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High-density expansion of the electron-gas correlation function
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A high-density expansion of the electron-gas correlation function g(r) is carried out in powers of the coupling
constant a r, . It is found that at zero interparticle separation, g(0) = 1/2 —a r, (7r' + 6ln2 —3)/5m
-(3ar, /2m)'ln(r, )(3 —m'/4)+ 0(r, ). For large interelectronic separation, the zero-order correction to g(r) is
obtained and the correction linear in r, is estimated.

I. INTRODUCTION

Many of the electron-electron interaction ef-
fects in simple metals may be reasonably investi-
gated using the interacting-electron-gas model.
A particularly simple function which reflects the
effects of these interactions is the two-particle
correlation function g(r) This .function, which
is normalized to one for large x, is proportional
to the probability of finding two electrons separated
by a distance x.

Approximate calculations of the electron-gas
response function can be used to obtain approxi-
mate correlation functions. ' ' The requirement
that the derived correlation function be reasonable
has turned out to be a sensitive test of the validity
of the response function. There are also a number
of direct calculations of g(r)."' Thus, it is im-
portant to know as many exact properties of the
correlation functions as possible. Some of these
exact properties are listed here;

(a) g(~) O;

where N is the number of electrons and 0 is the
volume of the system;

the density of the system is decreased. This re-
sult can be derived by noting that the electrostatic
interaction energy per particle is

e' g x —j.

and e, /N in units of 4we'/x, a, gives the left-
hand side of (d). If one uses dimensionless units
the Hamiltonian for the system can be written

Because 8 is a positive perturbation, the expecta-
tion value of I3 must not increase as x, increases,
and (8) =~,e. ,

The main purpose of this paper is to consider
properties of the correlation function which can
be obtained from a high-density perturbation ex-
pansion. These calculations yield results which
are exact to the lowest orders in r, . The results
for small x, a.re

(i) g(0) =-,' —(ny, /5w)(w'+ 6 ln2 —3)

—(3or, /2w)' In(r, )(3 ——,'w')+O(r 2),

where ao is the Bohr radius;

(I) I [g(x) —ljxd* —0,
Chs o

where x = r/r, a, and —,'w(x, a,)' = 0/N
Result (a) follows, simply because g(x) is a

probability, and (b) expresses the fact that a given
electron in a N-electron system is surrounded by
N —I other electrons. Result (c} can be obtained
by noting that for small interelectronic separa-
tions, the many-body problem becomes an ef-
fective two-body problem. ' Result (d) states the
electrostatic energy per electron decreases as

o =(4/9w)'i'

(ii) When q~r (q~ is the Fermi wave vector) is
la.rge compared to I/(x, )'~',

g(~) -I+ ~ +O(r, ).9 cos(2q~~)
4 gp-J'

(iii) When q„r is large compared to one, the
term linear in r, for g(r) could not be calculated
exactly, but it is shown that there is a long-range
oscillatory correction to the correlation function
proportional to x„which does not converge to
zero fa.ster than In(r}/x'.

A good numerical approximation to the linear
correction to the zero separation correlation
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function in result (i) has been previously obtained
by Geldart. ' The second result is not the standard
Hartree-Fock form for g(r), and this result shows
that a perturbation expansion can yield zero-order
corrections to the correlation function. The third
result shows that perturbation corrections to the
electron-gas correlation function can be relatively
long range.

II. THEORY

The basic result used here is a simple formula
[Eq. (6)] relating the structure factor S(q) to the
functional dependence of the ground-state energy
on the Fourier components of the Coulomb poten-
tial. From this result, the direct second-order
contribution to the structure factor is obtained
explicitly [Eq. (11)]. Using this second-order con-
tribution to S(q), it is possible to obtain the linear
dependence of g(0) on r, [Eq. (12)]. It is also pos-
sible to sum an infinite series of ring diagrams
for S(q) to obtain the r,'ln(r, ) contribution to g(0)
[Eq. (19)], and the zero-order correction to g(r)
for large r [Eq. (18)]. By examining the second-
order exchange contribution to the structure
factor, it is possible to estimate the lowest-
order perturbation correction to the correlation
function for large r.

The correlation function g(r) is essentially the
Fourier transform of the structure factor, ' S(q),

g(r) —1=
Z pe" '[S(q) —11.

The structure factor is in turn given by

"Feynman theorem, "' which states that if

and

H =Ho+yH

then

gE
(q) — —y, [ ( )]. (6)

This formula for the structure factor is particul-
arly useful when the energy is calculated as a per-
turbation series in the interaction terms, because
differentiation with respect to v(q) is relatively
easy.

