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The electronic transport in a strongly correlated electron system is studied at a low concentration c (c is unity
for a filled band), using a single s-band Hubbard model. Employing a T-matrix approximation for the
electron-electron interaction, we give a rigorous microscopic derivation of the ac Boltzmann transport
equation for intraband electron transitions in a nondegenerate limit. The result is applied to the calculation of
dc and ac conductivity in several situations: in two and three dimensions, the mobility is inversely
proportional to the electron concentration to the lowest order in c. In the simple cubic lattice the mobility is
larger roughly by a factor e ' than that of a hole in an otherwise half-filled band treated earlier by Brinkman
and Rice. The resistivity arises from the umklapp process of the electron-electron scattering. The ac
conductivity shows a Drude-Lorentz type behavior characteristic of metallic conduction. In one dimension
with nearest-neighbor hopping, the dc conductivity becomes infinite within a two-particle T-matrix
approximation. The eA'ect of many-particle scattering to this result is discussed. We also study how the above
infinity is avoided by introducing a small second-nearest-neighbor or interchain electron transfer, The dc transverse
conduction for the latter anisotropic case is also investigated. The interband optical absorption is also treated
for degenerate and nondegenerate systems. In making a two-particle T-matrix approximation, we find a result
obtained earlier by Kubo, using decoupling approximations.

I. INTRODUCTION

The electronic properties of solids with narrow
bands are characterized by strong Coulomb inter-
actions between electrons. Hubbard' and Kanamori'
approximated the electron-electron interaction by
an intrasite Coulomb repulsion U, using the %an-
nier representation. The Hubbard model [cf. (2.1)j
incorporates the above form of the Coulomb re-
pulsion as mell as the kinetic energy, and contains
the basic features of the problem where the elec-
tronic correlation plays an important role.

Recently Brinkman and Rice (BR),' and Ohata
and Kubo, 4 studied the mobility of an extra electron
or a hole in an otherwise half-filled, nearest-
neighbor hopping Hubbard band with U= ~. Eswar-
an and Kimball' generalized the moment method
of Ohata and Kubo' to an arbitrary electron and

impurity concentrations. The interband optical
absorption has been investigated by Kubo' for an
arbitrary electron density, using the decoupling
approximation of Hubbard. " The basic approxi-
mations used in these works are of nonperturba-
tive nature. Path-counting methods are employed
in the above cited dc calculations, ' ' so that an
extension of these theories beyond the nearest-
neighbor electron transfer and U = ~ limit becomes
very complicated. It is also very difficult to
apply the retracing-path-summation method of
BR' to an electron density other than the one
treated by them.

In this paper we use a different approach. One
asks whether one can develop a systematic per-
turbation theory of ac and dc electron transport of

the Hubbard model. The basic difficulty of such
a problem in a strong-coupling narrow-band Hub-
bard model lies in the fact that there is no suitable
perturbation parameter. If one tries to use the
kinetic energy as a perturbation in the site repre-
sentation, then the standard perturbation method
cannot be applied, because Nick's theorem is not
available. At low electron concentration t.- limit,
however, one may treat the electronic repulsion
as a "perturbation, " namely, as a scattering po-
tential. In this limit it is sufficient to consider
only the two-particle scattering, which can be
solved exactly. As is well known, the effect of
three-particle scattering is of order c smaller
(c is unity for a filled band). The strength of the
effective two-particle interaction becomes of
order of the kinetic energy, namely, the band-
width g, when U»3, because the electrons avoid
each other at the cost of the kinetic energy. '

In the present approach the resistivity, namely,
the momentum dissipation, occurs through the
electron-electron umklapp scattering. The kinetic
energy is included in the zeroth order, so that
a general band structure can be treated readily.
Furthermore, if one wishes, one can include other
types of scattering such as electron-phonon,
electron-impurity interactions. However, the
present paper will be restricted to a pure Hubbard
model. The result of the present treatment is
valid at a low electron concentration, so that it is
complementary to that of BR.'

For the main part of the paper, namely, up to
Sec, VI, we treat dc and intraband transitions.
The two-particle T -matrix approximation of
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Kana, mori' is employed. We are interested in a
strongly correlated system, where the gap be-
tween the two subbands is large compared with

k~p, so that only the lower band is occupied. The
present theory is also valid in the weakly interact-
ing region (U«B). The external frequency v is
assumed to be small (i.e. , 5 v«B), allowing only
the intraband transitions. For the above system,
we give a rigorous microscopic derivation of the
Boltzmann equation, starting from Kubo's formal-
isrn. To establish the Boltzmann equation, one
has to assume that the system is at high ternpera-
ture (i.e., k T»cz, cz is the Fermi energy),
namely, that the system is nondegenerate. This
leads to a smallness parameter X, which is given
by the larger of the ratios xy '. x=kv, F-CB
[cf. (3.16b)], and y=B, k T. In the dc limit, this
corresponds to the requirement that the mean
free path of the electron is larger than the de
Broglie wavelength, a well-known criterion for
the validity of the Boltzmann equation. The pres-
ent analysis becomes exact in the dc limit at zero
concentration.

