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Surface contribution to the low-temperature specific heat of a hexagonal crystal
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We derive for the first time an exact analytic result for the surface contribution to the low-temperature
specific heat of an anisotropic medium. The system we consider is a semi-infinite hexagonal crystal with a
stress-free planar surface parallel to the basal plane.

I. INTRODUCTION

The surface contribution to the specific heat of
a finite crystal has been studied extensively, both
theoretically and experimentally.

Some'~ of the previous calculations of the low-
temperature surface specific heat of a crystal
were carried out for finite or semi-infinite iso-
tropic elastic continua, giving qualitative" and
quantitative ' results. Other calculations' "of
the surface specific heat of a. crystal which are
lattice dynamical in character have also been pub-
lished. A few of them' ' are of a qualitative nature
because they are based on a simple isotropic-
crystal model for which it is not possible to satis-
fy simultaneously the conditions for elastic stabil-
ity and the conditions on the atomic force constants
which follow from the invariance of the crystal po-
tential energy against infinitesimal rigid-body ro-
tations of the crystal. Maradudin and Wallis' de-
rived for the first time from a lattice-dynamical
model the surface specific heat of an isotropic
crystal at low temperatures. Their analytic re-
sult is that obtained by Stratton, ' Dupuis et al. ,

'
and Burt' in the elastic approximation. Among the
lattice-dynamical approaches to this problem a
few""*"give the surface specific heat at all
temperatures and show that this quantity has a
maximum at a given temperature and then de-
creases to zero at higher temperatures. Allen
and de Wette" give numerical results for the (100),
(110), and (111)surfaces of the noble-gas solids
neon, argon, krypton, and xenon. Chen, All-
dredge, de Wette, and Allen" use the same nu-
merical method for a (100) surface of Nacl. Their
results are in rather good agreement with experi-
mental results of Barkman, Anderson, and Brack-
ett" for NaCl powder. Their method, however, is
incapable of giving an analytic result at low tem-
peratures, as the other lattice-dynamical calcula-
tions do. ' Dobrzynski and Mills' and Allen, All-
dredge, and de Wette' also studied the variation
of the surface specific heat when a monolayer of
isotopic impurities is present at the surface.

Among all the preceding analytic calculations of

the surface specific heat only that of Cunningham'
deals with an anisotropic surface, namely, the
(110) surface of a simple-cubic crystal. But, as
we have noted above, his result is qualitative only.

In the present paper we derive for the first time
an exact analytic result for the surface contribu-
tion to the low-temperature specific heat of an
anisotropic medium. The system we consider is
a hexagonal crystal with a stress-free planar sur-
face parallel to the basal plane. We obtain this
result by using the Green's-function method intro-
duced by Maradudin and Wallis'0 (Sec. II), but in
the present work we calculate the necessary sur-
face Green's function for a hexagonal crystal with
a stress-free surface parallel to the basal plane
in the elastic approximation rather than for a dis-
crete crystal model (Sec. III). The knowledge of
this surface Green's function enables us to obtain
in analytic form the surface specific heat at low
temperature and the speed c~ of Rayleigh waves
(Sec. IV). The speed of Rayleigh waves in hexag-
onal crystals has been calculated numerically, "
but to our knowledge the analytic result in Sec. IV
is derived here for the first time.

II. GREEN'S-FUNCTION EXPRESSION FOR THE SURFACE
SPECIFIC HEAT

We consider an elastic medium occupying the
half space x, ~0, bounded by a stress-free surface
at the plane x, =0. The elastic moduli of such a
system are position dependent and are given by

c.,„„(x)=e(x,)c...„, (2.1)

e(x,) =

0, x, (0.
The equations of motion of the system are

(2.2)

(2.3)

where the JC, ~ „)are the ordinary position-inde-
-pendent elastic moduli of the material out of which
the semi-infinite medium is formed, and e(x, ) is
the Heaviside unit step function:
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where p is the mass density of the medium,
«(x, f) is the a Cartesian component of the dis-
placement of the medium at the point x at time I;,
and T ~ is the stress tensor. The stress tensor
is related to the displacement field by Hooke's
law

T~()+x = Q C ~&)g„(x)1)(x)i (2 4)

where the {)}„„(x))are the components of the strain
tensor:

1 sm „(x) s«„gx"-"=2 (2.5)

When we substitute Eqs. (2.1), (2.4), and (2.5) into
Eq. (2.3) and use the symmetry of C ~„„in p, and
v, we obtain for the equations of motion of the
semi-infinite medium

ly satisfies Eqs. (2.8). In general, there is an in-
finity of solutions of Eqs. (2.10), and we label
these solutions by an index s = 1, 2, 3, .. . .