The Hartree-Fock approximation to the energy
yields the Hartree-Fock approximation for the
structure factor

[S(q) —1]sv
= f(K)f(K+ q),

-1
(7)

where f(K) is the Fermi function for the noninter-
acting system. In terms of the variable y =q/2qr,

-1+-,'y ——,'y' for y &I,
0 for y~1

dE
dy

This result can be applied to obtain S(q) by treating
one particular term in the sum over q of v(q)[S(q)„
—1] as H„yielding

S(q) —1 = (S(q).,—1&,

with

(2)
The integral form of Eq. (1), written in terms of

1S

1
S(q), —1= — a», a» ~a», , ~a».... (3)

Kfr, K' ff'

The symbols a~K and aK denote the standard crea-
tion and annihilation operators, and ( ' ') denotes
a zero-temperature expectation value.

The Hamiltonian for this system is the sum of
kinetic and potential-energy terms. The potential
energy or interaction terms can be written in
terms of S(q)„, a.nd the total Hamiltonian is

H = g a~»,a», + —Pv(q)[S(q)„—1],
Kg Q

with

v(q) = 4»e'/q'Q.

(4)

Because S(q), appears in the Hamiltonian, it
is possible to obtain the structure factor if one
knows how the energy of the system depends on
v(q). The structure factor is obtained by using the

g(r) —1 =12» [S(y) —1]y' dy. (1')
0 2qrry

Using the Hartree-Fock approximation for S(q)
[Eq. (7')] yields

9 sin(qrr) —qrr cos(q»r) '
HF (q,r)'

The Hartree-Fock result yields g(0) =-,', and for
large r,

9 ) cos)2q r))
4 (q»r)' (qrr)'

As will be shown later, the lowest-order pertur-
bative correction to g(r) cancels the nonoscillatory
term in Eq. (9), when q»r is much greater than
1/~r, and r, «1.

The second-order perturbative corrections to the
the energy yield corresponding corrections to
S(q) and g(r). The energy correction consists of
both direct and exchange terms which are repre-
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sented by the lowest-order "ring diagram, " and
the corresponding exchange diagram. The result-
ing direct and exchange corrections to S(q) are
denoted as &S(q)D and &S(q)z. Although the direct

second-order energy is divergent, differentiation
with respect to v(q) yields a finite result for
&S(q)D, except in the limit when y vanishes. The
direct contribution to S(q) is

nS( )
2 g „( ) f(&}f(&')[1-f(& +q)][1 f(&-' q)]-

n2[X2+X" (Z-+q)'- (Z'- q)']/2&i ' (10)

The sum can be evaluated, and

QJ'S

40my~
58y —6y' —80y ln2 + (1 y)'(8+ Qy + 3y')ln(1 —y)

+ (1+1)'(() ()r +Sr')) for 1 &1,
ln 1+y

; —+y'+2 }n(y)y'(6-y') + b —1)'(1+3y+y')nr, 11 2, ln(y —1)
5' 2

(rr))'() —Br or')) for 1—1.ln +1
y

The exchange contribution to S(q) can be obtained
from E(1. (10}if U(q) is replaced by 6...v(q+ff
—K'). Unfortunately, 1 could not evaluate the
resulting sum. However, it is still possible to
obtain both the second-order direct and exchange
corrections to g(0) because the exchange contri-
bution is minus one half the direct contribution.
This can be seen because the summation over q
is unchanged if q is replaced by (E' —Z- q}. The
restriction expressed by 5, , & introduces the fac-
tor of 2. The resulting second-order correction
to g(0) is

&g(0), =6 &S(y)ny'dy =- '(n'+6 ln2 —3)
0 5m'

&S(y))) =- 1,' Q'(u) du,
3(nr, )
3.6m 4y

where

Q(u} = 4v(1 —u cot 'u).

(14)

2 j..367

A problem associated with nS(q)~ but not b,S(q)z
is that it diverges as 1/q for small q. An expan-
sion of E(1. (11)for small y yields

AS(y)~-- (2nr, /wy)(1 —ln2)+O(1).

This result can also be obtained using an alter-
native method for evaluating ring diagrams
which was used by Gell-Mann and Brueckner. "
The alternative expression for small q is

The integral over u in E(1. (14) yields E(1. (13).
The divergence in &S(q)~ for small q is eliminated
by summing the infinite set of ring diagrams. The
result is

16m'y 1+qnr, /4v'y'

g(r) —1 ——,+ O(r, ).9 cos(2qrr)
4 (qrr)' (18)

This is the second result pointed out in Sec. I."
It may at first seem strange that one could obtain
a perturbation correction to g(r), which is formal-
ly independent of the electron charge. In fact, the
charge enters this term because the asymptotic
limit is achieved only when qrr» 1/v r„assuming

(C ]..
Third- and higher-order perturbation correc-

tions to g(r) are formally divergent, as are the
corresponding energies. The divergent terms
must be summed to obtain finite results. The
correction to g(0) of order r,'ln(r, ) is obtained

The integrand appears to differ from the standard
Gell-Mann-Breuckner logarithm result, because
the differentiation with respect to v(q} introduces
a factor of n to the nth order diagram. Evaluating
E(1. (16) gives

&S(y)„-- -', y (y « ~r, }.
When this result is added to the Hartree-Pock re-
sult [E(1.('1')], the resulting correlation function
has only an oscillatory term for large r, i.e.,
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When Eqs. (12) and (19) are combined, the first
result of Sec. I is obtained.