The result is applied to the calculation of dc
conductivity and intraband absorption in several
situations; In two and three dimensions, the
mobility is inversely proportional to the electronic
concentration to the lowest order in c. This
reflects simply the fact that the electron-electron
unklapp mean free path is inversely proportional
to the electron concentration. The ac conductivity
shows a Drude-Lorentz-type behavior character-
istic of metallic conduction. In one dimension
with nearest-neighbor electron transfer only,
BR' and Beni et al. ' found for a single hole or
an extra electron in an otherwise half-filled band
that the conductivity is infinite in the limit U = ~.
In the present treatment, we find that the effective
two-particle umklapp scattering strength vanishes
for an arbitrary value of U, leading to an infinite
conductivity. The physical picture of this one-di-
mensional anomaly is discussed. It is also shown
that the two-particle approximation is insufficient
in this case, and the effect of many-particle inter-
actions is discussed. We study how the one-di-
mensional anomaly is avoided by introducing an
interchain or a second-nearest-neighbor e1eetron
transfer. We also calculate the dc transverse
conductivity of an anisotropic system.

The lnterband optical absorption (Rv= U) ls also
studied for a low-density system. Using a T-
matrix approximation, we find a result obtained
by Kubo' earlier by using decoupling approxima-
tions.

Up to Sec. VI we treat the intraband transition
for a high-temperature nondegenerate system and
assume A p«B. In Sec. II we establish the basic

preliminaries. The conductivity is expressed in
terms of a correlation function. In Sec. III we
discuss the one-particle Green's function, the
self-energy part, and the T-matrix approximation.
In Sec. IV the correlation function is expressed
in terms of a vertex function. An integral equa-
tion (i.e. , vertex equation) for the vertex function
is given. In Sec. V the vertex equation is evalu-
ated and the Boltzmann equation is obtained. The
basic results of Secs. II-V are summarized in
See. VI, where we solve the Boltzmann equation
in the dc limit for several situations, using a
variational method. The ac conductivity is also
obtained, using a perturbation method. The inter-
band optical absorption is treated in Sec. VII.
Finally, in Sec. VIII a discussion of the result is
given.

II. FORMALISM

In this section we set up the basic formalism.
The Hubbard Hamiltonian has the form

(2.1}

II= p e,n„+ — g n, (k, + k„k,+ k,)
U

0 o kg Ap k3 A4

ko

c~ )cp )cp )cp ) )

(2.2)

where n, = c„c„„andX is the total number of
sites The de.struction operator c„, is given by

c„,=N "' P exp(-iT, %)c,. . (2.3}

and the band energy is given by

e, = —Q exp(i r. k) t(r. ) .

Finally, a(k, + k„k,+ k, ) in the second term of
(2.2) denotes the Kronecker delta and is nonvanish-
ing only when k, +k, =k, +k, + g (g is a reciprocal-
lattice vector}.

The conductivity is given by'

H= — t;,. CtoCjo+ U njttnj),
ija J

where c~ and c,. denote, respectively, the crea-
tion and destruction operators for an electron in
a Wannier state localized at site i with spin o,
and n, is the number . operator (i.e., n, =ct c,.g. .

The first term represents the tunneling of elec-
trons from site j to i with a transfer integral t, ,
which depends only on their vector separation
[i.e. , t, , =t(r, -r,.)j. The second term represents
the repulsive Coulomb interaction between two
electrons of opposite spins on the same site. Ob-
vious vector notations will be suppressed fre-
quently.

One transforms (2.1) in a band representation to
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8

V„,(~„)= e "S„(u)du (P '=-),T).
0

(2.6)

The boson "frequency" is given by (d„=2mj~P '
(r is an integer), and

5:„,(u) = (rv„(u)u, ) . (2.7)

Here T is the time-ordering operator and v, (u) is in

the Heisenberg representation [i.e. , g„(u)
= e""u„e ""]. The angular bracket denotes the
grand canonical thermodynamic average. The ex-
pression for the velocity operator in band repre-

o„,(v) = (e'/in) [0„,(n&+ iO) —0„,(iO)] y, , (2.5)

where e, Q, i0 are, respectively, the charge
of an electron, volume of the crystal, and a
positive imaginary infinitesimaL 5„(8v+'i0) is
the analytic continuation (cu„-gv+ i0) of the veloc-
ity-velocity corr ".ation function

sentation is

x . x'U„= ~ UgSggj VP = ~
ka Bk

(2.5)

III. T-MATRIX AND SELF-ENERGY PART

As is mentioned in the Introduction, it is suffi-
cient to consider only two-particle scattering at
a low electron concentration. %hen the Coulomb
repulsion is very strong, one has to go beyond the
first Born approximation by incorporating the
modification of the wave functions to all orders in
U. As a result, one obtains a smaller effective
repulsion due to the fact that electrons avoid each
other, as the correlation becomes large. The
above approximation is known as a two-particle
T -matrix approximation.

