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Description of resonant and localized defect vibrations
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The vibrational behavior of crystals with point defects is discussed with particular emphasis on defect-induced

resonant and localized modes. A method due to Krumhansl and Matthew is applied to obtain a direct
description of the local vibrational properties of the defect. For low-frequency resonances an analytic
expression of the Green's function of the defect is derived which has the form of the Green's function of the one-

dimensional oscillator with an effective force constant f', an effective mass M'", and a velocity-proportional

damping y. An exact expression for y in terms of f'" and M'" is given. Simple approximations for f' and
M'" are discussed, which are not based on the calculation of the perfect lattice Green's function. The method

is also applied to resonances just below the maximum frequency, which are connected with the formation of
localized modes. Furthermore, a simple derivation of upper and lower bounds for the frequencies of localized

modes is presented.

I. INTRODUCTION

The dynamics of point defects has been exten-
sively studied by the Green's-function method. ' '
This method is based on a knowledge of the cor-
responding ideal lattice Green's functions. How-

ever, since in general only numerical results are
available for these ideal Green's functions, analy-
tical methods are very useful, especially for high-
frequency localized modes4 and low-frequency res-
onant modes.

Besides the standard Green's formalism a dif-
ferent treatment of the defect lattice dynamical
problem has been proposed by Krumhansl and Mat-
thew" and others. ' ' This method is especially
useful since it yields a, direct description of the
local vibrational properties of the defect. Al-
though this description ha.s the simple structure of
the Einstein approximation, it is exact and has
the further advantage of being applicable also to
interstitials with additional degrees of freedom.
Based on this method Krumhansl and Matthew'
have derived qualitative results for localized and
resonant modes of point defects with mass or
force- constant changes.

The object of this paper is an analytic study of
the cha, racteristic defect vibrations introduced by
impuriti. es ii The application of the method of
Krumhansl and Matthew allows us to give a very
simple and physically evident description of the
local vibrational behavior of the defect.

Resonances in the low- frequency limit are treated
in Sec. III. The defect behaves as a simple damped
Einstein oscillator, characterized by an effective
force constant f"' describing the static response,
by an effective mass M"', a measure of the parti-
cipation of the surrounding atoms in the vibration,

and by a damping constant y. An exact equation for
the damping in terms of f"' and M"' is given in

Sec. IV which to our knowledge ha, s not been de-
rived previously. The result is illustrated by a
consideration of the average work done on the de-
fect by harmonic forces. In Sec. V we give a
method to derive approximate results for the char-
acteristic quantities f"' and M"'.

The characterization of resonances by effective
quantities is applied also to resonances just below
the maximum frequency of the perfect crystal
(Sec. VI). These resonances occur in such situa-
tions where, e.g. , the force constants are just
below a critical value needed for the existence of a.

localized mode. By a slight increase of the force
constants or decrea, se of the defect mass, a local-
ized mode appea, rs above ~ . Initially the in-
tensity of this mode is very small. The remaining
intensity forms a kind of resonance mode below
~,„which slowly disappears when the localized
frequency moves away from w

As a further application upper and lower bounds
for the frequencies of localized modes can be de-
rived very easily, including the previous lower
bounds of Dettmann and Ludwig" and others' and

upper bounds of Dean" and Fujita. '~

The concept of an effective force constant and an
effective mass has been discussed previously by
Klein, ' Agrawal and Ram, ""and Stoneham. " How-

ever, the simplicity and the full advantage of this
concept had not been used. Only recently Page""
has given a description of low-frequency reso-
nances in term s of such effective quantities. His
method is based on the Green's-function technique
and restricted to resonances caused by weakened
force constants only. Our method is valid for all
type of resonances and does not rely on numerical
results for the ideal Green's f»nction.
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II. METHOD OF KRUMHANSL AND MATTHEW

In the follwing we will shortly derive the .nethod
of Krumhansl and Matthew, "which forms the
basis for our paper. This method is similar to
the one used earlier by I itzmann and Hosza' and
Kunc' as well as by Mahanty' and Sachdew and
Mahanty. '0

The Green's function for the imperfect lattice
is given by

(y M~')G(~) = 1,
~ ~

where P,.&' denotes the matrix of the force constants
and M,.&

=M 5,&
is the diagonal mass matrix. Since

one is interested in a direct description of the vi-
brational behavior of the defect itself, the entire
space of all atoms is divided into a central sub-
space C, which in most cases contains only the
defect atom, and into a subspace R containing the
remaining lattice atoms. Then the matrices P,
M, and G can be partitioned as

t'y„y„) (M„o )CC cs M CC

(y„y„) ( 0

GCC GCRG=
i

GRC GRR

and Eq. (1) yields

(@cc™cc~')Gcc+&c~Gsc =1

&scGcc+ (&»™»"')Gsc=0
and two additiona, l equations for GcR and G„R, which
are not given here since our main emphasis is on
the Green's function Gcc, which alone describes the
local vibrational properties of the defect. For
Gcc we obtain from (3), by eliminating Gzc,