The partial differential operator appearing on
the left-hand side of Eq. (2.10a), supplemented by
the boundary conditions (2.10b), is Hermitian.
The eigenfunctions {v"'(x)j can therefore be shown
to be orthonormal and complete:

&f'x t dx,v"'(x)*v"'(x) = 5„,, (2.11a)
0

g v'„"(x)*vz"'(x') = 5,85(x- x').
S

The frequencies {&djare clearly the normal-mode
frequencies of the semi-infinite elastic medium
bounded by a stress-free surface at the plane
x3= 0.

We now introduce the Green's function U,~(x,
x'; &d) as the solution of the equation:

(2 6)

We assume a harmonic time dependence for the
displacement field,

«.(x, f) =u.(x)e-'"',

and obtain the time-independent equations of mo-
tion of the semi-infinite medium in the form:

p&d'«, (x)+ 6(x, ) Q C„,„„

a = 1, 2i 3„x,~ 0. (2.8)

In writing Eq. (2.8) we have dropped the factor
e(x,) from the last term on the left-hand side,
with the understanding there and inall that follows
that x3~ 0.

If we now make the substitution

«.(x) =v.(x)/~p, (2.9)

and require that v Qx be a solution of the set of
equations

g2~ (S)
&2v&o)(x)

P Bfkk X8 Xv

a =1, 2, 3, @~~0 (2.10a)

subject to the boundary conditions

5 „(d+—5xs C 3„„

+ — C &„„U~ x, x';co =5 &5 x-x',j. 9

(2.12)

subject to outgoing or exponentially decaying wave
conditions at x, =+~. From the preceding results
it follows that this function can be represented in
the form:

)
v"'(x)v,"'(x')*

( )
(d —(&t)

S S

Our interest in the Green's function U,~(x, x'; &u)

derives from the following considerations. If we
denote by U"8'(x, x'; e) the corresponding Green's
function for an infinitely extended medium, which
is the solution of Eq. (2.12) with the term contain-
ing 5(x,) omitted, and subject to outgoing or ex-
ponentially decaying weve conditions at x3 =+~, we
can construct a function A(y) according to

o(x)=-Q f x'x„f xx, [o„(x,x;ix)
0

—U&0)(x, x; iy)].
(2.14)

It has been shown by Maredudin and %allis'0 that
if the function Q(y) has as its only singularity a
logarithmic dependence on lyl in the limit as lyl

0, i.e., if

Eo...„ "
) = o, = i, x, o (2.10b) Q(y) - -A lnlyl+ o(lnlyl), lyl-o, (2.15)

at the plane x3= 0, and outgoing or exponentially
decaying wave conditions at x, =+~, then the dis-
placement field «(x) determined in this way clear- (2.16)

the surface contribution to the specific heat of a
crystal is given by

nc„(T) = 6A&(3)ks(ksT/k)2+ o(T )
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in the limit as the absolute temperature T 0,
where l(x) is the Riemann f function and ks is
Boltzmann's constant.

The problem of calculating the surface contribu-
tion to the specifi. c heat of a crystal is therefore
reduced to showing that the function A(y} has the
asymptotic form given by Eq. (2.15) in the limit
as ~y~-O, and of determining the coefficient A.

If it were necessary to solve Eqs. (2.10a)-
(2.10b) for the eigenvectors (V"'(x)) and the cor-
responding eigenvalues (ru'J, and carry out the
sum over s in Eq. (2.13) to obtain the Green's
function U ~{x,x'; &o), the determination of the sur-
face contribution to the low-temperature specific
heat of a crystal by the methods of this paper
would be virtually impossible. However, we will
show in Sec. III that it is possible in fact to obtain
U, z(x, x', e) [and U",~'(x, x', &u)] in closed form for
a medium of hexagonal symmetry by solving the
partial differential equations (2.12) directly. With
this result in hand, the determination of the sur-
face contribution to the low-temperature specific
heat of such a medium is straightforward and is
carried out in Sec. IV.