The T matrix K is shown in Fig. 1(a) as the
shaded area and is given by" "

K(p „p,; p„p,) = N 'U —p N 'U g S(p, —q) S(p, + q)K( p, —q, p, + q; p„p,), (3.1)

Pi+ P2 P3+ Pc (3 2)

The wave vectors are conserved to within a re-
ciprocal-lattice vector. The momentum-indepen-
dent electron repulsion U is represented by dotted
lines in Fig. 1. One then obtains from (3.1)

where $ is a dressed temperature Green's func-
tion (represented by solid lines) defined in (3.5)
below, and p&, q are four momenta given by p&
= (k;, (, .), q= (q, co ). Here k, , q are wave vectors
and ~, g, are, respectively, boson "frequency"
and fermion "frequency, " i.e. , g, = p '(2l + l)wi+ p.
m, l are integers and p, is the chemical potential.
It is understood in (3.1) that

given for p = (k, r„g) by

S(P)=[&, -~, -G,(f,)] '. (3.5)

We shall frequently write S(p) = S,(g, ). This kind
of notation will be used throughout. The self-
energy part G,(f, ) is shown in Fig. 2:

N, = g (Tc~t,(+0)c„)

G(P) -=a„(C,) =P-'P K(P„P;P„P)S'(P,). (3.5)
~1

The total number of electrons N, is related to
the full Green's function by

K(p„f,;p„p.)=N 'U[1 I.(p, -p, )] ', (3.3) = 2p ' g S„(g,) exp(+Ox g, ) . (3.7)

I.(P, +P,)=P 'N 'UP S'(P, q)&(p. +q). -
(3 4)

The ) summation can be converted9'o into an in-
tegration in the complex ( plane by using the
analytical properties of S,:

Here the full propagators are replaced by the bare
propagators S' in accordance with the two-parti-
cle approximation. The full Green's function is

FIG. 1. Tvv'o equivalent definitions of T matrix FIG. 2. Self-energy part.
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p(g) =- Im g S,(g - io),
1

(3.8)

Terms proportional to the Fermi function in (3.12)
are unimportant for the intraband transitions.
However, they should be maintained for the inter-
band transitions treated in Sec. VII. To simplify
the notation, we introduce

&.=2 Qfa, fs-=f(&~). {3.9)

At high temperature, namely, when —Pe„ is not
large and at low concentration (c =A, /2N «—I ) one
obtains

where f(c) is the Fermi function, and Im is the
imaginary part of what follows. The factor 2 in-
dicates the spin degeneracy. We assume a ran-
dom spin configuration up to Sec. VII. An exten-
sion to an arbitrary spin configuration is trivial.
The quantity p(g) is to be identified with the single-
particle density of states It. is shown in (3.16)
that the self-energy part is of order c. Therefore,
the full Green's function S~ in (3.8) can be replaced
by a free Green's function 8„' in the limit c«1,
yielding

&(pi P. P. P~) =&i 2~3(4, +&i, ) . (3.13)

{3.14)Ga(&i) = Q fi, & o,o(&a, +&i)
kl

where terms of order c' are dropped. The sub-
script "0" in g„„stands for k. Defining

Here the subscripts 1234 stand for the momenta
k„k„k„and 0, . The function K»„(z) has a cut
along a segment of the Im(z) = 0 axis near the low-
er band. For a large value of U (i.e., U»B), it
has another cut near the upper band (i.e., z = U).
This cut corresponds to the excitations in the

upper Hubbard band, and will not be considered
for the present analysis, until we come to Sec. VII.

The self-energy part of (3.6) can also be com-
puted in a straightforward manner, yielding

f, = exp[- p{e,- p)] - c« I . (3.10a) G, (C —i 0) = M, (g) + i I', (C), (3.15)

It is clear that
we observe the following properties of the self-
energy part:

f (&) c if —Pf 1.~ (3.10b)

We shall also frequently use a similar relation
for the bos on occupation function:

r, (f) =0 if 1&1&-,'B,
M„(f), I', (g) are of order cB .

(3.16a)

(3.16b)

~(~ —2~) =(e'«-'» -1)-'=8-8«-"~- c' if —Pq -1.

The summation on boson frequency in (3.4) ean
also be converted into an integration in the com-
plex & plane, yielding

1(p, +P, ) =-& 'U g [1 -f(~.. .) -f(~~...)1

&&So,„(r(,+Kg, —ea, ,) .

(3.12)

These properties are used frequently in Sec. V.

IV. VERTEX EQUATION AND CORRELATION FUNCTION

In this section we evaluate the correlation func-
tion. For this purpose, a vertex equation is
derived using the T-matrix approximation. The
vertex equation is shown in Fig. 3. The external
field vertex parts are represented by black dots
with wiggly lines. ' " The latter indicates the ex-
ternal field lines. The exter nal-field vertex parts
(designated as A) are given by an integral equa-
tion:

A.(p, P )= {'P &(P—„P„P„PV(P,)~(P, )S(P,)s(P, )&(P„P.;P„P )A,(p„p, )
P1P2P3

—P
' g &(P., P„P., P)s{P,)S(P.)&(p, )~(P, )&(P., P;P, ,p, )A .(P„P. )

P&P2P

'g ff(P„-P.;P...P)'(P. )~(P,.)A .(P„P,.) ",*, (4.1)
P3

where P
—= (k, g, +td„), etc. , and o indicates the spin, which will be suppressed hereafter. The vertex func-

tion A(p, p ), has cuts along the axes Im(g, ) = 0, Im(g, + ~„)= 0 in the complex r„, plane.
It is convenient to define a quantity

4(p, p. ) = »(p, p.)[,+&(p) -'G(p. )]-'.



