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Vibrational contribution to the low-temperature specific heat of the interface
between two different crystals
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%e derive for the first time the vibrational contribution to the interface specific heat at low temperatures. The
interface is a planar one between two isotropic crystals. Our result is obtained in closed form in the frame of
the theory of elasticity.

I. INTRODUCTION

The surface contribution to the specific heat of
a crystal has received a great deal of theoretical
and experimental interest. '"' Dupuis, Mazo,
Qnsager, ' and Stratton' were the first to give an
exact result for the low-temperature surface
specific heat of an isotropic elastic continuum.
Maradudin and %allis obtained also this result
for the first time from a simple atomic model.
Other studies were done, some qualitative only,
others on realistic models; some giving exact
results in closed form at low temperatures, other
using purely numerical approaches. ' Among the
quantitative analytic results valid at low tempera-
tures, only one was obtained for a nonisotropic
crystal, namely for an hexagonal crystal. '

The interface properties between two crystals
are also widely studied. ' The localized waves
which can exist and propagate along a crystalline
interface are known as Stonely waves. ' However
to our knowledge the interface specific heat has
not been studied, neither theoretically nor ex-
perimentally. From the experimental point of
view, the measure of the interface specific heat
should be possible on a lamellar crystal formed by
alternative superpositions of two distinct crystals,
or even on a thin powder of one crystal embedded
in another. Qn such samples it should be possible
to obtain a non-negligible ratio between the number
of interface and bulk atoms. Qur hope is that the
theoretical result given here will stimulate some
experimental work.

We obtain our result by using the method (Sec.
D) introduced by Maradudin and Wallis' for the
calculation of the surface specific heat at low tem-
peratures, but in the present work we calculate
the necessary interface Green's function (Sec. III).
The knowledge of this interface Green's function
enables us to obtain in analytic form the interface

specific heat at low temperatures (Sec. IV). The
present study is done for two isotropic elastic
media.

II. GREEN'S-FUNCTION EXPRESSION FOR THE
INTERFACE SPECIFIC HEAT

%'e consider two different elastic media occupy-
ing, respectively, the half spaces x, &0 and x, &0.
%'e need to know the Green's function U forthetwo
crystals connected by this planar interface. The
procedure is similar to the one given"' for the
surface. Let us first introduce the bulk Green's
function for the crystal. at x, &0:

= 6 ~5(x- x'), (I)

where p is the mass density, the C ~„„are the
position-independent elastic moduli of the ma-
terial; x(x„x„x,) the position of a point in the
medium, + the frequency of the time-dependent
elastic displacement field in the medium, and a,
P, jLi, , & the Cartesian indices x, y, or z.

The bulk equation for the other crystal at x, & 0
is obtained from the one above by changing p and
C ~„„, respectively, to p' and C'~„„:

82
5~~60 +—~ Q C~g~p s Bx U~~(x~x; &0)
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= 5 &5(x- x'), (I')

In order to obtain the Green's function U for the
two crystals connected by a planar interface, we
have to solve Eqs. (I) and (I') subject to the
boundary conditions at x, = 0:
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g C,„„U„«(x,x', &u)

Q C «„U «(X, X '(d)
Xp

III. TRACK OF THE GREEN'8 FUNCTION
FOR A MCRYSTAL

Thanks to the symmetry of translation parallel
to the interface, the Green's function U' can be
Fouriex' analyzed in the following manner:

U «(x, x')
l „,« = U~«(x, x')

l „

The condition (2) comes from the continuity of the
stresses across the interface and the condition
(2') from the continuity of the displacements. '

Our intexest here in the Gx'een's function U
derives from the following considerations. If we
denote by U' ' the corresponding bulk Green's
function for our two crystals which are the solu-
tions of Eqs. (1) and (1'), respectively, for x, &0
and x, (0, we can construct a, function Q(y) ac-
cording to

where x„and k al e both two-dimensional vectors
with components (x„x„0)and (k„k,„0), respec-
tively. %'e then use the isotropy of the medium in
the plRne x~ = 0 and cR1 ry out R simllarlty trans-
formation of our set of equations with respect to
s. matrix 8(k) which rotates the vector k into the
vector (k, 0, 0). This has as a consequence that
the transformed matrix d now has the following
pl'opex'ties:

Q(y) = —P dx, dx, dx, [U„(x,x;fy)
~e «0

—U",,'(x, x; iy) 1.

