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Screening or polarization energies (often called "extra-atomic relaxation energies"} associated with localized-

hole creation in photoelectron spx:troscopy in or on metals have been calculated. Following the procedure of
Hedin and Lundqvist, the screening energy is written in terms of an eA'ective matrix element of a nonlocal

random-phase-approximation self-energy between wave functions of the localized-hole state. The relevance of
spatial extent of the hole, electron-gas dielectric properties, chemical-bonding effects, and surface eAects are
examined. Calculations for 1s core and bonding H, orbital holes in atoms or molecules which are embedded in

and adsorbed on electron-gas surfaces are presented. The interplay between orbital size and host interelectron

spacing (as manifested in screening lengths) is emphasized. The relationship between screening energies and

classical image potentials in photoelectron spectroscopy of adsorbed atoms and molecules is established.

Finally, interpretations of observed photoelectron spectra are discussed in terms of binding energies and

relaxation, chemical, and "dipole" potential shifts, and the problem of "proper" referencing is addressed.

I. INTRODUCTION

Experimental photoemission spectra from spati-
ally localized electronic levels in solids differ
from gas-phase spectra in several important ways.
First, the electrostatic potential (relative to the
vacuum potential) at the site of the localized state
(either core states or impurity-induced virtual
states degenerate with the conduction band) is
altered due to both the surface dipole barrier and
the crystal field from neighboring atoms. This
shift in the initial-state energy is often called a
chemical shift. ' It has been hoped that x-ray pho-
toelectron spectroscopy determinations of core-
level shifts could easily be used to ascertain some
chemical properties of the localized state in the
solid-state environment. This hope has been some-
what thwarted due to so-called final-state relax-
ation effects in which the passive system electrons
readjust to the presence of the positively charged
hole, lowering their energy by an amount called
the relaxation energy. ' " Following Shirley, ' this
relaxation energy is often segmented into uncoupled
parts: (i) intra-atomic relaxation due to electrons
on the atom from which the yhotoejected electron
originated; (ii) extra-atomic relaxation due to
polarization or screening by electrons from sur-
rounding atoms. It is then assumed (mostly out
of computational necessity) that intra-atomic re-
laxation remains fixed in going from atomic to
solid-state situations, although there are some
theoretical suggestions that this may not always be
true. 'O' Neglecting this complication, it then
remains to calculate the extra-atomic screening
energy in order that chemical information can be
extracted from photoelectron spectra.

In particular the present paper treats the problem
of screening energies associated with core and non-

bonding valence states of atoms or molecules em-
bedded in and adsorbed on metal surfaces. Both
x-ray-photoelectron'-xe and ultraviolet-photo-
emission spectroscopy" ~o experiments have been
performed on physisorbed noble gases, chemisorbed
atoms and molecules, and condensed molecules on
various metal substrates. Attempts have been
made to interpret the position of the adsorbate-
induced structure in a photoelectron energy dis-
tribution in terms of gas-phase spectra modified
by some chemical, bonding, and relaxation shifts.
However, basic theory underlying such procedures,
as applied to adsorption systems, has not yet been
worked out in detail. It is the purpose of this payer
to advance a theory of the extra-atomic relaxation
or screening energy associated with a hole state in an
adsorbed atom or molecule. It is already well known

that to zero order, this adsorbate screering energy
is just the quantum mechan-ical generatization of
a classical image potentiaL shift" and this reali-
zation marks our point of departure.

A number of alternative approaches for calcu-
lating screening energies have appeared. ' " Al-
though each theory has its unique set of strengths
and weaknesses, most theories seem to obtain
roughly equivalent numerical values for localized-
hole screening energies, after rather detailed cal-
culations are performed on assumed models (which
would be hard to generalize to surface problems).
It is this state of affairs which has led to the sim-
ple approach adopted in this paper. The basic
questions addressed here concern the role of
(a) hole spatial extent, (b) metal dielectric prop-
erties, (c) chemical-bonding effects, and (d) sur-
face screening on the extra-atomic relaxation en-
ergy. Following Hedin et at. ,

~ 4 the screening en-
ergy will be expressed as a matrix element of a
nonlocal seU-energy, evaluated within the elec-



2268 J. %. GADZUK 14

tron-gas random-phase approximation (BPA). Al-
though the model-dependent nature of this approach
is its basic weakness, the facts that the numbers
it produces are in the same range as the more ex-
tensive calculations"" and that the method offers
the flexibility of examining systematic trends in
questions (a)-(d) give the BPA technique its
strengths.

The basic physical input is the realization that
the screening charge induced by a localized charge
(hole) can be expressed as a coherent sum of vir-
tual bulk or surface-plasmon excitations. The
screening energy is just the Coulomb energy be-
tween the hole charge distribution and this induced
charge. Various aspects of both static and dynam-
ic screening of a point charge by the surface-plas-
mon field outside a metal (electron-gas) surface
have been discussed in recent years and we will
draw heavily on this collected wisdom. "" First
some confusing ideas concerning plasmon screen-
ing should be dispelled. The quantity of interest
here is the static screening energy which is re-
lated to R (~), the dynamic density-density response
of the system (plasmons) via a Kramers-Kronig
transform. '2'"'" In fact, since the static screen-
ing energy is given by" "Ae„f(da-r/ar) 1mB (&u),

knowledge of the excitation spectrum of the solid
is required, even though we are dealing with a
time-independent ground-state property of the
system with a localized hole. There are many
intriguing problems related to the time dependence
of the relaxation process, " 43 but in general these
problems are concerned with the relative number
of ejected electrons in various shakeup satellites
compared with the numbex in the adiabatic thresh-
old peak at an energy corresponding to complete
relaxation. "'"