S(P)S(P.)Jt(P, P.) =-Iy '[S-(p)-S(P.)]4(P,P.).
One rewrites (4.1) as

( ~)-'[, G(P)-G(P. )]4(P,P.)

(4.3)

j.
=Ui —,. 6p. &(P P P'p)S(p. )S(p,)&(p„p;P„P, )@(P,P, )[S(P,)-S(P, )]

PlP2P3

ep. P PP')S(P )S(P )&(P P P»'p )@(P .P )[S(p )-S(P )]
Pl P2P3

+,.„& If(P„P.;P...P)~(P., P,.)[S(P,) S(P.-.)] . (4 4)

In the Appendix we derive a useful relationship:

G(P) G(P.)-=-(i' g &(P„p;P„p)S(p.)S(P,)&(p„p.;P., p,.)[S(p, ) -S(p,.)],
~1.~2~S

which, substituted into (4.4), yields

(ih)-'~„4(P, P )-I),"

(4.5)

ff(P. , P„P.,P)S(p, )S(p,)ff(P., P.;P., p,.)[4(P„P,.) —C(p, p. )][S(P,) -S(p,.)]
1

P j P2Pg

If(P„P„P., P)S(p, )S(P.)If(P., P. ; P...P, ) C (P„p,.)[S(P,) -S(P,.)1
j.

&i&2&3

(4.6)

6„(~„)=-P-'g I)"„S(P)S(P )i~(P, P ) =:.
&& g I,*[S(P)-S(P )]@(P,P ).

p

Defining

ff(P. ,P.;P...P) ~(P., P,.)[S(P,) -S(p,.) l .1
shj3

The above equation will lead to the Boltzmann transport equation. The quantity 4(p, p ) becomes the dis-
tr1butlon function, when RIIRlyticRlly continued io ills I'8R1 Rxis. Tile tel'III proportional to 4)(p, p ) oil tile
right-hand side of (4.6) arises from the self-energy parts through (4.5) and will eventually constitute the
scattering-out rate.

The correlation function is given by

4)~(&) = C «(g —i 0, g II I+)+ i 0),

4),'(f ) = C,(g + i 0, g + f(, v + i 0),
one evaluates (4.7) sllglltly above the 18Rl Rxls (1.8., (0„=h v+ 'lO):

(4.8a)

(4.8b)

-ftt)gb)&l(t)ll(t;& ) ~ (f(t+& ) f(t)l@,tt)t. tt , )-)), „

8,(g; fI ()) =S,(g —iO) -S,(g+ R v+ i0), 8,'(g; )Iv) = S,(g+ i0) —S,(g+ h v + i0) .

' MM '
I/&Xyg

' kg

FIG. 3. Vertex equa, tion.

It is now clear that to evaluate the correlation
function, one has to solve for 4),(g), 4~(g) from
the integral equation (4.6). To this end we evalu-
ate (4.6) using x (defined in the Introduction) as a
perturbation parameter. This is an extremely
complicated and lengthy task, so that we give only



2340 S. K. LYO 14

a brief description of the important steps and
basic approximations, omitting the details. The
computation is carried out in Sec. V. The basic
results are summarized in (6.1}-(6.4) of Sec. VI.

V. EVALUATION OF THE CORRELATION

FUNCTION: SOLTZMANN EQUATION

In this section we evaluate the vertex equation

(4.6), and the correlation function (4.9), using a
standard technique such as given in Refs. 9-&1.
A fundamental approximation is given by"

S,(g+h v+ i0}=S,'(j + i0)+ [Kv —G„(g+ hv+ i0)]

x S,"(g ~ i0)+O(Z'), {5.1)

where prime means a first derivative with respect
to the argument, and can roughly be replaced by
B ' or P for an order-of-magnitude estimate.
Therefore the second term is of order A. . The
perturbation parameter A. is defined in the Intro-
duction. The expression in (5.1) is correct, only
when this function is multiplied by a smoothly
varying function, which is then integrated in g.

Using (3.10)-(3.16), (4.8), and (5.1), one per-
forms the g, . summations on the right-hand side
of (4.6). The result is given by

—i vC„'(&) = v,*[1+B,'(g)]+O(z'),

- iv4. (&}=v~+ —„g (f, +f, -I) [f,+fi(C+~, -2I )][4,(C)+4, -~„-4,]2'
klk2k3

&& IK„„(g+ a, —i0)l'5(g+ ~, —e, —~, ) +O(x), (5.2b)

where c; = e„,,f; =f (e;), 4; =4 ~ (e;), and 5(x) is a 5
function. In (5.2a) B~ (g) are certain functions
which are of order A. and have the following prop-
erty:

B;(g) -B;(g)=o(~') if i&I&-.'B.
Terms proportional to f„f„and N(g+e, —2p, ) in

(5.2b) are of lower order, and may be dropped.
However, they are maintained for later conve-
nience. In deriving (5.2), use is made, for the
last term on the right-hand side of (4.6), of a
relationship

K„»(&+e, —i0) —K,o»(g+e, +i0)

= —P 2~i(f, +f, -1)IK,».(g+~, —io)I'
k1k2

&& 5(f + E~ —E~ —E~) + O(A) .

The above equation followed directly from (3.6)
a.nd (4.5). The structural similarity between (4.6)
and (5.2) is now clear.