Gcc(~) = [C'c(~) —Mcc~'] '

= [0„-M„~'- 4„G»(~)4„]', (4)

with

(&os™ss~)G» (~) = 1.
This equation is similar to the Einstein approxi-

mation G„—= (@cc-M«~') ' describing the vibra-
tions of the defect for a fixed rest crystal. How-

ever, it is an exact expression for the Green's
function of the defect, since the motion of all other
atoms is taken into account by the term PcsG»(ur)
&RC-

The remaining problem is the determination of
G», i.e. , the Einstein Green's function of the rest
lattice for a fixed defect. This can be done by
means of the ideal Green's function 'G of the per-

feet crystal

('P —'M&u') 'G(~) = 1.
For the case of an interstitial-type defect which in-
troduces additional degrees of freedom into the
lattice, the subspace R contains all the atoms of
the ideal lattice. Then G can be calculatedby the stan-
dard Green's- function method

0,„='G 'GVG„„=[I/(I+oGV)] 'G,

with

For substitutional defects the space R contains
fewer degrees of freedom than the perfect lattice.
In this case we can also apply Eq. (6) if we re-
place G by the Green's function OGR„, being the
inverse of P»- 'M»(d' in the subspace 8 alone.
By applying the above partitioning technique to
Eq. (6) 'G» can be given as

'G» = 'Gss- 'Gsc(1~'Gcc) 'Gcs

III. RESONANT MODES

Whereas the Green's function Gcc(e) has poles at
localized mode frequencies v„ it gives a finite
response within the spectrum of the ideal crystal.
However, this response can be especially large
for resonant mode frequencies defined by

det[gcc ™ccrc,~~ Pcs BeG»(m„,)gsc]= 0 (8)

if for such frequencies the imaginary part of 'G(&o)

is small, e.g. , near the band edges ~=0 and ~
mkx'

In this section we shall discuss the low-fre-
quency resonances, whereas resonances near v ~
are considered in Sec. VI. Since Gcc(&u) has a
quasipole at the resonance frequency, we expand
Gc'c(~) for small ~. According to Eq. (4) this
means an expansion of Pc'c'(u&) and G»(&o) in powers
of K.

In analogy to Appendix C we obtain for the real
part of GRR

Be G»(&u) = G»(0) + ~'[S 2 BeG»(~) ] 2 „+.
= &s'z™»"'[I'(&s™»"')'] 2-~

with

= —B„P' — = — 8„
x x'

x " x " x'+ g' „~ (x'+ q')'

The first term of this expansion results in an ef-
fective force constant for the defect,

fCC ~CC ~CR~RR~RC ~
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~2 f ef f/Meff
res (12)

Thus we can distinguish two kinds of resonances,
"spring resonances, "with small f ' ' and "mass
resonances, "with large M"'. Only the former
give a large static response, Gcc(0) = 1/f ' ', which
becomes infinite for f ' -0, indicating that the
considered defect configuration becomes instable.

The vibrational properties of an atom in an im-
perfect lattice are most conveniently described
by its local frequency spectrum

which determines the static response Gcc(0) = 1/f cfcf

The quadratic term determines an effective mass
given by

Mc'c = —[e„2Ile I/Gcc((0)] „2,.
=Mcc+ &csMss~J'(@»- M»"') '~ 2 0.-&ac.

(10b)

Together with the expansion of the imaginary part,
which is discussed in detail in Sec. IV,

im~cffG»(~) ~ffc = Tcc~ = Mac& cc~

the low-frequency behavior of the Green's function
of the defect is given by

Gcc(10) = (f 'cfcf Mcfcf 102 --2'M'cfcf yccfd) '.
For simpliticy we will assume in the following

that the central subspace C consists of only one
atom with cubic symmetry. Then the matrices in
this subspace become diagonal 3x3 matrices, e.g. ,

f cfcf =feff
5f&, and Efl. (11) agrees with the Green's

function of an isotropic oscillator with velocity-
dependent damping. This simple equation, where
the embedding of the defect into the lattice is taken
into account by an effective force constant, an
effective mass, and a damping constant, deter-
mines the resonance frequency as

(3ff/2 Mfd ) (feff)2/Meff (16a)

or

gf0/f0 (3ff/2 OM102 ) (/eff) /22(Meff) 1» 2 -(16b)

where ~D is the Debye frequency of the ideal lat-
tice. Owing to the —, power, spring resonances
are much more weakly damped and give much
shaper peaks in the spectrum than mass reso-
nances. In both cases the half-width goes to zero
for (d„,-O and the resonance degenerates into a
5 function: z',.(fd) = (M"/M"') 5(fd) .