Q I „(k(u~x,)d„(k(og,x,') = 6,6(x, —x,'), (3.3)

where the elements of the matrix differential op-
erator L(k~~x, ) are given explicitly by

L» (k(0/3) (0 kg (Cu CJ 2)k2

~c d
6( )~c d

g ~3 3 p des' (3.4a)

L»(k(ops) = -(1/2p)(c„, + c,2)k,k2, (3.4b)

L„(k(ug, ) =—(c,3+c~)k, +6(x,)i~k„

{3.4c)

I2, (k,(og, ) = -(1/2p}(c„+c,2)k, k2, (3.4d)

the Hermann-Maugin notation, the equation satis-
fied by the Fourier coefficients (d ~(k&o~xsx,')) takes
the form

III. DYNAMICAL GREEN'S FUNCTION FOR A HEXAGONAL
ELASTIC HALF SPACE

The Green's function U ~(x, x'; v) for an elastic
medium of arbitrary symmetry occupying the half
space x3 &0 can be Fourier analyzed in the follow-
ing manner:

~c d
( )~c d

g ~3 '
P dx, '

4

L2S(k%$3) = —(C»+ C44)k2 + 6(xs)f k2

(3.4e)

(3.4f)

2

6(x —x ) = 6(x~ —xs) ~ 82' 3 (3 2)

is substituted into Eq. (2.12), and the resulting
equation is specialized to the case of an hexagonal
medium with the six fold rotation axis in the x3
direction, i.e., a medium belonging to one of the
crystal classes 6, 8, 6/m, 6mm, 6m2, 62, 6/mm, in

2%)

where x„and k are both two-dimensional vectors
with components {x„x„0)and {k„k„O),respec-
tively. The form of the expansion (3.1) is dictated
by the fact that our elastic half space possesses
infinitesimal translational invariance in directions
parallel to its surface (the plane s, = 0), so that
U,~(x, x'; &o) can depend on x„and x,', only through
their difference. Because this system is no longer
translationally invariant in the direction normal
to the surface x, =0, U ~(x, x'; &a) cannot depend on

x3 and x~ only through their difference, but has a
more complicated dependence on these variables
whose form is one of the objects of this section.

When Eq. (3.1), together with the representation

L„(k(og,) = —(c„+c~)k, + 6(x,)i—"k„

(3.4g)

L»(k&ogs} = —(c»+ c~)k, + 6(x,)f-'ak2,

(3.4h)

L»(k~g, ) = uP —~k'+ ~3 — + 6(x,)~
(3.4i)

In these expressions the (c,zJ are the elastic mo-
duli in the contracted Voigt notation, and k = (k',

+ k', )'~'
Vfe now exploit the isotropy of hexagonal media

in the plane perpendicular to the sixfold rotation
axis (the plane x, = 0 in the present case) to sim-
plify the set of equations (3.3)-(3.4). We carry
out a similarity transformation on the set of equa-
tions (3.3) with respect to the matrix S(k) given by



(i, i, o)
S(k) —

l k2 k~ 0

0 0 Xi'

-k2 0

8'(k)=. li, 0, 0::::,
0 0

where k, =k, /k and km=k, /k. The real orthogonal
matrix S(k} is the matrix which rotates the vector
k into the vector (k, 0, 0}. As a result of this trans-
formation Eq. (3.3) becomes

Q & „(k(ajar,)g„~(kid)x,x,') = 5,~ 6( x,
—x,'), (3.6)

%'hex'e

Z,2(kid(xs) = 0,

2„(kid/, )=-(c„+c~)k +5{x,)i-sak, (3.9c)

Z„(k(dg, ) = 0,

~c d
( )~c d

723(kioIx, ) = 0, (3.9f)

Z, (kru~x~)=-(c, 3+c~)k +5(x,)i~k, (8.9g)

Z,,(ka) jxs) = 0,

$(k(0~x,) = S(k)L(k(oIx,}S'(k) {3.V) (3.9i)

d ~07(og,x,') = QS„,(k}S„,(k)g„„(k(og,x,"). (8.6)

The elements of the matrix differential operator
Z(kro~x, ) are given by

(3.9a)

The similarity transformation thus eliminates cer-
tain eleIIlents of the IIlatrix dlfferentlal opex'Rtor
Rnd fox'ces the x'eIQRinlng oDes to depend GD the
vector k only through its magnitude.