Results obtained so far enable us to evaluate the
correlation function given in (4.9). After using
(5.1)-(5.3), and (3.10) in (4.9), one obtains

p, (h v+ i0) —6,(0) = —Z fa@avf+O ~}
S P k

(5.4)

where 4k=4k(ek). The result in (5.4} arises sole-
ly from the first term on the right-hand side of
(4.9). Other terms in (4.9) give lower-order con-
tributions. Finally using an identity (f~''=1-f },

f" (x)f(x+S) =&(y)[f(x) -f(x+) )],

one rewrites (5.2b) as

—i v4I f~ksT=off kaT +
~ Q fpf~f, f2 (@y+@'3—4'g —@2) IK2&3o(&a+&g —i0)I 5(&a+&p —

&g
—&2) ~ (5 5)

Equations (5.4} and (5.5} are the central results
of this section. The Boltzmann equation (5.5) has
been derived for a nondegenerate system, where
f, «1. It is not clear whether this equation will
remain valid at low temperature and low density,
where the system is degenerate.

VI. BOLTZMANN EQUATION AND THE CONDUCTIVITY

In Sec. V we established the Boltzmann equation:

—iv4gfy=vyfI(+ Q (4y+4y —4y —4y )
~B~ kkk123 1 2 3

xp,'„*"+O(~2), (6.1)
1
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with the transition rate given by K»»(e, + e, —i 0) = UN '4(k+k„k, + k, )

P'~'2 =(2«/k) f f f,"f,"[ff'„„(~„+e,—i0)l'

x 5(6, +E, —6, —6, ) . (6.2)
where

+ [1+1a+a, (&a+&a, )~

cx ——
f) ~ fa @a ~&+0(~) ~ (6.3)

where the factor 2 arises from the spin degener-
acy. The above results are valid to lowest order
in the smallness parameters c defined in the In-
troduction. The Fermi function f» becomes a
Maxwell-Boltzmann factor of order c in the pres-
ent nondegenerate limit. The T matrix is given,
inserting the momentum conservation factor ex-
plicitly, by

Here f ' = 1 —f(e, ) = 1, e, = e, , and the quantity
contains the crystal momentum-conservation

factor &(k+k„k, +k, ). The perturbation parame-
ter A. is defined in the Introduction. The conduc-
tivity is given from (2.5) and (5.45) by

b(k+k„ks+k6)
—$0

6

As is mentioned in the Introduction, the correla-
tion effect reduces the effective Coulomb repul-
sion to U,« B-for large U (i.e., U»Et) except
for a one-dimensional anomaly to be discussed
later.

A. dc conductivity

In the following we study the de conductivity of
the system. The resistivity is given, using a
variational principle, "by the minimum of the
following tr ial resistivity:

-2
"5(e~+ex —~2 —e3) 2 Q 'Ua@lfa (6.6)

o'(0) =p '= ne'T, „,!m".
Here n is the electron density (i.e., n =N, /0
= 2'/A), m* is the effective mass:

(6.'l)

where the factor 2 in front of the momentum sum-
mations accounts for the spin degeneracy. The
solution of 'the Boltzmann equation (6.1) gives the
minimum value for p in (6.6).

Usually one takes 4„=v"„or k„as a trial function
when the field is in the x direction. For the form-
er choice, one may rewrite (6.6) in a more illumi-
nating fashion by making use of the symmetry prop-
erty of P»'. ' with respect to the interchange of in-

'
dices 0, k, —k„4„and assuming a cubic symme-
try of the crystal for convenience:

'4 a, =& Q (fafi)

(v~+vi) '(v2+vs)
(vs+vs)

The velocity transfer factor

1 —[(v, +v, }~ (v, + v, )]/(v, +v, )'

measures the degree of the momentum transfer
during each collision and is a characteristic of
electronic transport relaxation. At high tempera-
ture (PB«1}one obtains for a nearest-neighbor
tight-binding cubic lattice

(6.8b)

and 7,« is the effective relaxation rate:

PRE 2 -1
T ~ fafi(vs+vs) T~a~~,

8
(6.9)

where the transport relaxation rate is given by

where a, I; are the lattice constant, and the trans-
fer integral.

/. Nobility in three dimension

In two or three dimensions, the effective Cou-
lomb repulsion becomes approximately U', fq
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=U'[1+(UB-'y)'] ', which reduces to U,« =y 'B
when U»B (y is of order unity). The physical
meaning of this is discussed already. According
to (6.9) the relaxation time is inversely propor-
tional to the electron density, as is expected and

the conductivity given in (6.7) is finite at zero
concentration. In a nearest-neighbor simple-
cubic tight-binding band, one obtains for z =6,

a= 3 A, and PB«1:
p, =ex,„„/m* =(ea'/5)-8«ptc 'I '

= (0.2tizt)c '1 ' (cm'/V sec)
and

r,,„,=(«5/6t)c 'I ',
where

(6.11)

(6.12)

d 8," "d~g . . „.„1', [sin8"(sin6*+sin6; —sin8,* —sin8,*))
1

xc g ( oss' co Sp, — oso," —coos, )) c(S ~ s, —lf, —s, —S j.
~ =x, Y, &

(6.13)

Here E(8, 8, ) = (2t/U)~ L~,„,(e, + e, )~; 6 =ka, etc.
The quantity in the parentheses of (6.11) corre-
sponds to the mobility of a single hole obtained

by BR.' Although it is very difficult to evaluate
the dimensionless parameter I, it is not likely
to be too much different from order unity. In
fact, an approximate computer estimate gives
I = 0.6.

