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Calculation of momentum matrix elements using the Green's-function method
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A method for calculating the interband momentum matrix elements in the Green's-function method has been

obtained, which is applicable to the t- and E-dependent potentials. This method is convenient in that it

requires only the knowledge of wave functions inside the muNn-tin spheres. Numerical results calculated from

this method are used to study the dependence of the matrix elements on the number of angular momentum

components included. It is found that t & 2 components are important for the matrix elements.

The Green's-function method' (GFM) of Kor-
ringa, ,

' Kohn and Rostoker' (KKR) has been shown

to be a very useful band scheme even if the simple
muffin-tin-potential approximation is used. How-

ever, the use of this method for the calculation of
the momentum matrix elements and related physi-
cal quantities has been relatively new. One reason
for this is that the diagonalization of the GFM ma-
trix only yields the non-normalized wave functions
inside the muffin-tin spheres. Extra work and
further approximations are needed to obtain the
wave functions in the interstitial regions. 4 In a
recent paper Janak et az.' pointed out a convenient
way to calculate the proper normalizations and
the momentum matrix elements p„. Their formu-
la for the p„ is based on the simple form of the
commutator between the p and the muffin-tin po-
tential V and has the form

4 „*(r)V VC (r) d 'r
p„=—zIz

r&rO I n

Since the ~V is only nonvanishing inside the muf-
fin-tin radius r„ the calculation only requires the
V'V and wave functions for x ~ r, . However, Eq.
(1) cannot be used to deal with potentials which
are E (energy) and I (angular momentum) depen-
dent, ' ' because the states involved have different
1 components and different energies. Thispaper
presents a different approach in which only the
wave functions are involved in the calculation.
Hence, the difficulties associated with the I- and
E-dependent potentials can be circumvented.

%e note that the effective crystal potential, as
it is to describe the electron excitations in a solid,
is expected to be E and I dependent due to the non-
local nature of the self-energy associated with the
one-particle Green's function in the many-body
theory. This fact was born out in a detailed para-
metrization study of the energy bands of Cu and

Ag by Chen and Segall. ' It was found that in order
to achieve accurate bands in agreement with the
empirical data each I component requires a smooth
but different E dependence in the potential correc-

tion to the ab initio form. Means for obtaining
wave functions from this GFM parametrization
scheme has also been implemented. ' In order to
apply the above results for the study of physical
properties such as the e, ((()) spectra, , one has to
have a method for calculating the momentum ma-
trix elements using these l- and E-dependent in-
teractions. The present paper addresses itself
to this problem.

The trial wave functions 4 „(r) in the KKR muf-
fin-tin form can be expanded in terms of real
spherical harmonics 'g „.:

4 „(r)= Q i'C,„R,(E„,r)'JJ„(r),

The muffin-tin potential in E(I. (3) is assumed to
be I and E dependent. The non-normalized coef-
ficients C, in E(I. (3) can be obtained from the
GFM matrix which determines the E„. To obtain
the properly normalized 4'„we use a procedure
suggested by Ham and Segall. 4 If small constant
muffin-tin potentials, say v and -v„are added
to every muffin-tin potential, then E„will have
small shifts, say 5' and 5, respectively. Since
v, is small, 5' and 5" can be obtained from the
perturbation series

and

In Eqs. (4) and (5) we have a.ssumed that 4 „ is

(5)

where the radial function R, satisfies the equation
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normalized to unity in a unit cell so the factor
1/N appears, where N being the number of unit
cells in the crystal. Equations (4) and (5) can be
used to obtain o„, the normalization inside the
muffin-tin radius r„correct to the second order
in v0:

(6)

Since v0 can be chosen reasonably small, o„can
be determined with reasonable accuracy. '

To obtain p„, first we decompose the integra-
tion into two parts:

p„= — 4 „*(r) p4 (r) d 'r + — 4 „*(r) p@ (r) d'r,
in out

where in and out indicate, respectively, the regions inside and outside the muffin-tin spheres. The first
term can be integrated directly. For the second term we note that p commutes with the Hamiltonian
(V=O), i.e.,

f
0 = 4„* r pH —Hp 4 r d'r =E 4„* r p4 r d'r-

out "out "out

2

@„*(r) p4 (r)d'r (6)

Letting P—= i'd%-C and making use of the Green's theorem, we can cast Eq. (8) into