To our knowledge the exact expression (16) for
the damping has not been given previously. Only
for special models'" has the mass and force-
constant dependence been discussed in the litera-
ture.

One remark about the validity of the above re-
sults has to be added. The low-frequency expres-
sion of G»(fd) implies that G» is slowly varying
and does not show any resonance behavior itself.
As a consequence, for a defect with cubic sym-

from Eq. (11), in the case of a threefold degenerate
resonance,

2 y(u2
j( ) Meff v (fd2 fd2 )2+ 2~2

res

with

M"
ff&Z'(M) eff »

0

which represents an asymmetric I orentzian (plot-
ted in Fig. 1). Its normalization is given by Me/
M"' and represents the fraction of the total spec-
trum contained in the resonance mode.

The damping y of the resonance and thus the
half-width Geo of the local spectrum can be calcu-
lated exactly (see Sec. IV):

2,. (10) = (210M /ff) ImG;; (f0),

with

(13)
Z. (Gd)

"

It gives a quantitative measure of what frequencies
atom in is able to vibrate at (in direction 2') and
allows us to calculate all vibrational properties
which depend only on atom m, e.g. , the thermal
displacements squared,

((s;)'&, = «(fd» T) m

with

6(QJ» T) = 2 )If»1 coth(K(»1/2~T) .

For the local spectrum of the defect d we obtain

FIG. 1. Local vibrational spectrum in the ease of low-
frequency resonances for three different resonance
frequencies 0 & cu „', & cu„, & ru „3,~ . For ru„, = 0 the spec-
trum degenerates into a i5 function.
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metry at most one resonance can occur. If G»(td)
is not slowly varying, the central subspace must
be enlarged, since sufficiently far from the defect
the corresponding Green's function G» has the
properties of the ideal Green s function 'G and is
slowly varying. Then more than one resonance
can occur.

IV. DAMPING OF RESONANT MODES

with

W(t)= g F;;(t)s;(t).
m, 5

In terms of the frequency-dependent Green's func-
tion, s,. (t) can be written

S(t) g Gmn(td )f neitnnt

ny J

In order to calculate the damping of the reso-
nant modes, we have to consider the imaginary
part of the Green's function for the imperfect
crystal. We begin with the simpler case of sub-
stitutional defects, and we will then discuss the
case of interstitials. Using Eq. (6), ImG is given
by

ImG= —.(G —Gt)
1

2i

1 0 0 t 1
2i 1+'GV 1+ V~ G~

1
Gmn( ~ )f n -intnt

n, j
From this (W(t)) follows as

(W(t)) =—' g f, ImG,f (~,)ft,
my n~i iy j

so that in the low-frequency limit we obtain

(w(t))= 2,M', gf', ,
5

with

(22)

(23)

(24)

( G + 'G V' G —'G
27 1+ GV

1+Vt Gt'

where Gt = 6* is the Hermitian adjunct of G(cd).
Since V= V we obtain

ImG = [1/(1+ GV)] Im G[1/(1+ V 'G )]
= (1 —G V) Im'G (1 —VG t) .

(17)

(18)

which means that the averaged work does not de-
pend on the properties of the defect and is de-
termined only by the ideal lattice and the magni-
tude of the total force f, .

Iff,. vanishes, e.g. , for forces with even sym-
metry, f,. =-f, , higher terms of the expansion
of Im'G have to be taken into account. Then the
result depends on the properties of the defect and
is g iven by

Expanding up to linear order in (d, we can re-
place V(td) by V(0) = tti, G(td) by G(0), and Im'G, ,

'
by —,'(tttd/'M~D)6;t (see Appendix A). Because of
the translational symmetry g; t'ai

'= 0), the re-
sult is

ImG;,.'(td) —= Im'G, ,'(td) = —,(vied/'Mtdn~) 6, , (19)

2g /coo

(W(t)) = — W(t) dt, (21)

Thus for small ~ the imaginary part of the Green's
function of the defect is independent of the defect
structure and depends only on the surrounding ideal
lattice. As a consequence the local vibrational
spectrum of the defect approaches for (d-0 the
ideal spectrum, besides a factor Mt/'M:

VI M" 3(d
(20)

D

By comparing this result with Eq. (16) for td —0,
the formula (16) for the damping y follows im-
mediately.