2. iVearest-neighbor-hopping Hubbard chain

The numerical evaluation of (6.6) is comparative-
ly simple and interesting for a nearest-neighbor-
hopping Hubbard chain. Taking C„=k, one finds
that only the umklapp process (k+k, =k, +k, +g,
g =+ 2«/a, +4«/a) contributes to the resistivity.
Using c„=—2t coska, one rewrites the energy con-
servation factor of (6.6) as

5(eg + E~ —E2 —e3)

= 5[4t cos —,'(k+k, ) a sin-;(k —k, ) a sin-,'(k, —k, )a],
(6.14)

where momentum conservation and trigonometric
addition theorems have been used repeatedly. It
is sufficient to consider to =2«/a, 4«/a. The 5 func-
tion of (6.14) is nonzero when its argument vanish-
es. Let us consider the zeros of the factor
sin&(k -A, )a; for 0 —,|,, =0, k, and 4, are restricted
to k, = «/a, and k, = —«/a, leading to a contribution
of order 1/N-0. For k —k, =2«/a, one has k=«/a,
and k, = —n/a so that this contribution vanishes
similarly as 1/iV. In the same way the zeros of
the second sine factor of (6.14) are unimportant.
The cosine factor of (6.14) vanishes when k+k,
= «/a, and this root gives a meaningful contribu-

tion to the U process. This corresponds to the
situatiun where two electrons jump across the
Brillouin zone in the same direction. However,
it should be noted that when k+k, = «/a, the de-
nominator of (6.4) diverges and NK»«vanishes.
Namely, the effective Coulomb repulsion vanishes,
and the resistivity becomes zero. Physically, the
two particles move with the same group velocities
when k+k, =s «/a, and they do not interact in our
local interaction model. However, one has to
make a self-energy correction (of order c) to
L„,„(z) in (6.5). Namely, a full propagator should
be used on the right-hand side of (3.12). At the
same time various three-particle scattering cor-
rections to the diagrams in Fig. 3 should be made.
Noting from (3.14) that U is always larger than the
self-energy part, one finds for umklapp process

~K»„(e~+e, —t0)~ N '&(k+k„k, +k, )cBf, ,

where (=1 for a strong correlation (U»B) and

$=(U/B)' for a weak correlation (U«B) Insert. -
ing the above equation into (6.6), the resistivity
becomes of order c'. However, as can be seen
from (6.3), the present formula for the resistivity
is valid only to the zeroth order in c, the three-
particle and many-particle interactions contribut-
ing to higher-order terms. Therefore we can only
conclude that the resistivity is of order c or high-
er for an arbitrary value of U. It should be men-
tioned at this point that, when U/B=~, the elec-
trons are generally believed to behave as spinless
Fermions' for the present nearest-neighbor-hop-
ping Hubbard chain, giving rise to an infinite dc
conductivity. This would mean in our case that
all the higher-order terms (in c) in the resistivity
cancel out exactly for U/B = ~.
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3. Effect of second-nearest-neighbor or interehain
electron transfer to nearest-neighbor-hopping Hubbard chain

f-a, a, (&~ + ~, )

—f (l sin&. l+ I sin&l)
4[ e cos28, (cos p cos-,'g —cos p, ) sin&, sin&I

At this point we assume that U»2)e[. Using the

above result in (6.6), one obtains to the lowest
order in e and in high-temperature limit (i.e.,
pjg&( 1),

p, = (ea'/ft, ) P2t/~'cf, ,

where

I, =64 I cos Q —cos /OP sin Qo sin
(sing+ sin&, )'

=0.47.

If the strength of the second-nearest-neighbor
electron transfer (t, ) or the interchain transfer
(t, ) is sufficiently large such that t„ t, » cf$„ then
the self-energy correction is unimportant and the
two-particle scattering approximation is valid. In
the following we consider first the effect of t„and
write e, = —cosk —e cos2k (2t= 1, a=1, e =t,/f). We
assume here that c «[e

~
« I, and take 4, = v, . It

can readily be shown that only the U process con-
tributes to the resistivity. Introducing a coordi-
nate transformation 8, = -, (k+ k, ), 8 = 2(k, + k, ), P,
=-, (k —k, ), and Q = 2(k, —k, ), where 8, = 8+ —,'g and

g is a reciprocal-lattice vector, and using energy
conservation, one obtains

where a, is the interehain distance.
It is to be mentioned that (6.1) is valid for an

arbitrary value of t~, and (6.15) for t~ «t. We
give, now, a physical interpretation of (6.15}in
two regimes, namely„ t»t » I', and t «I'. For
the former case, one rewrites (6.15) as p, ,
= e f~/(m, *v, ), where m f' ' = -,' Pv2~ = ,' P(-2t, a,/8 )'.
The transverse mean free path [l~ = mt~a„/(8ct) )

is much larger than the interchain distance, and
(6.15}can be interpreted in terms of band con-
duction. For the latter situation, however, /~