The structure of this paper, some of which has
already been presented in preliminary form, "'"
is the following. In Sec. II, the general theory
used here for the screening energy of hole states
within and outside an electron-gas modeled metal
is given. Section III is devoted to localized-hole
screening within an infinite electron gas. In par-
ticular, the screening of a 1s hole, as a function
of hole size, is calculated and the role of spatial
extent compared to screening lengths is empha-
sized. As an exploratory study on the effects of
chemical bondings as they relate to screening
energies, Ae„ is calculated for molecular-orbital
hole states. Surface screening energies are treated
in Sec. IV, where again atomic- and molecular-
orbital holes are considered. The possibilities
of different values for the screening energy as a
function of molecular orientation with respect to
the surface (parallel or perpendicular for a di-
atomic molecule) are explored and a simple image-

like formula is given which takes into account the
impexfect screening of a real metal. The effects
which have been neglected in the present theory
and their anticipated importance along with other
loose ends are discussed in Sec. V. The relation
between experimental photoemission spectra and
the energies calculated here are discussed in Sec.
VI. As there has been considerable confusion in
the experimental literature on both the problem
of rei'erence levels (vacuum level versus Fermi
level versus average internal potential) and also
nomenclature (some people refer to the sum total
of relaxation energy plus chemical shift as a re-
laxation shift whereas others do not), this situ-
ation is also addressed in Sec. VI. Finally, gen-
eral conclusions are presented in Sec. VII.

II. POLARIZATION SELF-ENERGY

Within the BPA, the nonlocal polarization self-
energy for a quasiparticle with energy c is given
by4'28 y35.

5 V~„(r', (u)
Z(r, r';e) = — du&G, (r, r';e —u&)

2m 5n r, e}

where 5V,„(r', &u)/5n(r, &u) is the &uth Fourier com-
ponent of the potential induced at point r' by a
charge at point r. Go is the undressed quasiparticle
propagator after virtual emission of the density
fluctuation, as shown in Fig. 1, for the case of a
hole located outside a metal surface. If the hole
is localized, then the separation between r and r'
is of the order of the hole dimension. The self-
energy operator is x elated to an effective single-
particle-like polarization (or relaxation) shift in
some hole state P,(r}with unrelaxed energy e,
by3&35.

5e„= jtd'rd'r'(P+(r}Z(r, r';e=e, )y,(r'), (2)

which is the basic quantity to be evaluated. Note
that the self-energy can be evaluated at the un-
pertuxbed energy e, since Z is a small correction
to the strong potential which provided the original
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FIG. 1. Hole surface screening self-energy diagram.
The hole propagates from r to r' while the virtual density
fluctuation is localized within or on the metal.
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localization of (t),. This will be discussed further
in Sec. V.

The explicit form for the Green's function is

4.(r P.*(r')
e —(I) —E~ + E sgn(6„)5

this limitation. Defining the three-dimensional
Fourier transform of the hole charge density as4'

p.,(q) = d')'
( p.(r) ~'e"',

Eq. (6) then becomes

where ((t)„] is a complete orthonormal set of func-
tions which are solutions of a convenient zero-
order problem and e„are the associated one-
eleetron energies, with respect to the Fermi level.
In the case of adsorbed objects, the set(p, ) is
taken to be the atomic or molecular states of the
adsorbate only, thus eliminating by ansatz any
effects due to itinerant holes. 4'" (See Sec. V.)

From classical electromagnetism it is fairly
straightforward to show" that 5 V/5n is given for
a hole charge distribution in a uniform (bulk} con-
ductor by

(e', ) d'q ( —e(q, re))
5n(r, (d) (2v)' z(q, (u)

where e(q, (I)) is the wave-number and frequency-
dependent dielectric function of the medium. Simi-
larly a charge distribution outside a conductor in-
duces a screening charge on the surface mhich can
be related to virtual surface-plasmon excitation" "
(or the classical problem of a displaced harmonic
osciliatord'). The corresponding expression for
5V/5n is

II,*.. ( e', ) d' q ( — (q, ) dec *

)5))t(r ~) (2K) 1 + ~((fe (I))

I(( (I() It)) q(idi+id t) (6)

where now q is a two-dimensional vector parallel
to the z =0 surface. "

Expressions for both the bulk and surface screen-
ing energies are obtained by combining Eqs. (1)-
(4). Fll st, the blllk ellelgy ls

3 2 pea q

( )d (( —a(q, ))

From Eqs. (6) and (8) the physical consequence of
keeping only the x =a term has been the decoupling
of e(q, (d), the dynamic response of the electron
gas from the dynamic polarizability of the hole,
which enters the theory through the location of the
pole at e =e, —c„and whose strength is propor-
tional to ~ p (q) ~'. The picture provided by Eq.
(8) is one in which a rigid hole, with a spatial
extent determined by p„(q), is statically screened
by the electron gas. Mathematically this follows
from Eq. (8) since I/2vi times the integral on (I) is
just the Kramers-Kronig transform relating the
static and dynamic dielectric responses. " Equa-
tion (8) reduces to

1 " d'q 4ve' 1 —e(q, 0)
(2v)3 2

( ())
~ Pad(q) I

which is the expression previously obtained in a
much different may. "'" The advantages of the
present approach are that we have been able to
pinpoint the microscopic level approximations im-
plicit in the screening-energy expression and to
provide a quantitative means for improving upon
them [Eq. (6)].

Proceeding in an analogous manner for the case
in which the hole is on an adsorbate, outside the
surface, Eqs. (1)-(3) and (6) yield

de', =Q I,(, ) J
d'ed:(e)q, ( )e'"' 1 dry 1 —e(q, &o)

2vi &u 1+ e(q, (d)
(10)

i 1-e(q, (d} 1
2w e(q, (I)) ed —(d —e„

If only the x =a term is retained in the sum (which
is equivalent to assuming a nonpolarizable hole as
discussed in Sec. V), then it is possible to retrieve
standard results previously obtained for the screen-
mg energy of a pomt charge [)4,(r)~2=5("(r)]. For
the remainder of this paper me mill work within

where the two-dimensional Fourier transform of
the hole charge density is defined by

e..(q, *)-=I d*e»
I q.(»,*)I*a'"' 'a .