(3)
Maradudin and Wallis introduced such a func-

tion in order to calculate the surface contribution
to the specific heat of a crystal. We extend their
approach to the case of a bierystal interface. It
can be shown in the manner they did' that if the
function Q(y) has as its only singularity a logarith-

l.e. , lf

Q{»--» inlyl+o{h ly I)

the interface contllbutlon to the speclflc heat of
the two crystals ls given by

nC„(T) = GAS f{3)k (k T/k)'+ o(T')

in the limit of T-0, where g(x) is the Biemann
zeta function, A~ is Boltzmann's constant, and
8 the interface area.

The problem of calculating the intexface contri-
bution to the specific heat of the two crystals is
therefore reduced to showing that the function
Q(y) has the asymptotic form given by Eq. (4) in
the limit as

l y l-0, and of determining the co-
efficient A.

We will show in the following section that it is
possible to obtain U (and U"') in closed form for
lsotroplc media by solving the pRx'tlR1 differential
equations (1) and (2) directly. With this result in
hand the determination of the interface contribution
to the low-temperature specific heat of such media
is straightforward, and is carried out in See. IV.

and the calculation of d„ is decoupled from that
giving, respectively, d„„, d,„and d„, d„,. We use
this procedure to obtain in closed form the co-
efficients d «(k&u lx, x,') for the two isotropic elastic
media bounded by the plane x, = 0.

The full derivation of this matrix d is given else-
where, 9 where we use the eoeffieients d~z
(k(o lx, x',) to study the correlations functions be-
tween two crystal atoms situated in the vicinity
of the interface. In the calculation of the inter-
face specific heat we need only to know [Eq. (3)]
the trace of d- d'", where d'0' are the bulk va-
lues of d. Before giving the necessaxy expressions
let us recall that the only nonzero elastic con-
stants for our two isotropie solids are, respec-
tively» c~~» cg2» c44 and c~~» c~g» c44» the lsotx'opy
relations being 2c44 = c~~ —c~~ and 2c44=c~l —cl2.
Let us also introduce the transverse and longi-
tudinal speeds of sound:

& =(& Jp)'"' c =(c /p)'"

(ci /pi)i I «. c {ci /pi) j.l «

cP=k —&d /c; o =k —(d /c
2 g2 3/ 2 . 2 2 2/ 2

,.=k—

Finally for the two lsotropic crystals separated
by plane x~=0, the solutions of interest here for
vs~ 0 are

d«(x~, )

~e c«4 ~tc~ e «e, ix, i (10)-
e,,c44+ e,c~
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&f„,(x~,) —&f,&0,'(xp, ) d&"(x~,)

I @-(og+ey)!xsl

A g t g y t g t g»

e-(f2g+f2&) lx3I

I~a~ g=t, g g=t, g, t', g'

—(e„/a, ) (k'+ a,')
—2iC44k

2C

—i(e„/k) (n', + k')

—(e,',/a, ,) (n'„+ k')

2iC44k

—2C44Q g»

f (e,',/k)(a', , + k')

fk/a, in, ,/k

(fe„/k) (a', + k') —(ie4,/k) (n', , + k') 2ie-,',k
—(e,./n, )(k'+ n', )

—ik/n&

2C44A t»

—in, ,/k

(e,',/n, ,) (k'+ n', ,)
—fk/a, ,

The matrices A;z are obtained by substituting the column i in H„by the column j of the matrix K„[the
columns (or rows) 1 to 4 of each matrix stand, respectively, for t, f, t', f']:

k +&t» ~
k'

C44 2 sgn xs —C44 —
2 SgQ x3

2~A QP

kit,—gC44
(d

k k'+ a,,SC'44 20t ~2

ik
2 sgnx3

Similarly the matrices 8,&

k +e
tC t

44 2~ ~2t

keg—gC44
(d

k k +at,
Ot t»

are obtained by substituting the column i of H~ by the column j of the matrix K~:

keg,
'EC44

(d

k +@2 k2 k +et,—C~, sgnx, —C44 —2 sgnx3 C44 — 2-' sgnx,t
2(d (d

ik
2 SgQx3

ik
2 sgQx3

2(d

k2

2' cO

The bulk values of d for x, &0 are those given
by Maradudin and Millse:

&f„"„'(x@,) = —1/2a, e', ,

d&0„'(x~,) =- (k'/2n, &o')(1 —a,a, /k'),

&f,",'(x~J = —(k'/2a, (o') (1 —n, a,/k') .