«a„and the interehain hopping time is much
larger than the electron lifetime (i.e., kf~'» T).
Therefore each hopping is completely incoherent,
and the transverse motion becomes diffusive. The
mobility in (6.15) is proportional to the interchain
hopping rate: p, ~ (8 't, r)'/r Her. e the numera-
tor is the hopping probability during the electron
lifetime 7. Therefore one moves from a band con-
ducti. on regime into a diffusive conduction regime,
as one decreases t~. A similar situation exists
in small polaron band conduction. "

B. ac conductivity

Three diInension

Ne discuss the linear response of the system to
a high-frequency external field (vv,«» 1}. Here
it is proper to treat the collision terms as a per-
turbation. The distribution function 4, is then
given from (6.1) by

x

4y = . —,p ~ (vy+vg —v2 —v~)P 2 3,P ~ x x x x AA,

fuv Z"2 3

Therefore the mobility is larger than that in a
simple cubic lattice by a factor 2/e'. The inter-
ehain transfer has a similar effect and the mobil-
ity has the form V, ~ (eel/R)(P2t/c~c) where e~
= I, /f

4. Transverse mobility in an anisotropie system

which, substituted in (6.8), yields

o,(v) =o&"+o,"',
where

o„"'= ne'/im*v-

(6.16)

(6.17)

(6.18)

v, , = (ea', /8 ) ~pt~2/8ct, (6.15)

One now considers the transverse conduction in
an anisotropic system, where the transverse (i.e.,
the interchain) transfer integral t is much small-
er than the nearest-neighbor intrachain transfer t.
In this limit, the momentum summations on the
right-band side of (6.6) in the transverse direction
are decoupled from those in the longitudinal direc-
tion. As a result, the transverse resistivity be-
comes proportional to the imaginary part of the
self-energy part (I"-ct) and inversely proportion-
al to the electron lifetime (r = 8/I'). Using 4„=v„
in (6.6), and assuming U» B, and pB « I, one ob-
tains for the transverse mobility

a11d

o"' = ne'/m*v'rx eff ' (6.19)

Here the effective relaxation rate is given by

~ef f ~ T ~ ~ &S~y+ &i &2 —&3JPpyk~rcX 1
kkgkoks

(6.20)

One can easily reduce this result to the form given
in (6.9) for a cubic system'' using the invariance
of P,'„,' with respect to the mutal interchange of the
two incident wave vectors 0, k, . The quantity a„' '

in (6.18) has the well-known form of the high fre
queney conductivity of a collisionless electron
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gas, and o,"' in (6.19) constitutes the classical
Drude-Lorentz contribution to the dissipative part
of o„ in the high-frequency region. Combining
(6.16) and (6.19), one may interpolate

S,(] )
r, —U(1 —c,)

(r, —&~)(1, —U) —Ue~c, '

which can be rewritten

c(v) = o(0)(1 i-vr„,) '. (6.21) S'„{g,)= Pe12 l ek
(7 3)

The dc conductivity c(0) is given in (6.7) and was
obtained from (6.6) by choosing a trial function
C „=v~. The result in (6.19) can also be obtained,
using a non-Boltzmann-type approach" in the re-
gion k'~ T &&kv &&7

~ff.

E:,=-.'{e,+ U+(-1) [(~,+ U)'

—4U&,(1 —c,) ]' '} (7.4)

2. %earesi-neighbor-hopping Hubbard chain

It is seen from (6.20) that only the U process
with k + k1 +m contributes, and 7,« = 0, as was in
dc case. However, in view of (5.1) and (6.1), v', ~«

can be determined only up to O(hv) in the present
treatment. Therefore, one concludes that o„"'
= O((8'v) '). According to a different and improved
treatment" of this specific situation, o„"' is inde-
pendent of the external frequency and vanishes as
(B/U)' for a large U.

VII. INTERBAND TRANSITIONS

%hen the external frequency corresponds to the
separation of the two subbands, then interband
optical absorption occurs. The lower band con-
sists of electronic states in which the electron
visits mainly the empty sites. On the other hand,
for the upper band the electron runs over the oc-
cupied sites of the opposite spin. In this section,
we assume that the system may be degenerate.

The single-particle excitation spectrum mani-
fests itself through the poles of the full Green's
function S„(l,) given in {3.5). In Sec. III we found

that when g, = e~, the self-energy part is small and
constitutes a minor correction. However, when g,
=U, as is necessary to obtain the upper band spec-
trum, this is no longer true. In this ease, the 7 ma-
trix has a cut, as canbe seenfrom (3.3), (3.12), and
the self-energy part has to be treated explicitly.
In this paper we confine ourselves to a certain
simple approximation, which serves to reveal the
nature of the decoupling approximations adopted
in some existing theories'~': To find the absorp-
tion and the Green's function of electrons with
spin 0, we assume that each electron of spin rr

moves in the system of electrons of spin -a.
Then using (3.3), and (3.12) in (3.14), one obtains
for gl U»B

A:,= (-1) [E:,—U(1 —c .)]/(E;, E;,) .—

These results were obtained by Hubbard'* using
a decoupling method. The above result is derived
in the region f, - U near the upper band. The low-
er band value E;,= e,(l —c,) is reasonable in view
of (3.16b), although it should not be taken serious-
ly.