As with Eqs. (8) and (9), the retention of the x =a
term only wipes out the coupling between the (d

dependence of e and the q dependence of p„(q,z).
As discussed in Sec. V, this coupling mould give
rise to an effective van der %aals-type energy,
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mathematically expressed in the form of a Lifshitz-
like equation. " Performing the Kramers-Kronig
transform in Eq. (10),

x m e-'~'~p. , q, z

Equations (9) and (12) are the basic equations,
upon which all calculations in this paper will be
based.

In order to gain some insight into the relation-
ship between hole size, dielectric screening prop-
erties, chemical bonding, and screening energies,
it is informative to look first at the cases in which
an atom or molecule are embedded in a homoge-
neous electron gas and in subsequent sections
worry about the extra complications due to sur-
face effects.

A. Atoms or core states

If we consider a spherically symmetric hole,
the angular llltegratlon ln Eq. (9) ls trivial yieldlIlg

ae'„= — dq
'

i P,.(q)i',
e' " 1-e(q, 0)

which with a Fermi-Thomas dielectric function
e(q, 0) =1+x'/q' is

e'~' ."„ I p..(q)l'

where a =2.95/r,'/' A ' is the inverse screening
length. For a 5-function hole charge density

p„(r) =5iS (r), p„(q) = 1 for all q and Eq. (14) is
straightforwardly me,'(point) =e' z/2.

Next consider a hole in a 1s state in which the
hydrogenic function is approximated by a single
optimum Gaussian wave function"

I.O
K &I'&

3.0

0.8

0 6

C4

For the Gaussian orbital, a is related to the mean
radius as (r &=(2/vn)'/'. From Eq. (16), ne„'(atom)
as a function of (r) has been calculated treatingr, pa-
rametrically and the results are given in Fig. 2. As
expected, the relaxation energy is reduced signifi-
cantly when the spatial extent of the hole charge
density is comparable to or greater than -1/z
(marked by the vertical line). The physical origin
of this reduction is clearly illustrated through Eq.
(16). The screening of the hole is due to a coherent
superposition of electron-gas density fluctuations
with wave numbers q. To achieve the perfect lo-
calization of a point hole, Fourier components of
all wave numbers are required, hence p„(q) = 1 for
all q, and the entire density-fluctuation spectrum
contributes to the screening charge and thus en-
ergy. On the other hand, for a spatially extended
hole, few Fourier components with qual/(r) are
required to localize the hole and thus the contribu-
tion to the screening energy from short-wavelength
density fluctuations (X «(r)) is small. From Eq.
(16) it is apparent that if the spatial extent of the
hole (as manifest in the Gaussian) is such tha, t 1/
(r) =q is much less than the inverse screening
length x, then the integral mill be reduced from
the q =~ point-hole limit. However, if q»z,
the denominator, which expresses the properties
of the electron-gas density fluctuations, will cut
off the integral in a way which is rather insensitive
to the value of (r). For values of r, in the real
metal range (26', 65), 1/a»(r „)-0.1 A, and

thus the screening energy should not vary appreci-
ably due to varying electron-gas properties. Lastly
note that the absolute values of these numbers are

with e =0.96 A '. The hole charge-density Fourier
components associated with this state are'2~'~

(q) l ds& &iq r
( y (r) j2 e-c2/Bct

8
4I

~ 6

0.2

Consequently, in the Fermi- Thomas approximation,
the relaxation energy obtained from Eqs. (14) and

(15) is

8 K
I

cfgg ~~~
me', (atom) =

+K

e" /' [1—erf (z/2o'/')]. (16)2

i l I i I i

0.2 0.4 0.6 0.8 I.0 i. P, I A l.6
&f'& fA)

FIG. 2. Bulk screening energy versus hole radius with
parametric ~~ depicted by the full curves and left-hand
and bottom axis, Nondimensionalized form is shown as
the dashed curve arith right-hand and top axis.
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roughly a factor of two larger than the screening
energies calculated for implanted rare-gas impuri-
ties in noble-metal hosts. '" In part, this is due to
an oversimplification in the electron-gas theory
(which, however, is of minimal importance in the
adsorbate case). 52ibi As pointed out by Citrin and
Hamann' and Watson, Herbst, and Wilkins, ' the
wave functions of the screening electrons must be
orthogonal to the core electrons. In pseudopoten-
tial language, this is accounted for by introducing
a repulsive pseudopotential which pushes the
screening charge out from the region of the core
hole. Consequently the screening energy is lowered
compared to electron-gas results where screening
charge is allowed to pile up nearer to the core
hole. For this reason, the absolute numbers for
h&„ in Fig. 2 are unrealistically large. On the oth-
er hand, in the ratio 2e'„(atom)/e'(i, also shown in
Fig. 2, the neglect of orthogonalization errors ap-
proximately cancel and physical conclusions de-
rived from this curve are more realistic.

B. Molecules

If two atoms interact to form a simple chemical
bond, then, at least in a molecular-orbital (MO)
picture, the electrons originally occupying the
constituent atomic orbitals, delocalize into the
spatially more extended MOs. Since the screening
energy is inversely proportional to the volume of
the localized-hole state, it is essential to know
how the screening energy changes, upon bond
formation and thus hole delocalization, if photo-
emission spectroscopy is to be used as a quanti-
tative technique for chemisorption studies involving
bonding orbitals.

As a first step in understanding this relaxation
effect, consider the simplest possible case, that
of a diatomic H, molecule embedded in an electron
gas. Upon photoejection, a hole is created in an
MO state

ic)( r) =N [P~( r —R,) + (t) ~( r —R,)],
where Q(a) or p(b) are 1s atomic orbitals on each
center at R, or Rb with I R, —Rb I

—=s and the nor-
malization constant N = I/)(2 (1+S)'i' with S = (alb)
the overlap integral. The hole charge density is
then

p„(r) =N'[I p~(r —R, )l'+ I y„(r Rb)I'—
+2/~(r —Rd)4)~(r —Rb)] . (17)

The first two terms on the right-hand side of Eq.
(17) are atomic-charge distributions on each of

with

ed(add/2p (q) (18)

s.(s)=pzd. d (
' '

)
x exp[-q'/4(n, +n, )].