O=E 4„* r p4 r d'r+ 4„*&/ —QVC„* ds+ Q&'4„* r d'rf2 52

out out

In the above, the surface integrations are over the surfaces of all the muffin-tin spheres in the crystal.
The periodic surface integrations can then be represented by that on the central muffin-tin surface so
finally the whole outside contribution takes the form

l r:( )r&. ( )&' = ' Qe. rout m n 0

824 84'„* 94
" 9rex gr gx

Now, the explicit expansion of 4 of Eq. (2) can be used to obtain the following explicit formula. for the p„
(in units of h/a„a, being the Bohr radius of the H atom):

tr

lj n Xo(

(10)

where

and

'Y0

m n dr ' dr dr . 00
' dr

dR dR
(12)

The indices with a prime in the above equations
are those for the state +

Except for the two radial integrations all the
quantities appearing in Eqs. (10) to (12) are cal-
culated in the process of determining the band
energies. We note that 5'](f»(x /r)'JJ], behaves
as f"J„'J'Jg,...dO, which is needed for the forma-
tion of the KKR matrix, and that J 'JJ,&r(S&J,.& /&x ) dQ
can be related to it by'"

r 'JJ ' dQ
BX

= (-('ll ... ,. ~ (1'+ 1)il, , , ]r )( ~
—"I(,. ~

dii.

(12)

Thus the computation of p „using Eqs. (10)-(12)
is straightforward. Since the GFM is valid for l-
and E-dependent potentials and since the potential



TABLE I. Normalizations o„and o~ jdefined in Eq. (6)], magnitudes of the interband momentum matr"ix elements p„~
(in 4/ao), and band energies E„and F- (in Ry relative to the constant muffin-tin potential) for some states at A and L
for the Cu Chodorow potential and for the Al Snow's self-consistent potential. The l„,„, „ indicates the maximum l value
used. The labels Eq. (1) and Eq. (10) indicate the equations used for computing the p„.

ling.' =2

Cu Chodorow potential Eq. (1) hq. (10) Eq. (1) i*q. (j.jj~

L I'
I.,'-L,

2

L3-L2
L I pg

X~& X4
X5—X4
X4—X(

0.158
0.289
0.399
0.516
0.156
0.411
0.717

0.516
0.516
0.516
0.854
0.717
0.717
1.104

0.911
0.976
0.996
0.656
0.894
0,998
0.718

0.656
0.656
0.656
0.879
0,718
0.718
0.798

0.140
0.006
0.385
0.673
0.178
0.071
0.790

0.134
0.007
0.384
0.659
0.175
0.071
0.776

0.158
0.288
0.399
0.512
0.156
0.411
0.709

0.512
0.512
0.512
0.853
0.709
0.709
1,103

0.917
0.982
0.997
0.665
0.896
0.998
0.740

0.665
0.665
0.665
0.880
0.740
0.740
0.802

0.214
0.081
0.302
0.857
0.201
0.350
0.977

0.220
0.104
0,384
0.843
0,203
0.350
0.963

Al Snow potential {Bef.11)

Lp —I g 0.260
X) X) 0 392

0.271
0.461

0.705
0.761

0.833
O. 765

2.186
1.247

2.165
1.240

0.259 0.271
0.389 0.4 6 I

0.712 0.834
0.778 0.767

0.571
O.VV3

0.562
Q.76V

does not enter in this procedure, the present re-
sults are applicable to the more general interac-
tions.

%e have compared the values of p„calculated
according to Eg. (10) with those obtained by Eq.
(1) as well as v„and o for the Chodorow Cu po-
tential and Snow's Al potential. " It should be noted
that neither of these potentials has any / and E de-
pendents. These numerical results along with the
band energies for some of the states atX and I.are
given in Table I. Two sets of numbers are presented:
one isfor l =2 and the other fork =4, wherel
is the maximum value for the / included in the
calculation. It can be seen that the two methods
give nearly the same values for the p„. Signif-
icant differences, however, are found between
the values calculated for the l =2 and l =4
with the differences for Al being particular larger.

All significant differences in the tabulated ma-
trix elements arise from the fact that while exact

4 and E are assumed in the derivation of Eqs.
(1) and (10) approximate wave functions and ener-
gies are used in the calculation. In general, the
errors in 4 are more significant than those in E
since by the variational principle the former is
accurate to the first order while the latter is cor-
rect to second order. (This is, of course, mani-
fested by the slower convergence of 4 than E.)
These errors are most serious for both of these
methods when the energy differences between the
states involved, E„-E, become very small as is
the case for Al, especially for the J-2-1-, transi-
tion. For then the numerators in Eqs. (1) and (9)
must become correspondingly small presumably
by cancellations of various terms.
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