To find the interband absorption it is more ccn-
venient to use a formula

cr„,(v) = -ne'/im v+ (e'/i uA) 6:„,(h v+ i0), (7.6)

where 6:„,is given in (2.6). The main contribution
of interband transition arises from the bubble dia-
gram shown in Fig. 4 according to the appl oxl-
mations stated above. One then obtains

( 0 ) Q vyvgp(fg)Sg(f(+ (0„)
ka

which can be evaluated using (7.3):

(7 7)

P„,(ur„) = -Q v„"v',A', A;,„. AE:,) PATE:.,)-
ka ee' ~r+ elf e'lt

Using

(7.8)

which are found readily from (7.3)-(7.5), one ob-
tains from {7.6),

G;(C,) = Ur. ,c ./[r. , —U(1 —c .) ], (7.1)

where c,=¹/fi, and N; is the number of electrons
with spin 0. This leads to

PEG. 4. Bubble diagram responsible for the interband
absorption.
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Reu„(v) = Q V;;V;,'
PQ

x [f+l~) f+-'zd )~(@~ &2-a+ Fla)

(7.9)

This coincides with the result obtained earlier by
Kubo using a decoupling method. However, we
believe that (7.9) is incorrect at a high-concentra-
tion limit. For example, (7.9) predicts' an incor-
rect (narrower) optical-absorption width in a half
filled band limit (i.e. , c= 2)."

Vrn. DISCUSSION

We have studied the ac and dc electronic con-
duction in a low-density interacting electron sys-
tem described by the Hubbard model. Utilizing a
V'-matrix approximation, t e Boltzmann equation
is established for intraband transitions in a, non-
degenerate system. The interband absorption ha, s
also been considered: The two-particle T-matrix
approximation gives a result which coincides with
that obtained by Kubo, ' using a decoupling approxi-
mation.

The result of the intraband transitions is applied
to the calculation of dc and ac conductivities in
several situations: In two and three dimensions,
the mobility is inversely proportional to the elec-
tronic concentration. This is due to the fact that
the collision time is inversely proportional to the
number of scatterers. The resistivity arises from
the umklapp process of the electron-electron scat-
tering. The electronic mobility for the simple
cubic lattice is given approximately by
p. = 0.6p, „c ', where p, „ is the mobility of a hole in
an otherwise han-filled band, as found by Brink-
man and Rice.' The magnitude of the conductivity
is finite a.t zero concentration and is comparable
with that of Eswaran and Kimball. ' The ac con-
ductivity shows a Drude-Lorentz-type behavior

characteristic of metallic conduction.
In one dimension with nearest-neighbor electron

transfer (t) only, the dc conductivity becomes in-
finite within the two-particle approximation. How-
ever, it is shown that the two-particle approxima-
tion is insufficient in this case, and many-particle
interactions should be considered. Upon introduc-
ing many particle scattering, one finds that the
resistivity does not vanish, but is of order c or
higher, unlike in two or three dimensions, where
it is independent of e at a low concentration. It is
not clear from our study whether the resistivity
vanishes to all orders in c for U=~, as the spin-
less Fermion model would predict. However, the
present study reveals clearly that, for a nearest-
neighbor-hopping Hubbard chain, one cannot use
the conventional two-particle scattering form of
Boltzmann equation, even for an arbitrarily weak
scattering: many-particle scattering plays an im-
portant role.

The two-particle T-matrix approximation be-
comes valid for a sufficiently low frequency (h p
« t„ t,), if the second-nea. rest-neighbor electron
transfer (f,), or an interchain transfer (f,) is suf-
ficiently large compared with the many-body effect
(i.e. , f »et', m =2, J). In this case, the effective
electron-electron umklapp interaction becomes
U,«=U and U,«-f (n=2, &), respectively, in the
weak (i.e. , U«

~ f„~) and in the strong correlation
limit (i.e. , U»

~
f, ~). For the latter, conductivity

becomes independent of the electron concentration
as in two or three dimensions, and increases as
(fit )' for decreasing value of ~f ~. Finally, a dc
transverse conductivity for the latter extreme
anisotropic case is also studied.

APPENMX

In this Appendix we derive (4.5). From Figs.
1(a), and 1(b), one finds

(Alb)

The right-hand side (RHS) of (4.5) is then given by

HHs= p-*P ( p;p(„(p)s((, )s(u)s„(),)(()('(,(-))'I s(t, q)s((q) &-( „u.;,.t.~ qt, . e))-,
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R, = G(p) —vs-'p g s(p, ) . (AS)

The first term of the second large parentheses
(designated as R,) can be rewritten similarly as

z, = G(p„)+ vie 'p-' ps(p. ) .

For the second term of the first large parentheses
(R,), we transform p, q= p„p-,„+q = p,„, obtain-
ing

The first term of the first large parentheses (des-
ignated as R,) can be rewritten upon changing to

P2 = P3 —0'~ Px = P + 0 as

&.= p
' g &(h+ q p q-; p3 p)

&& s(p, +q)s(p, )s(p, q—)vs 'p-

»(p, )s(p,.)ff(p. , p,.;p„p,.)

Upon transforming p, = p„q- -q, p, =p„ it is seen
that R, cancels the second term of the second
large parentheses. Combining (AS) and (A4) one
obtains (4.5).
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