Consequently,

p, (q) +pb(q) =2cos (—,'q, s) po(q) .

(19)

(2o)

Following standard procedure, " the Fourier trans-
form of the bonding charge can be written

Ss.(t()= jd'rs ' 'd„(r ——,'si)d„(r+-,'s', )

P Pd „(2( ~,)'*)"

x exp[- n, n, s'/(n„+ n, )]

x exp[-q /4(n(2 + n2)] . (21}

Combining Eqs. (17)-(21}, the qth Fourier compo-
nent of the hole charge density is

p„(q) =2N'[p, (q) cos (-,'qs cos8) + pb, (q)] (22)

with q, =qcos8. Inserting Eq. (22) in Eq. (9) and

performing the angular integrations yields, for the
screening energy,

the two centers, but with total occupation &-,' per
center. The remaining charge, given by the con-
structive interference term, is called the quantum-
mechanical bonding charge and is concentrated be-
tween the two centers.

In dealing with multicenter molecular problems
it is convenient to write the atomic orbitals as an
expansion in Gaussians:

d„(r)=I d, (2™')s

We will use the coefficients d~ and exponents n~

suggested by Stewart" for N =4. The desirable
feature of the Gaussian expansion is that the two
center bonding charge density in Eq. (17) is given

by a sum of Gaussians" and Fourier transforma-
tion is thus straightforward. With R, = + 2sf, (sin—ce
the infinite electron gas is translationally and ro-
tationally invariant), the Fourier transforms of
the atomic-charge densities in Eq. (17), with re-
spect to an origin midway between a and b are

p„(q) =
Jl

d're'~'
I 4) (r+-,'si",)I'

p.(q)' +, + pb.(q}'+4p.(q)pb, (q)2a1+S 0 eq 0 qs 2
(23)
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Equations (18'), (2l), and (23) have been evaluated
numerically as a function of a's, using both the
Fermi- Thomas and RPA (random-phase-approxi-
mation) dielectric functions and treating r, param-
etrically. The results are shown in Fig. 3. The
internuclear separation for H, and H, in the gas
phase ranges from 0.74 to 1.06 A and this span of
s values is marked by the vertical lines in Fig. 3.

Within the MO framework, these results have
the following meaning: As s-0, pb, (q) =po(q) by
comparing Eqs. (19) and (21), S =1, and Eq. (23),
the molecular screening energy, goes precisely
to Eq. (13), the atomic value. As the atomic or-
bital is stretched out into an MO (the consequence
of increasing s from zero), the volume of the
single electron orbital increases and thus one
would intuitively expect the screening energy for
the bonding MO to be reduced. The percentage
decrease in ae„(molecule) compared to ne„(atom)
(for s in the H2 to H2+ range) is shown in the insert
in Fig. 3 to be always less than 10% for real metal
values of r, . At least in the case of H„ it appears
that approximating the H, screening energy by the
H energy is not too bad, and thus the extra delo-
calization due to bond formation is not quantita-
tively very important. However, due to the small
size of both H and H„comparable with 1/z, this
approximation may not be as valid for larger mole-
cules.

In the other extreme limit s-~, the MO picture
suggests two protons with "one-half a hole" on
each center. The screening energy goes as the
square of the hole charge --,' but there are two of
these holes so the energy is down by 4 compared
to the atomic value. This is obviously an unphysi-
cal result which stems from the lack of correla-
tions in the MO theory. As the internuclear sep-
aration increases, correlation effects which are
the major ingredient of a pure Heitler-London
theory, require the hole to be on one or the other
proton with the other partner a H atom, and in
this picture A&„returns to the correct atomic value
for large s. Fortunately in the range of applicable
s values for ground-state H„ the simple uncor-
related MO theory is reasonable for present pur-
poses. In the Heitler-London model, the hole is
itinerant, hopping back and forth between the two
centers. The hole hopping time scale is set by the
bonding-antibonding orbital-energy separation,
2V; i.e. , r „.. .-g/2V. If this time is long com-
pared with some characteristic screening time
T„usually assumed to be of the order of the inverse
plasmon frequency, "then the screening charge is
able to slavishly follow the instantaneous position
of the hole and the resulting screening energy is
that one associated with a single atomic orbital.
In our case, as s-~, V-0 and thus 7 „,pp. , »T„so
the atomic limit is retrieved. On the other hand
when T h pp&g T the screening charge cannot
respond swiftly enough to the instantaneous hole
position and thus sees a time-averaged hole dis-
tribution which is the delocalized MO distribution
treated here. This effect has been discussed by
Doniach~ and then Hewson and Newns" in slightly
different contexts and more recently by Schrieffer"
with regards to photoemission spectroscopy of
surf aces.

-r-5
IV. SURFACE SCREENING ENERGY

4

0
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I 2 3 4 5 6 7 8

FIG. 3. Bulk screening energy versus Ks for an im-
planted H2 molecule, treating r, parametrically. The
solid curves are the values with an RPA dielectric func-
tion and the dashed curves with a Fermi-Thomas one.

The major thrust of this paper concerns the
screening or extra-atomic relaxation energies
of hole states that are localized on adsorbates
outside the metal surface. In the limit in which
either the hole size is small or the hole-surface
separation is large compared to a characteristic
screening length of the metal, the screening en-
ergy is expected to go over to a classical image
potential shift. " It is our purpose to see how such
considerations as finite orbital size, hole-surface
separation, molecular orientation, and finite
screening properties alter the classical image
result. First we will investigate the surface
screening response to a 1s hole which could be in
a H valence state. An experimentally more rele-
vant and realistic system is a 1s core hole in say
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FIG. 4. Some;: asonable CO adsorption geometries.