The intuitive meaning of this result can be under-
stood if we consider the average work done by ex-
ternal harmonic forces Ft (t) =f, costdnt,

r„.~ -=y„[1 G(0) it ]„
x Im nG(&d)[1 tttG(0)]»ttt~c, (26)

By inserting Eq. (19) this result can be further
simplified by using the translational symmetry of

The calculations are straightforward (for de-

COO

( W(t)) = — P, T.. .P, . (26)
i jul

The tensor T;gal is defined in Appendix A and de-
pends only on ideal lattice properties; P, ,
=Q-R;K. is the dipole moment of the forces K

m

= [1 —pG(0)]F, which are related to the forces F
in the same way as in lattice statics the Kanzaki
forces are to the original forces. " Whereas above
the results for the damping y (for ImG) and for the
averaged work ( W(t)) have been derived under the
assumption of a substitutional defect, we will now
consider defects with additional degrees of free-
dom, i.e. , interstitials, where G(~) and G(td)
refer to spaces of different dimensions. Starting
from definition (10c) for the damping and using
Eq. (18) for ImG» we obtain in the low-frequency
limit
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tails see Bef. 11) and yield the same formula (16)
for the damping as for interstitial-type defects.
Thus Eqs. (19), (20), and (24) are valid for inter-
stitials, too. A more general proof of this state-
ment for an arbitrarily disordered finite region
embedded into an otherwise ideal crystal in given
in Ref. 11.

M"' = Re ~„2G"„"„~
1

[G.".(~)]'

= Be g u,. (Ic)M u I (&c)
td2m Q+m, g

=M" +03f Re u, v
4)2 0+

(32)

According to Sec. IV the resonant mode is com-
pletely determined by the effective force constant

f"' and the effective mass M"', since the damping

y can be obtained from these quantities [Eq. (16)].
According to Eqs. (10a) and (10b)f"' and M"' can
be calculated by means of the Green's function 'G

of the ideal lattice. But since in general only nu-
merical results for 'G are available, we will give
other, equivalent expressions for these effective
quantities which enable us to derive approximations
without explicitly using the Green's function.

For simplicity we restrict the discussion, as
above, to the case of a subspace C containing a
defect with cubic symmetry. M"' and f"' can be
calculated by means of a resonant mode u(~) de-
termined by the following force-free equation of
motion:

g 4,;u,'(~) —M uPu, . (Ic)=0, for mod, (27)

if u~(&u) =5,, is given.
Applying Eq. (3), an expression for the displace-

ment field u(ur) in terms of the Green's function of
the imperfect crystal is easily obtained:

Thus 3f"' consists of the defect mass M" plus ad-
ditional contributions from the masses of the other
vibrating atoms near the defect weighed by the
square of the amplitudes u . As will be shown

below the additional contribution can be positive
or negative. Whereas f"' is determined by the
static displacement field u(0), in this equation
we cannot exchange the limit co'-0+ with the sum-
mation over m. The sum Z- [u,. (0)]' diverges,
since for large distances G~(0) and u,. (0) merely
decrease as I/i B —B'i.

For the resonance frequency we obtain

&u',„=(u(0),pu(0))/Be[(u(&u), Mu(&u))]'„2~, , (33)

which is similar to the R3yleigh quotient for local-
ized modes. "

The results for f"' and M"' in terms of the
mode u(Ic) enable us to derive approximate expres-
sions for the effective quantities if approximations
for u(v) are given. In order to avoid the use of
Green's functions, we solve Eq. (27) for the static
case under the additional assumption that all atoms
outside a finite region N surrounding the defect
are fixed. The calculation of the displacements of
these atoms requires only the inversion of the ma-
trix P» in this finite subspace.

The expression for f"' obtained in this way rep-
resents always upper bounds for the exact value,

s;(~) = G;.(~)/G.".(~) &"'- &cc- &cR(I/&RR»Rc (34)

Starting from the static equation

P ymn Gag(0) 6m'

The simplest approximation of this kind is the Ein-
stein approximation fz" = Q~c, where all atoms be-
sides the defect are fixed. Here f"' ~ pcc is ob-
vious from Eq. (10a), since QRR is positive definite.
For an arbitrary region N we write Eq. (32)

1
gg(0)

= Q @~I{0)/IIQI(0) .
XX me fit ~ v ~

(3o)

By using the identity

multiplying from tile left-lla11d side wl'tll G„.(0),
summing over m and i, and dividing by [G~~(0)],
the Iesult for f'~' is 1

&cc &cR(I/&-RR) &Rc
'

and obtain in analogy

E

1 1

QRR NR @RR QRRe(l/4ReR')4 ReR

(36)

