5)

where Q„ is normal. to the surface, G, is any
surface reciprocal lattice vector, and q, is in
the first surface Brillouin zone. Without loss of
generality, one may assume that q, is an eigen-
value of the problem. For example, we may wish
to calculate the dispersion of surface plasmons
u(q, ) or the ref leetivity of non-normally incident
light

~ q, ~

= (&u/c) sin&; in either case only one
value of q, need be considered. It should be noted
that the tangential component of every bulk re-
ciprocal lattice vector is a surface reciprocal
lattice vector, and there are no others; corre-
sponding toevery surface reciprocal G, there is

where

T(q+K„q+K, ) = (ur'/c')e(q+K„q+K, )

—5K,K [Y(q+K, )' —(q+ K,)(q+ K, )] .

(4.8)

The tangential component of K, is a surface re-
ciprocal lattice vector G, = (K,'. ) = (I —nn)K, Note
that the bulk polaritons are defined by setting
the left-hand side of (4.7) equal to zero. "

Define T ' by

P T '(q+K„q+K, ) T(q+K„q+K, ) =1&K,K .
E

1) 2 2& 3 K1,K3'
2

so that

h(q, +q„+K, )= 2 T (q, +q&+K~, q~+qN+Ki}'[""B3('q +KI)]
Kg

(4.9)

and so [from Eq. (3.1d)]

8' (q, ~ KI ) =p M(q, + K,', q, + K', } n x B' (q, + K,'),
Kg

(4.10a)

where

M (q, + K,', q, +K, )
OO

2$(d A

dq„T '(q, + q, i +K, , q, +q„n+K, ).

(4.10b)

If different bulk reciprocal lattice vectors differ
only by a (reciprocal lattice vector) normal to
the surface, this complicates the bookkeeping; the
vector K,', the projection of K~ onto the surface,
may be the same for several bulk reciprocal lat-
tice vectors.

To recapitulate up to this point: T is defined
in terms of the dielectric response matrix for
the bulk e(q+K, , q+K, ) by Eq. (4.8) and M is
derived from T ' by integrating over the normal
component q„n [Eq. (4.10b)]. Equation (4.10a)
relates the Fourier components of the electric
field at the surface E(xy0') [see Eqs. (3.1) and

(3.2)] to those of the magnetic field B(xy0'). This
is as far as we can go mathematicaLLy because the
latter are as indeterminate as the former.

We need another condition from physics and it
is this: On the vacuum side of the interface there
are fields which vary as e' ~+ &

' ' al.ong the
surface; with the possible exception of the com-
ponent with K', = 0 the variation of these components
in a direction normal to the surface is always
outgoing whether it be evanescent or radiative
(the Borrmann effect)." That is, in the vacuum
the fields vary as

E„,(r) =g E, e'o& ' ', (4.11a)

where

Q, (KIx0) =q, +K,' —[~'/c' —(q, K('+)']'~'n

(4.11b}

The normal components in (4.11b) are chosen so
that (4.11a) is a solution to the source-free Max-
well's equations. Only the minus sign in front
of the radical is present. In the case of the re-
fleetivity of incident radiation, the two vectors
corresponding to K,' = 0, namely, q, + (~'/c'
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—q,')'~'n and q, —((d'/c' —q', )'~'n are both pres-
ent corresponding to the incident beam and the
reflected beam; in the case of a surface "plasmon"
(or exciton, etc. ) Eq. (4.11b) applies even for
K', =0 and al.l normal components of the Q, 's are
imaginary corresponding to exponentially damped
(evanescent) waves.

Within the restrictions previously stated, that
}is(r, r') has no strictly loca! electric or magnetic
contributions, all. components of the electric and
magnetic fields are continuous across the bound-
ary (FK formalism where the surface is a mirror
plane of the crystal). We, therefore, have the
important auxiliary condition

K,' t 0, ((d/c) B'(q, + Kf ) = Q, x 8' (q, + K(( ).

(4.12)

At this point it is convenient, though unneces-
sary, to consider the dispersion of surface ex-
citations and the ref 1,ectivity of externally incident
radiation separately. In the former case, al. l.

fields are evanescent —they damp out in a direc-
tion normal to the surface. This is true for the
term K,' =0 so that (4.12) holds for all components
of the fields. Substituting in (4.10)

g 11„-—'M(K, K,', q, K,'( K((, K)(d

xS'(q, +K))=0. (4.13)

The condition for a nontrivial solution to (4.13)
is that the determinant of the matrix in square
brackets must vanish. For each value of q, , this
implicitly determines (d(q, ), the dispersion re-
lation for surface excitations. As discussed pre-
viously, in the presence of spatial. dispersion,
one may expect that a surface excitation is never
infinitely long lived due to the possibility of mix-
ing with bulk modes. ""Equation (4.13) may,
however, prove us efu l., or even nec es sary, in
the discussion of the surface modes of tightly
bound molecular crystals.

In order to calculate the ref l.ectivity of externally
incident light, Eq. (4.12) holds for K,'o 0 but for
K', =0 there is an incoming and an outgoing (re-
flected) wave. (The incident light will almost
always correspond to Kf = 0.) We now have the
equation

1&;,, ——(1 —11, (M(i(, K,', i(, K', ) iix((, x)
Kg

x 8' (q, + Kt ) =M(q, + K,', q, ) ~ n x B' (q, ). (4.14)

By inverting the matrix on the left-hand side, one
ean solve for any component of the electric field

at the surface, $*(q, +K,'), in terms of the on&

component of the magnetic field at the surface,
B'(q, ). In particular, one ean solve for the sur-
face-impedance matrix Z(q, , (d) defined by (4.1):

—n x [n x 8' (q, (d)] = Z(q, , ru) [n xB' (q, , (d)] . (4.1')

Having determined the surface-impedance matrix,
one is now able to calculate the ref leetivity for
an arbitrary angle of incidence and arbitrary in-
cident polarization by matching the fields across
the boundary. The direction of q, is parallel to
the surface in the incident plane and ( q, (

= (~/
c) sin8. The incident and reflected wave vectors
are

q, =q. +(~'/c'-I q.l')" n,

qs =q. -(~'/c'-I q.l')"n,

(4.15a)

(4.15b)

so that the total electric field in the vacuum
@&0 is

z& 0, E =Eqe'~~ ' ' +E~ e'~& (4.16)

and similarly for B. Substituting in Eq. (4.1) we
have

ACKNOWLEDGMENTS

We are most grateful for extensive and illum-
inating discussions with R. Fuchs, K. I . Kliewer,
and A. J. Mansure.

—n x n x (E~ + E (() = (c /(d ) Z ~ n x (q~ x Ei +q ~ x E R),

(4.17)

~h~~e Z was determined from (4.14) and the def
inition (4.1). From (4.17) it is straightforward
to solve for the tangential components of the re-
flected amplitude ER in terms of those of the in-
cident E~; the normal component is determined
by the requirement that ER qR =0. The reason
for the unfortunate matrix formulation (4.1), (4.17)
is that, e.g. , an incident P-polarized wave acquires
a component of s polarization on reflection, and
vice versa, except along a symmetry axis where
group theory requires Z to be diagonal.

It is imoortant to note that a crucial step in
this derivation was the assumption that all com-
ponents of the electric field, not just the tan-
gential. , are continuous across z =0; otherwise
(4.12) is not true. The norma. l component of E
was shown in See. II to be continuous across
& =0 only if that surface represents a mirror
plane of the crystal; indeed it does not make sense
to speak of "specular" reflection in any other
case.
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