C or P, either atomically or molecularly adsorbed.
In fact CP adsorption on various transition metals
constitute some of the most widely studied sys-
tems" using photoemission and even still there is
no universal agreement on such fundamental ques-
tions as to the state of CP dissociation on the sur-
face." As Brundle has emphasized, "doing core-
level XPS in conjunction with valence-level UPS
is a much more powerful tool than one without the
other. Presumably relative 1s core-level shifts
in the C and P vary in the different steric configur-
ations shown in Fig. 4. Thus observation of the
changes in screening energy might even be a use-
ful diagnostic aid rather than a hinderance, if
meaningful theoretical predictions for 1s core
shifts are available.

A. Atoms or core states

First consider the case of perfect screening.
Microscopically this implies infinite free-electron
density or r, -0, z-~, and thus (1 —e)/(1+e)-- 1
in Eq. (12), yielding

dq dQ dze ' ' p„q&

(24)

where now an upper cutoff to the q integral has
been inserted. Some important and controversial
physics is implied by this inclusion" (which will
be inconsequential to the results reported here).
This will be discussed shortly.

The simplest hole charge distribution is that of
a point charge, a distance s from the surface. With

p„(r) =6 (r„)6(z —s), p„(q,z) =6(z —s) and Eq.
(24) integrates to

tion. Needless to say, any theoretical result
which depends sensitively on the numerical value
of such an ill-defined quantity as q„must be viewed
with caution. In fact the controversy just men-
tioned" centers around a theory of surface energies
whose end numbers are a strong function of q p.

The physical significance (and irrelevance here)
of the cutoff can easily be seen through Fig. 5.
Here. a spatially extended hole centered a distance
s from the surface induces a screening charge
which can be expressed as a superposition of sur-
face charge-density fluctuations or in other words
surface plasmons. Shown in Fig. 5 are two limit-
ing cases in which the surface-plasmon wavelength
is much smaller (X,) or larger (A., ) than either the
hole size or distance from the surface. If x„&s
and X, «s then the Coulomb interaction between the
A., (large q) surface-plasmon field and the hole will
average to zero and the screening energy will be
independent of q„,. This is clear from Eq. (25)
also. For a spatially extended hole, it is physically
apparent from Fig. 5 that the significant hole-sur-
face plasmon interactions occur near A. , and ap-.
proach zero when X,«r„. Mathematically p„(q,z)
in Eq. (24) cuts off the q integral when q exceeds
1/r„, even if s is small so again the need to avoid
divergences by assigning a value to q„ is averted.
Laramore and Camp" also calculated the bulk
plasmon screening energy and, counter-intuitively,
found this to be smaller than the surface screening
energy leading then to conclude that "the core hole
is more effectively screened at the surface than in
the bulk, " in agreement with the preliminary in-
terpretation of some experimental results of Hou-
ston, Park, and Laramore. " These conclusions
can be questioned on a number of grounds. Four
points bear on the present discussion. First, the
Laramore and Camp surface screening energies
depend strongly on the well-guided but still arbi-
trary assingment of a value for q„„. Second, a
reasonable prescription for relating the z =0 plane

ne' = (1 e-2~up')e
4s (25)

which in the limit q„, or s-large is just the clas-
sical image shift. Equation (24) has been obtained
previously by Feibelman et al. ' and in the context
of surface relaxation energies by Laramore and
Camp. " Various proposals for picking the value
of q„„have been suggested. " These include Fermi
and Fermi- Thomas wave numbers, the value of
q for which the plasmon dispersion curve hits the
electron-hole pair continuum, 1/W2 times this
value, and the inverse electron-electron separa-

VACUUM

& & fL IL fL ILA7TplL„,
v vvvvv,

+METAL

FIG. 5. Schematic diagram illustrating the various
relevant distances for screening of an adsorbate hole of
radius ~„a distance s from the screening plane. Surface
plasmons of various limiting wavelengths are shown as
the sine waves.
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in the electron gas to the location of the effective
screening plane in a real metal, relative to the
ion cores, must be given before coInparison be-
tween experiment and theory can be made. Such
a prescription was not given by Laramore and

Camp, thus leaving the value of 8 as yet another
fitting parameter A. well-defined procedure (al-
though somewhat arbitrary) will be given in Sec.
V. Third, as pointed out by Chang and Langreth '
who performed similar calculations, significant
Friedel-like oscillations in the point-charge
screening energy occur, as a function of distance
into the surface. These oscillations produce local
maxima in the energy which at times exceed the
bulk value. In the context of the presently dis-
cussed theories, Chang and Langreth suggest
that these maxima are mathematical artifacts due
to sharp integral truncation and have nothing to
do with more efficient screening in the surface
region. Lastly, the basic structure of the surface-
plasxnon screening model may give rise to anom-
alously large sex eening energies fox point holes
located in the z = 0 plane. By construction, an
external charge induces a surface scx'eening charge
constrained to a layer of zero thickness at z = 0.
In a real system, the screening charge can spread
out to a certain degree in the normal direction.
Thus the surface-plasmon model probably over-
estimates the surface screening when the hole is
right at the surface as the induced charge is forced,
by imposed boundary conditions, to pile up closer
to the hole than it would in a real system. For this
reason, our considerations are restricted to holes
outside the surface.

Moving on to the spatially extended 1s hole out-
side the surface, the two-dimensional Fouriex
transform of the 18 Gaussian charge density is

(q g) —(2~/v)1/2e 2cc(g- ) c 2/BR (26)

where now the z origin is shifted from the core
center to the surface. Inserting Eq. (26) in Eq.
(24) and noting that all the z integrals can be cast
into the form"

in which c is some number obtained from the plas-
mon dispersion relation and co~ is the q = 0 plasmon
frequency. Equation (28) can be inserted in Eq.
(10) and the &u integral performed. Again it is
just the &u =0 part of e(q, &u) which is required.
Note that from Eq. (28), e (q, 0) = I+/c'q'. In
factc, is such that m~/c =a and thus the Fermi-
Thomas dielectric function results from the trans-
formed dynamic & which includes plasmon disper-
sion. '"" The factor (1 —e)/(I+a) in Eq. (12) is
just (1+2q'/v'} ' which is a Lorentzian with half-
width at half-maximum =z/W2. For a spherical
hole, the screening energy from Eq. (12) is then

which is the surface analog to Eq. (14), the bulk
scx eening energy. The same interpretation of hole

I.O

I I I

energy e'/4s versus s is shown in Fig. 6. These
results can be regarded as Rn adequate first ap-
proximation to the screening energy if s & (r).
Note though that in all cases, 8 —= ae„'/c- e0.9,
rapidly approaching unity when this condition is
fulfilled. Upon reflection, this is not surprising
since Eq. (27) is derived from a model which must
reduce to the perfect image potential if the hole
chax'gedlstl lbutlon ls totally outside the surface.
In addition, if the charge distribution is symmetric
about z =8, then the screening energy does not
depend on the dlstx'lbutlon ln the transverse dll'ec-
tion, for a perfect conductor surface, if (r) &s.