S„~G(&c)= G(&u) MG(Ic),

we can derive a similar expression for the ef-
fective mass by using Eq. (10b),

{31)
where the subspace R' contains the atoms of 8 =N
+R' not belonging to ¹ Since Q is positive definite
we have

&cR(I/&RR) &Rc = &cR(I/&RR)mr~Rc ~
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(I/4»s}»» - I/&»» (37)

which yields the inequality (34).
To obtain similar approximations for M'f' we

have to avoid the divergence problem of Z-[u, (0)]'.
From Appendix D the Green's function G~f„(u)) ap-
proaches 'G, (&o) for large distances
small frequencies fd, so that we obtain for u, (~)
the asymptotic val.ue

u;(~) = (f"'/'f "') 'u, (~), (38)

of sf f 1/OGdd (0)

where in analogy to Eq. (28) the displacements
sue(fd) of the ideal lattice are defined

ourn(fd) OGmd(fd)/OGdd (of) 0/sff OGsld(~) (39)

If 'M"' denotes the effective mass for the ideal
crystal, defined in analogy to Eq. (32), we obtain
the identity

jeff 2
Mef f & OMef f

0 eff

sff o

+ g M [u, (0)]'-'M, „, ['u, (0)]'
m, f

(40)

single-atom defect, since the defect remains at
rest. However, they are important in, e.g. the
case of split interstitials. ""

The concept of an effective mass and its calcula-
ation by static Green's functions have been used
recently also by Page"" in a somewhat different
way. Since expression (33) for the resonance fre-
quency is insensitive to small changes of u(~),
Page has replaced the resonant mode u(~) by a
slightly different mode, u(0). Owing to small ad-
ditional negative force constants this "decay mode"
is determined by the condition that the correspond-
ing f"'-vanishes, and it describes the amplitude
distribution with which the defect configuration
decays, since f"= 0 determines the stability limit
of this configuration. By the procedure of Page the
effective mass is calculated by Eq. (41), where the
u(0) is replaced by u(0). In this ca.se no convergence
problem arises, since according to Eq. (38} the
leading 1/R term vanishes, so that u(0) decreases
as 1/R' for large distances. " However, this is
true only for the exact decay mode u(0) with f"'=0,
which therefore has to be calculated by the Green's-
function technique. Moreover, this method is re-
stricted to resonances stemming from weakened
force constants and always yields M"'& M~

[Eq. (41)]. This is, however, not true in general,
as we have seen before.

In this form no difficulty arises from the limit (d

-0 due to the subtraction of the diverging parts.
For a strong spring resonance (f"'«of "') we may

neglect the terms with (f"'/'f "')' and obtain in a
rough approximation

M"' =-M'+ 'M g [ uf( 0)]' & M' (41)
mldp f

pxovided that the sum is restricted to a finite and
not too large number of atoms, since the sum di-
verges for an infinite crystal.

On the other hand, Eq. (41) is rather useless for
mass resonances. For an isotopic defect we ob-
tain f"f=of"f and u, (0) ='u,. (0), so that the ef-
fective mass is given by

M"'=M'+OMeff - 'M. (42)

Numerical solutions for a fcc lattice with nearest-
neighbor interaction yield 'M"' = 0.63'M and thus
M"f &Md, whereas Eq. (41) implies M'"&M'. As
a consequence M"' cannot be calculated by an
evaluation of the equation of motion for a. finite
number of atoms.

Only in special cases, e.g. , for resonant modes
with even symmetry, us= —u, s, where usf(0) de-
creases as (1/R )', the sum in Eq. (41) converges,
and obviously we obtain lower bounds for M"' for
an arbitrary finite region ¹ Such modes are of
less interest for the above-considered case of a

VI. RESONANT AND LOCALIZED MODES NEAR

THE BAND EDGE ~

f sff I/Gdd(& )

M' = —{s„sRe[I/G„((d) ] ]„s„„s o,

1
'Y= — sff (~mss- ~ } ™

M

(44a)

(44b)

(44c)

%'e should emphasize an important difference be-
tween the low-frequency I esonances and the reso-

Resonant modes can occur not only at low fre-
quencies but also at the upper band edge, where
ImoG(&d) vanishes as (&d',„-v')' '. They are con
nected with the formation of localized modes, since
a slight increase of the force constants or a slight
decrease of the defect mass leads to the appearance
of a localized mode just above + ~.