The final new result mentioned in Sec. I is ob-
tained by returning to the second-order corrections
to S(q). The correction, &S(y)n of E(I. (7') could,
in principle, be Fourier transformed to yield a
corrections to g(r) for all r, which is proportional
to z, . Such a result would be incomplete because
&S(y)s is unknown. The result would also be in-
correct because of the unphysical divergence in
&S((y)D for small y. However, for large r, oscil-
latory behavior in g(r) is determined by the non-
analytic behavior of S(y) at y =1. Although S(y)D
and its derivative are continuous at y =1, its
second derivative is not, and

d'A S(y) D d'AS(y)D 3a.r, (20)

This yields a correction to g(r) proportional to
I/r' for large r, but the dominant corrections
are obtained from the second-order exchange
term.

The function AS(y)z has not been obtained, but
it is possible to qualitatively investigate its ana-
lytic structure near y =1. Because v(q+K- K')
appears in the formula for b,S(y)~, which is anal-
ogous to Eq. {10), &S(y)E is more singular than
AS(y)D. When y is slightly larger than one, the
behavior of AS(y)z is reflected in the integral

pa& p2

(x, +x, +q)'+(p, —p, )' ' (21)

where p, and p, are two-dimensional vectors
which represent the components of K and K'
perpendicular to q, p',. &x, , and c =y —1. An ap-

as an integral over y of a sum analogous to Eq.
(16), except the sum starts at n =3, instead of
v =2. Furthermore, one must also consider
diagrams in which the electrons associated with
one of the interactions are exchanged. These dia-
grams do not contribute to the lowest-order Gell-
Mann —Brueckner-type divergence, but because of
the differentiation with respect to v(q), one of the
interaction lines need not contribute to the diver-
gence. The exchange contribution to &g is --,'

the direct contribution. The total ring diagram
correction to g(r) is

&~(0)s =+ 9(o.r, )'
3277'

proximate solution of this integral yields

I(y) = (y —1) [In(y —1)]'+ (more smoothly

varying functions of y).

(22)

If f(y) is continued a,s smoothly a,s possible to
values of y less than one, and Fourier transformed,
the resulting function of q~x converges as rapidly
as possible to zero for large x. For large r, the
second-order terms in S(q) yield an oscillatory
correction to g(r), given by

g(r) —1 —c(r,[f,(q~r) cos(2qzr) +f,(q~r) sin(2qF r) ].
(23)

The approximate knowledge of AS(y)s implies

~f,(q~r)
~

& C 1n(q~r) l(qzr)', (24)

with the constant t" being roughly order of magni-
tude one.

III. DISCUSSION

A basic problem with the results obtained here
is that z, in real metals is greater than one. The
perturbation expansion of g(r) (or the energy) is
poorly convergent for metallic electron densities.
Thus, the results presented here are useful pri-
marily as checks of other theoretical results in
the small r, range. The r,'correction to g(0) could
be calculated only with considerable effort, since
several diagrams must be summed.

The correction to g(r) for large r which is pro-
portional to r, is relatively small, even at metallic
electron densities. Nonetheless, this result
suggests that higher-order perturbation terms
could produce even longer-range corrections to
the correlation function. In principle, the per-
turbation expansion could give a picture of the
transition from a gaslike to a liquidlike correla-
tion function.

There has recently been considerable interest
in the two-dimensional electron gas. In two di-
mensions, the same procedure could be followed
to obtain an expansion of g(r), n. Although numer-
ical results have not been obtained, we note that

g(0)» = —,
' —ar, + br2+ cr,'In(r, )+

With considerable effort, all the terms up to order
r3 In(x, ) could be obtained.

It would be desirable to construct a parametr-
ized g(r) which satisfies the rigorous conditions
(a)-(d) mentioned in Sec. I, as well as the power
series expansion in x, at low densities. Further
conditions on the properties of g(r) could be im-
posed by the requirement that the ground-state
energy derived from g(r) satisfies the exact high-
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density expansion. This is a difficult task, since
an examination of the power-series expansion of

g(r) shows that terms containing in(r, ) in the ener-
gy expansion are related both to a long-range
"tail" in g(r), and a logs, rithmic dependence oi

g(0) on r,
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