Finite screening effects can be included in a
number of ways. The simplest is to impose a
finite q„, in Eq. (24}, as has been discussed. An-
other way is to include plasmon dispersion. Lund-
qvistM~~ and later Overhauser~ b~ have worked
with the so-called plasmon pole dielectric function

~IO

where 1-4 is the error function, the perfect con-
ductor (q„,=~) screening energy, Eq. (24), is

0.6

0, 2

I

0 0.2 0.4 0.8 0.8 I.O l.2 l.4 I.8 I.8

Equation (2V) has been evaluated numerically as
a function of s treating u and thus (r) parametri-
cally. The ratio of 6&„' to the point-charge image

FIG. 6. B,atio of extended 1s hole screening energy
over the point-charge image potential versus distance
from surface for a perfect conductor. The hole radius
is treated parametrically.
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size, manifested in p„(q,z), versus screening
length as was given after Eq. (14) applies here.
With a Is orbital, p (q, z) is given by Eq. (26),
which when inserted in Eq. (29) gives the ratio

R -=we„'/e

2 ~, I+2q2/)(' (6n)' '

+&+qs
(6~)1/2

(3o)

Equation (30) is plotted in Fig. 7 as a. function of
s, treating r, parametrically (with a = 0.96 A ').
For "reasonable" values of n corresponding to
hole radii (r) s0.6 A, the variations in R as a
function of 42 or (r), for given s, were not signifi-
cant, provided s&(r). This follows from the fact
that the screening function (I+2q'/)(') ' cuts off
the q integrand before the truncation due to hole
extension is felt. However if (r) W2/)1 (which it
never is for 1s states and metallic densities), then
n. e'„decreases and in the limit in which (&) -~,
~q'„-0. From Fig. 7, it can be seen that the finite
screening effect substantially lowers the value of
Ae'„, to about 80%o of the perfect-screening result
for atomic scale hole-surface separations (s=1 A).
Long ago the expression V, =e'/4(s+K ') was sug-
gested" for the classical image potential corrected
for imperfect screening. For s-1 A, V, is re-
duced to -70% of the classical result, which is in
accord with the numbers of Fig. 7. These are the
ones to use in data interpretation (Sec. VI), after
following the prescription in Sec. V for picking a
value for s, given the adsorbate and substrate.

B. Molecular-orbital states

( r H ) (2& /v) e
-a (x+ 4 /2 ) e

- ay e
- n ( e-s)2

(31)

( r It ) (2&/V )3/4 e
-n (x -4 /2 ) e

- ay e
-a ( s-s)

and for the perpendicular orientation from

( It ) (2 / )3/4 n(x +y ) -n(e s)

(32)

(r H ) (2&/V)3/4&-n(x +y )e-a(s-s-s)

After a bit of rearrangement the MO hole charge
densities, from Eqs. (17), (31), and (32) are

p(r)(212/V)3/2e-2ay&-2a(s-s)

xe " " +' ' (I+cosh212xa) (33)

( r ) 1(2&/&)3/2&-2a(x +y ) e-2a(e-s)

- ns( /-e+ ) 2
- n ( /-e+ )) (34)

In data analysis of photoemission spectra from
adsorbed or condensed molecules, as discussed in
Sec. VI, knowledge of the screening energy of a
nonbonding MO hole state in the adsorbate is often
required. " It is thus of considerable importance,
in analogy with Sec. III B, to study the theoretical
screening energy for MO holes outside the surface.
Again we will consider the prototype H, molecule.
As shown in Fig. 8, there are two different natural
orientations of the molecule with respect to the
surface, each of which may have different screen-
ing energies. This fact may be useful in determin-
ing molecular orientations.

In the coordinate system labeled in Fig. 8, the
MO for the parallel orientation is formed from the
1s Gaussian atomic orbitals

1.0

0.8

E0.6

g2 0.4

00 0.2 0.4 0.6 0.8 I.O I,2 1.4 I.6 I.8

s(A)

FIG. 7. Ratio of ls hole screening energy over the
point-charge image potential versus distance from sur-
face, treating the electron-gas density parametrically.
The Gaussian constant a =0.96 A 2 is the optimal choice
for a single Gaussian approximation to a hydrogen 1s
orbital.

2

o p

$

FIG. 8. Illustration of the geometrical alternatives
for an adsorbed H& molecule.
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The two-dimensional Fourier transforms of the
charge densities are defined by Eq. ('.1). From
Eqs. (33}and (ll), it can be shown that

with

f (z) =-'(2o-/&)'~'e '"' '
x (1+e -4eg(a/2+ a-e)+2e-2e(a/2+@-e))

pii (q~z) =fbi(z) e

x [1+e"'~'cos{-,' qa cosp)],

with

f (z) (2~/v)xl2e-2n(s-3}2

Similarly from Eqs. (11) and (34)

p~(q, z}=f (z)e '

(35}

(36)

For simplicity consider the perfect-conductor
surface screening energy given by Eq. (24). With
either p~~ or p~ [Eqs. (35) or (36}], Eq. (24) can be
x'educed to R SHlgle quadratureq usHlg the mtegral
representation for Z„ i.e. , Jo~dp cos(b cosp)
=2v J,(b). After some tedious but straightforward
algebra, the final results are