According to Appendixes B and C we can write
Gdd(&o) near the upper band edge as

Gdd(fo} [fsff Ms!f(+s +f )

fMsff (~& ~s)1/o]-l

The effective quantities f"f=f"f(&o ~), M"', and

y are contrary to the effective quantities of Sec.
III determined by the behavior of Gdd(&u) at fd
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nances near +~. Whereas the damping y ap-
proaches zero for ~„,-0, this is not the case for

From Appendix B, ImeG~f/(fd) ex-
plicitly depends on m and n near (d, so that
according to Eq. (18) y remains finite for fd„,

—co,„and the spectrum of the mode does not de-
generate into a 5 function.

Noting that i(fd' ~ —&c')'/' becomes real for &d'

& a'~, we obtain the local vibrational spectrum
as a function of co' as

R'(fd') = Im Gd'„(fd') = „,X ff (f /M + fcma —fd ) + y (fc~- fd )
™~

x r XX

(feff/Meff (fC2 fd2)y(fdefC2)l/2) for F2�)fd2
(45)

For negative f"' the 5 function gives no contribu-
tion and the spectrum contains only a resonant mode
at fc2,,=-fd', „-if "f

i
/M" 2 [for if"'

i
/M" 2 » -' y']

For f"'-0 this mode degenerates and shows a
square-root singular behavior as (&d' —uP) '/' at
the band edge. For positive f"' the 5 function de-
scribes a localized mode,

This behavior of the spectrum is shown in Fig.
2, where it is plotted for three different values off"' (f'"&0, f"'=0, f"2) 0). The dashed line in

dicates as a measure for the intensity of the lo-
calized mode the height of the 5 function as a func-
tion of its frequency.

Zd(fC2) = (Md/M ff)5(fd2 —fd2)

with

M"'=M"'[1+ —y(fc' —fd' )
' ']

where the localized frequency ~, is given

~2 ~2 + [(feff/Meff + l p)1/2 & ]2

(46)
VII. LOCALIZED MODES

Since Eq. (4} conveniently describes the vibra-
tional behavior of the defect, it is also applicable
for a calculation of localized modes. The frequency
~, of a localized mode is determined by

CC 1 ~CC( l} ~CC ~CRGRR( l) @RC

~CC ~CR[ /(~RR ™RRl)]~RC '

f eff p (47}
for eff »

f eff 2 feffx' + form Meff ~ Meff 4
((—

y

f eff
(d m+ Meff ~

If the retardation of the Green's function is taken
into account by an infinitesimal damping ig+
(fI-0+), an expansion of Eq. (4) yields

For high frequencies, co', » co'~, the effective
mass M",„' is given by the "normal contribution"
M"'. However, for ~,-~ it becomes infinite,
indicating that more and more atoms take part in
the vibration. Thus this mode becomes more and
more delocalized, so that its contribution Md/M', "
to the spectrum of the defect approaches zero.

For f"'& 0, in addition to the localized mode
there is a kind of a resonant mode below the band
edge with resonance frequency

GCC((C) = I/Mleff(fdel —fd2 —if)fC),

Z
d"(fC) = (Md/M;. ff)& (fd —fCf ),

where the effective mass is given by

lee ™CC+[s 4P2$CR GRR(~)QRC]le= &l

d OM ~ 2

mRdd, j

(51}

(52)

~2 ~2 f f eff/Meff
res max (48)

f
2

d(d R„(fd ) =
ee 00

Md/M"' —M /M*" for f"'& 0

M /M"', for f"'&0

The intensity within the band can be calculated by
residuum calculus,

(eff= 0

Men's

~efr
loc.-1Q

(49)

Equation (49) indicates that the total intensity of
the vibrational spectrum is always given by M /
M' '. For negative f"' it is contained in the reso-
nant mode alone, whereas for increasing positivef"' more and more intensity is transferred to the
localized mode.

2
I

l
fef1 0

--05

~2 ~2
max I

FIG. 2. Local frequency spectrum for resonances near
curn~„. The intensity M' /M&„, contained in the localized
mode, is indicated by the height of the 5 function.
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&cc

d 2

and moreover we obtain an infinite number of lower
bounds, approaching uP, from below if higher orders
of I/(ca are taken into account.

Somewhat better lower bounds can be derived in

analogy to the bounds for f" in Sec. V. Since
'M(d' —(II)» is positive definite for ~' ~', , the
arguments which lead to Eq. (36) give the follow-
ing approximation:

Acc((d ) (t'CC(+ ) Acc Ac)f(I/(4)2)f™)1(t')fc ~

(57)

m &cZ

FIG. 3. Graphical construction to obtain lower and
upper bounds for the localized mode frequency cu &.