For x, & 0, the txace of d- d"' can be obtained
from E&ls. (10)-(16) by interchanging e„,e», e«,
ct, cga Qfty cg bye respectlvelyf cygne cg2s c44~ ct»~ cg»&

et„eg, and taking due account of the sgnx, ap-
pearing in K~ and K~. The bulk Green's function
d"' for x3&0, axe obtained in the same way from
Eqs. (17)-(19).

Let us note that from the relation
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IV. INTERFACE SPECIFIC HEAT

Let us now return to the calculation of the inter-
face specific heat. Following the method intro-
duced by Maradudin and Wallis, we can write the
interface specific heat in the form given by Eq.
(5). The coefficient A appearing in Eq. (5) has to
be calculated from the asymptotic evaluation of
the function Q(y) defined by Eq. (4). With the help
of Eq. (6), this expression becomes

Q(y) = —S Q
CL

m OO

dx, 2, [d (kiy ix,x3)
cPk

d.".'(sly
i x,x,)],

(21)

where S is the interface area.
Substituting the Green's functions (10)-(12) the

integration over x, in Eq. (21) can be ca.rried out
directly. Since the integrand in Eq. (21) is a func-
tion of the magnitude of k, it is convenient to carry
out the integration on cPk in polar coordinates. It
is also convenient to make the change of variable
k= iyiu/c, . This integration thereupon" can be
expressed as

cthe/ l yl

Q(y) =- dÃ uF(u),
27TC t 0

(22)

where k, is a cutoff immaterial for our pruposes
here. We need only the leading term in the ex-
pansion of F(u) in powers of 1/u' for large u.
And finally Q(y) can be obtained in the following
form:

Q(y) = —As ln[y [+o(inlay (), iy i
-0.

We obtain in this manner the coefficient A ap-
pearing in Eq. (5). Before giving the result of this
calculation, let us introduce the following nota-
tions:

2/ 2. I 2 /
V =Ct/C7 y

V =Ct&/Cfg

6 = c',/c', , ; y = c,',/c„.
(23)

Finally the interface specific heat between two
different isotropic crystals is given by

(20)

one obtains the Stonely' waves and their conditions
of existence. "

with

R =y [—(1+ v )(1—v')+ 5(1+ v)(v" —v'+ 1)]
—y[v'(2v —v+ 1) + 6v(2v'2 v'+ 1)]

+ [(1+v')(v' —v+1) —5(1+ v")(1—v)] (25)

and

b. = y (1+ v) (1 —v') + 2y(1+ vv' ) + (1+ v') (1 —v) .

(26)

~C(a) = ~C(s) + &C(s') gCv v + v v (27)

where &C„"' and ~C„" ' are the surface specific
heats of each crystal given by

k'~C"' =3v ' P(3), ST'+ o(T'), (28)c', 1 —v

and &C„" ' is obtained from 4C„"' by replacing c,
by c,, and v by v'.

Let us remark also that this study can be extend-
ed to the case of two hexagonal crystals bounded

by a planar interface parallel to their basal plane.
In particular the interface waves between two
hexagonal crystals and their conditions of exist-
ence can be obtained in this way. This work is
being carried out at present. "

We have obtained also the low-temperature inter-
face specific heat by a different method on a well
defined atomic model" for which c', = 3c', and C7,
= 3c', In this limit the two results agree.

One can check also that in the limit of two identical
crystals, the T' term in Eq. (20) vanishes. This
is consistent with the result obtained recently"
that the leading term in the low-temperature
variation of Cv due to a planar defect is of the order
of T'. This result can be obtained only" when
the frequencies (d are calculated to order k' rather
than k as done here and in general in the theory
of elasticity.

Let us note that we defined the interface specific
heat 4C„as the difference between the specific
heat of two different solids bounded by a planar
interface and the specific heat of the same two
solids but infinite in extent. One can also define
the adhesion specific heat ~C„'" as the difference
in the specific heat between two semi-infinite solids
and the same two solids bounded by an interface.

These two quantities are obviously related by

—(1 —5)(y- 1) 2R ~ (g)y+1

(24)
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