+2+-CIC oo t" 2 +@Ofg ~CQ

J dq
'

2
+2e"' i' J,(qa/2) +

2 J,(qa)8 1+8 3

(37)

q'4~~"~), ~,—.. ~. ,—.(...i.), ~ e-4~(8 ~ ~/2)}

~(~~gym) q+4cR(e +a/2)
(8o.)'~'

(38}

Equations (3V) and (38) have been evaluated for a
number of different choices of parameters. The
ratio ae„'/e,. versus s is shown in Fig. 9 for the
not unx'easonable choice of parameters a =0.96 A"~

and a =0.8 A. Also included are the imperfect-
screening results in which the factor (1+2q'/z') ',
evaluated at r, =4 is inserted into the integrands of
Eqs. (37) and (38). As is apparent, significantly
different (-40go v»tation) screening energies are
obtained for the MO state, depending on orientation,
when s s1 A, as expected for adsorbed species.
The fact that A&„~ is smaller than A&„~~, for the
same value of s, is quite reasonable since the cen-
ter of gravity of the perpendicularly oriented mole-
cule charge is farther from the surface. Thus it
seems likely that assigning identical relaxation
energies to different nonbonding MQs of an ad-
sorbed molecule could be misleading if any sub-
sequent conclusions ax'e sensitive to discrepancies
in scx'eening energies which are of order 50%.

in the main text was not essential for the principal
message. The defex'x'ed questions are Rs foUows.

A. Self-consistency

It was mentioned after Eq. (2) that the self-energy
would be approximated as Z(r, r', e =e, +b, e„)
=Z(r, r'; e, ), thus neglecting self-consistency to
this order. This is in contrast with recent work
by Hodges in which the impol tBnce of self-con-

0.8

g 0.6

~~0.4

0.2

0
0 0.2 0.~ 0.~ o.s t.0 ~.a ~.~ i.s (.8

Throughout this paper, various questions deserv-
ing of answers have arisen. Many of these have
been relegated to this section since their inclusion

FIG. 9. Ratio of molecular screening energy over
image potential versus distance from surface for the
parallel and perpendicular orientations shown in Fig. 8.
The numbers in parenthesis are the ~s values.
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sistent calculations of Z was stressed. However,
Hodges was concerned with the problem of posi-
tron surface states which extend into the vacuum.
These states are bound to the surface solely by
the imagelike potential obtained from Z(r, r'; e}
and thus a self-consistent solution for Z( r, r', e)
is necessary if the resulting eigenvalues are to be
treated with confidence. On the other hand, for
the hole screening problem, a strong ion core po-
tential is already included in the definition of p, (r)
and the relatively weak image potential is just a
small (s10%) correction to the hole potential and

thus eigenvalue. Consequently, a non-self -con-
sistent perturbation calculation should be adequate.

B. Itinerant holes

Already in the discussion of the s-~ limit of
the H, bulk screening energy, several points have
been made concerning the relative hole hopping
versus hole screening time scales and their im-
portance in the apparent screening-energy shifts.
(1 am grateful for some informative discussions
with J. R. Schrieffer). A nontrivial point arises
in the case of chemisorbed entities where the sys-
tem wave functions are of the form'

0 ....(r}=tC'. ( }+g

Here p „ is a substrate wave function with energy
e(Tc), normalized over a large volume, P, is an

adsorbate wave function introduced in Eq. (3), and

V, „-. is the adsorbate-substrate hopping integral.
The question raised here is what is the justification
for treating adsorbate relaxation with V, k. =0, re-
sulting in a state p, (r) which relaxes as if the hole
is for all times localized at the adsorbate center,
when in fact the system eigenfunctions are delo-
calized over the whole substrate and adlayer? Then

almost as an afterthought, the relaxation shifted
energy level is broadened by V, &, which in the
simplest virtual-level model yields local density of
states on the adatom

1
(e 6

v (e —eg —6e„) +n g

with n, ,=vN(ez) () V, „~') and N(e„) the substrate
density of states at the Fermi level. The physics
behind this procedure can be seen from a wave-
packet point of view. Suppose a hole, which is a
nonstationary system state, is created on the ad-
atom. The substrate electron gas will respond
to this hole in a time of order co~ '. Although the
hole is itinerant, as it is a wave packet, it will
remain on the adsorbate for a time -8'/a, . Since
n., «h&u~ (typically n., /I~~=0. 1), the electron gas
will have had sufficient time to completely relax
before the hole or wave packet starts meandering

through the substrate. Thus the relaxation first,
broadening second procedure can be seen to make
physical sense in the case in which the level width
of the virtual state (or narrow band) is small rel-
ative to the bandwidth and thus the plasmon energy
of the relaxing electrons.

C. Nonpolarizable holes

d q 4778 g
d

1 -f q

a e'q' x
—4J —fa x

(39)

Expanding the exponential in the matrix element
and keeping only the first two terms, the sum-
mation in Eq. (39) is

ax ' aux
fz —(d —f„ f~

—(d —f„

+ 2 CR (eg —(d },1 q
(40)

where u(e, —ur) is the dynamic polarizability of
the impurity ion. The first term in Eq. (40) has
been treated in the text. The polarization term
couples the dynamics and spatial extent of the hole
with the dynamics of the responding electron gas
through the ro integral

ding Q f, -M

A similar exercise can be carried out for the ad-
sorbed species, in which case a formula would be
obtained which is an ion-surface analog of a paral-
lel-plate Lifshitz formula. As a trivial example,
consider hydrogen. If V, p=0, then n =Oneces-
sarily, and this correction is irrelevant.

D. Hole-image plane separation

In order that the screening-energy theory pre-
sented here can be used for real data interpre-

By considering only the x =a term in the sum in
Eq. (3), we have omitted any effects due to the
polarization of the hole. Pictorially, from Fig. 1,
this implies that the intermediate-state hole prop-
agator is determined in a way which is independent
of the particular induced density fluctuation within
the solid. In other words, there is no feedback,
in which the induced density fluctuation alters the
propagation of the hole which induced the density
fluctuation in the first place.