(o' '&(o &(u"' (54)

We will now give some examples for such bounds.
An expansion of (oM(o2 —@RR)

' in powers of I/(a)2

yields

4 CC( ) ACC+ ( / ~ )ACRARC

+(I/('M(C')'~4CRARRARC+' ''
where all terms are positive. The simplest ap-
proximation, P~~' =Q«, gives the Einstein fre-
quency

(OR = Ace/M" ' ~), (56)

In contrast to the low-frequency resonances the
sum converges because of the exponential decrease
of the localized mode u ((d, ), with R, so that
M;,",o M always.

Without needing any explicit results for the lat-
tice Green's function we can apply Eq. (50) for a
calculation of upper and lower bounds for the local-
ized frequency co, . As shown in Fig. 3 this fre-
quency is determined by the intersection of M~co'

with (t)cff ((o2)

Assuming that the crystal has no localized modes
if the defect remains at rest, the quantity 'M~'
—Q» is for ~' ~' positive definite. Further,
Qcsc((d') decreases monotonically for (ca & (c',„and
approaches the limiting value (t)cc as I/(c2. In this
case we obtain at most one intersection of Qc'fc((o')

with M"co', i.e. , only one localized mode can
exist. The extension to cases with several local-
ized modes can be done by group-theory argu-
ments.

From Fig. 2 it is obvious that whenever we have
an approximation Q(cc)((da) or (t)(cc) ((d'), with

gaff ((c2) & y(+) (~2) or P aff(~2) & P( ) (~2) (53)

for uP &(d ~, the intersection with M u gives an

upper bound cu,"' or a lower bound cu,' ' for the
exact frequency co„so that

Therefore the Einstein approximation for the com-
bined spaces C and N (all other atoms fixed) gives
a lower bound for m, . This result has also been
shown earlier by a variational principle" for the
Rayleigh-quotient.

To obtain upper bounds for the localized fre-
quency ~, we apply the following inequality:

QRR
—OM(a)2& OM((O2, „—(a)2), (58)

which is due to the positive definiteness of Me'
—P», for co'& co' . This yields

ACC ((C ) = (t)CC+ II/ M((O —(a)maa))ACR

Meum

M((a) (d

max�)

'M~max —4~~
'

OM(~2 ~2 )
4R C ~

(60)

since 1/(1+x)&1 —x+x' for x&0.
If the localized frequency ~, is too near to ~

all of the above upper bounds yield less useful ap-
proximations, since P(c'c)((a)2) diverges to infinity
at u
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YACC( ) YACC ( ) ACC ACR 4C/ M(~ ~ )

(59)

Bounds of this type have been discussed by Fujita, '4

in particular for simple cubic lattices in several
dimensions. The earlier results of Dean" follow
if we estimate expression (58) further by replacing
co by a lower bound ~,' ', e.g. , the Einstein ap-
proximation. These upper bounds can be improved
either by enlarging the defect region C (Ref. 14)
or by expanding the expression (QRR —oM(a)2) ' ac-
cording to Taylor. By taking into account the
first, third, and fifth terms of this expansion we
always get upper bounds, e.g. ,
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APPENDIX A: LOFTI-FREQUENCY BEHAVIOR OF Imo|"(w)

The ideal Green's function of an infinite lattice ean be represented in terms of plane waves as an

integral ovex' the first Brillouin zone,

dk, -, exp[ik (R —R")j'G "( )='G,', "'( )=Q y '(k);%),M)„, (I,) („,„),], n (Al)

where the polarization vectors e'(k) and the eigenfre(luencies (d, (k) of (t) are labeled by the wave vector
k and the polarization index o. Because of the symmetry 'p, ," ='p,"-, the polarization vectors are chosen
as real and exp(ik R™n)can be replaced by cos(k R™n).Thus Im'G(u)) is given by (with h =m —n)

Im'G(~h){&u) =, g (f&e,'{k)e,'(k)cos(k R")&(~' —(d2 (k)).
8 a

(A2)

Fox small frequencies the only contribution results from wave vectors k near the origin, k =0. Here the

polarization vectors depend only on the direction & of k, and

u), (k) =c, (z)k, with k =&&, (A3)

where c, (Tc) is the velocity of sound in direction z. Expanding the cosine for ft «c, (z)/&u and integrating
over ~, %'e obtain

(A4)

The term proportional to (d and an additional ter m
proportional to co', which arises due to the devia-
tion of ((),(k) from c, (Tc)k for larger k values, are
independent of h. Fox cubic crystals they are px'o-
portional to &, &

and the ideal Green's function can
be represented

I m' G)((~h((d) = o.&o(1+@'uP)&;~

(() Zft) &i~)) fly +' ' '
~

For isotopic crystals ~ and r,», are determined by
the longitudinal and transverse velocity of sound

small frequencies with a Debye spectrum

'z (~) = 3(d'/(dn3, (uD' = 3z 'M/vc(. - (A'I)

APPENDIX 8: BEHAVIOR OF Im t"(u) NEAR u

Similar to the spectrum' 'z(v) the imaginary part
of 'G(&u) also shows singularities at critical points
k', where grad((), (k) vanishes. The behavior of
Im'Q at the upper band edge is given by the criticaj.
points k", for which uP, (k") =(d',„(v denotes the
various equivalent k' values in the first Brillouin
zone). An expansion of u)z, (k) near k" yields

(u'(k) =&()2,„—QX (k„—k")'+

2 4 1
3OOMVa

I 1

(Ae)

According to (A5) the spectrum 'z(&u) agrees for

1th ~a+0, if the cooxdlnate system is chosen to
coincide with the main axes of a'~2 (k)/ak, . ek, at
k". Inserting this expansion into the representation
(A2) for Im'G(&u), the integration can be extended
over the whole space, since only k vectors near k"
give contributions. By setting K~ =)(& (&„—&„")

we obtain
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with

0, for x&0ex=
, 1, for x+0.

Integration over K and expansion in powers of
(&u' —uP)~' yields in first order

2 2 1/2
(h)r S- 77sgn(d (dms

20MV~ A.,A. A,

mfa (~2 ~p)p(h)

with

(B3)

(I/R)g, &(R, ruR ), with R =R R, and wh'ch,
e.g. , for isotropic crystals is given by' (p is the
mass density)

~i j l(dR
G„(R, (u} = ', exp

47TPC& R cg

1
8 9

4 7Tp(JO

1 i coR 1 i (g)Ax —exp ——expR Cs R C

(D1)

PP'= +4ve,'(k")e,'. (k")cos(k" R").

Contrary to the first order of the low-frequency
expansion (A5) this result depends explicitly on
RK

APPENDIX C: BEHAVIOR OF Re G NEAF.

THE BAND EDGES

From the singularities of a p imoG(ru} at &u =0
and ur =&@ .,„similar singularities of a p Re G(u)
follow due to the dispersion relation (Kramers-
Kr on ig relation)

ReoG(u) = — d&u" P „p ImoG(u') . (Cl)
0

The same relation holds for the derivatives
a~HeoG(m) and a~lmoG(m). By using the expres-
sions (A5) and (B3) for ImoG(u) the results for
a ~ReoG(&u} near &u =0 and &u = to„.,„are given by

a ~ RepG!," '(oo)

(C2)

$21)

max)

(C3)

Due to this singular behavior the low-frequency
limit of a~ReoG(&u} exists only in the limit &u'-0+,
which is essential for the low-frequency expansion
of the defect Green's function and the definition
of the effective mass in Sec. III.

APPENDIX D: BREEN'S FUNCTIONS FOR LARGE

DISTANCES AND LOW FREQUENCIES

For large distances (R»a) (a is the lattice
constant) and small frequencies (&u/c, «1/a) we
can replace the perfect lattice Green's function
oG,'& '(sr} by the continuum Green's function
G, ,(R'", oo), which can be represented as

The corrections for shorter distances or higher
frequencies are of the order of 1/R' or cu'/R.

The imperfect lattice Green's function is given
by Eq. (6) as

Gmo oGmo g oGmm'Vm'm" Gm"o (D2)
m ~ l11

k, l

For large distances (R»a) we replace 'G, , by
the elastic Green's function, which we may expand
for R «R according to the short range of Vk,
as

G„.(R —R, (u) = G, (R, (u)

+R aRmG, , (R, ~) +

(D3)

The first term of this expansion gives no contribu-
tion to Eq. (D2) since Q - V vanishes (exactly
for substitutional defects without mass changes and
at least as &u' for interstitials and mass defects).
The second term can be neglected since owing to
the derivative it is smaller than 'G, j' by a factor
Rm/R «1 or R v«c„respectively. Thus for
large distances and small frequencies we obtain the
result

Gmo( ) PGITlP( ) (D4)

i.e., the perfect and imperfect lattice Green's
functions agree in this limit.

This result can be understood also by the follow-
ing consideration: According to Eq. (31) we obtain

aldp G;, ((u}= MQ G p ((u) GP ((u). (D5)
m, k

Since all terms in Eq. (D5) are finite the divergence
of a~oGoo(~)=—in/2~ near ~ =0 (Appendix A) is
due to the behavior of 'G' (~) for large distances.
As shown in Sec. IV Im'G o(&u) and ImGoo(~} agree
for small frequencies, and the same is true for
a~G(&u) (Appendix C). To obtain the same diver-
gence from (D5) the perfect and imperfect lattice
Green's functions should agree for large distances.
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