To get a feel for the significance of this approxi-
mation, consider Eq. (6) rearranged as
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tation, a prescription which relates s, the distance
between the adsorbate center and the effective
image plane, to an experimentally accessible
separation must be given. Low-energy electron-
diffraction (LEED) studies provide numbers which

may be the distance between the adsorbate ion
core and the first plane of substrate ion cores,"
which we call zr, BED. Appelbaum'2 has noted that
self-consistent calculations on both jel1ium" and

pseudopotentialized Na indicate that the effective
image plane should be located at a position where
the substrate electron charge density tailing into
the vacuum has fallen to about 3 its average bulk
value. Theoretica11y this value, call it z J/3 can
be given with respect to a convenient origin, say
at the last substrate ion core layer. Consequently
the value of s, for a given adsorbate-substrate
combination, to use in the present theory is

bulb» &fi (0+ &&gbe ) + 6+b

Ebin, aes' » Sii f0 +SECbem)+~Sr

f 0

fI Illa'

v j
f0

(

f0I

FIG. 10. Electrostatic-potential diagram relevant to
photoejection of a core electron in a gaseous, adsorbed,
and implanted atom, with respect to a surface of a metal
with dipole potential D and work function (IP). The relation
between ejected electron kinetic energy and system
properties for the three cases is shown in the figure and

discussed in the text.

which will tend to be a sma11 number, If electron-
density profiles from jellium calculations are used,
then z, /3 is usually given with respect to the jellium
step edge, in which case d/2 must be added to s,g„
with d the substrate interplanar spacing.

VI. DATA INTERPRETATION

One of the aims of photoelectron spectroscopy
of adsorbates (and implanted impurities9) is to
be able to determine chemical and bonding shifts
in electron energy LeveLs by comparing gas-phase
and solid-state spectra. A meaningful comparison
is not straightforward since the gas-phase result
is displaced, upon adsorption or implantation, by
chemieaL, bonding, surface-dipole, and relaxation
shifts. In spite of the fact that this has been dis-
cussed at some length in the Literature, "0"'4
considerable misunderstanding still abounds and

one frequently hears the total shift between gas
and solid phase being identified as a relaxation
shift. Another "problem" relates to referencing
binding energies with respect to vacuum or Fermi
Levels. In fact neither procedure allows one to
make direct comparisons with gas-phase results
in a way in which chemical shifts can be extracted,
without knowing more about the surface barrier
than the work function.

To visualize the situation, consider a core-state
electron with a binding energy &, in the gas™phase
atom outside a semi-infinite solid, shown in Fig.
10. (We require a semi-infinite solid in order
to avoid the problems discussed by Estrup and
Quinn" regarding the difference between the elec-
trostatic potential. just outside the solid and the
"vacuum potential. ") Upon ionization with photons
of energy h v, the ejected electron possesses kin-
etic energy

Egg~~ =A v —Cg ~ (42)

Lastly, if the adsorbate eompleteLy penetrates
the dipole Layer and sees the bulk screening ener-
gy, then the atom is implanted and after photo-
ejection wiLL have kinetic energy

E~ b„a =hv —s, —[D+Oe,„, (bulk)] +«'„. (44)

By comparing Eqs. (42)-(44), it is apparent that
nothing ean be learned about ~&,„, from a com-
parison of experimentally measured values of
&I. ~ and E~,d, without independent knowledge
of both the dipole part of the surface barrier and

As the atom approaches the surface it enters
the electrostatic field of the dipole barrier which
raises the binding energy of the atomic electrons,
with respect to the vacuum zero. As depicted in

Fig. 10, the lowering of the level (increase in e~)
for an atom a distance s from the surface is f (s)D,
where D is the total dipole barrier at the surface, "
the difference between the average electrostatic
potential deep within the solid and far out into the
vacuum for jellium, and f(s) is the fraction of
the dipole potential which has been penetrated by
the atom. " This dipole may be just the intrinsic
dipole of the pure substrate or it may include
contributions due to the adlayer. An additional
chemical shift 6&,„, of the type discussed by
Siegbahn' may also raise or Lower the binding

energy. %hen an electron is photoejected from
such an adsorbed atom, the screening energy
gained by the substrate electrons is balanced by
&&„', the extra-atomic relaxation energy which
requires an upwar"d shift of the ejected-electron
kinetic energy, now given by
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also «„. Attempts are often made to deal with
this problem by subtracting a work function, in
which ease the terminology "referencing with re-
spect to the Fermi level" rather than with respect
to the vacuum l.evel is introduced. This is a harm-
less exercise but does not help at all in obtaining
any meaningful number from a gas-surface com-
parison. Knowing &d, which is the aim of this
paper, it is then possible to infer the total chemi-
cal shift, f (s)D+Oe,„, , from comparisons of gas
and solid spectra.

VII. SUMMARY

A linear-response theory for calculating screen-
ing or extra-atomic relaxation energies of local-
ized holes on atoms or molecules implanted in
or adsorbed on free-electron gas solids has been
presented. It was found that as the spatial extent
of the hole became comparable with the screening
length of the electron gas, the screening energy
was considerably reduced from the point-hole
value. Bonding effects which l.ead to more de-
localized wave functions did not greatly alter the
screening energy, at least for H„ the simplest
prototype molecule. The influence of chemical

bonding between the impurity and the host on the
screening energy of the bonding orbital was not
investigated. The relation between the classical
image potential and the extra-atomic screening
energy for a hole on an adsorbed atom or molecule
was established. In conductors with nonzero
screening lengths, the surface screening energy
is always smaller than for a perfect conductor.
Possible differences in &&„, depending on ad-
sorbed molecule orientation were illustrated,
again for H, . The connection between gas-phase
and adsorbed or absorbed atom photoelectron
spectra was illustrated and the fact that experi-
mental shifts are combinations of chemical and
relaxation shifts was emphasized. Little direct
comparison with experimental data has been given
here as that will be the subject of a forthcoming
paper.
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