To solve Eqs. (3.6) we proceed as follows: We
first solve the form of Eqs. (3.6) which results
when the terms proportional to 6(x,) are omitted
from the elements of the matrix operator &(kid/, ):

—{cia+c~}k„P dies

-(c„+c„)k
P 3 dx

~c d
P P

g„„g,„g„,=5(x, —x,')] 0 1 0

z..z.J 4»)

The solutions of Eq. (3.10) are then required to
satisfy the folio'QHDg boundary condlflons Rt the
plane x, = 0, which are obtained by equating to zero
the coefficients of 5(x~} appearing on the left-hand
sides of Eqs. {3.6):

d .c
g +i~kg = 0gO

p
gO

g -o (3.11)
P

where n=x, y, g. The solutions of Eqs. {3.10) and

(3.11) are clearly solutions of Eqs. (8.6).
When Eqs. (3.10) are written out explicitly, it is

found that the Green s functions g~ BIId g&~ satisfy
hoIDogeneous equations, wMe g„„and g~ satisfy
a paix of coupled homogeneous equations. These
Green's functions therefore vanish identically.
The problem of obtaining the Green's function
U ~(x, x; &o) is therefore reduced to that of obtain-
ing the five functions g, g,„, g~, g„~ and g„as
the solutions of the following boundary-value prob-
lems for F3~0:
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k +
d gss+ (cis+ C44}k d gss(

~c, ~c d z d

p p d, p dms

= 6(x, —H), (3.12a)

with

x= (cssc44) [(c44+ ciicss)k —(cls+ c44) k

—(Css+ C44)P(d ]i (3.19a)

d c c d2

g +ikg,„=0,
xs-0

.C~ dg~kg„„+ g = 0;
css " dxs

(ds — " "k'+~ g = 6(x —x')c —c c d
2p P CbP3

d
I&3 g

c

(3.12b)

(3.12c)

(3.12d)

(3.13a)

(3.13b)

(3.14a)

y'= (c„c ) '(c k' —p(d')(c„k' —p(d'). (3.19b}
The functions Q, and Q, are obtained uniquely
from Eqs. (3.18) with the aid of the following re-
strictions, which follow from the boundary con-
ditions at xs=+~:

ReQz 2) 0, (3.20)

With the aid of Eq. (3.15) we find that the par-
ticular solution of Eq. (3.17) is given by

P p 1 c pc@2~k2+ e-e~ I xs~s
2 2 1

Qyc44 Qy —Q2 C33 Css

2Q, C44 Q& —Q2 C33 C33
2 2 2—

(3.21}
The general solution of Eq. (3.17) is therefore

d c c g =g +ae I 3+pe 23 (3.22)

(
d

g +Qg =0
3

( kg„+ g = 0..~cg d

C33 Xs x

= 6(x, —x,'}, (3.14b)

(3.14c)

(3.14d)

Turning now to g, on eliminating g„„between
Eqs. (3.12a) and (3.12b}, we find that it satisfies
the equation

= -ip " 44k 6(xs —x,'). (3.23)
C33C44 3

(
d 2 e-a I gs-g$ i

~ —n' = 6(xs —x,'),
de -2Q (3.15)

d2

~ —n' ~[e(x' —x,)+-,'e '"s s' sgn(x, —x,')]

In solving these equations the following results
are useful:

With the aid of Eq. (3.16) we obtain as the partic-
ular solution of this equation

4
—p( is 44) (e-milxs-xs I e-aslxs-'I

2CssC44(n, —n,')

&& sgn(x, —x,'). (3.24)

The general solution of Eq. (3.23) is therefore
= —8 (x,' —x,). (3.16)

g,„=g~ + Ce ~"3+ de (3.25)
We will not present here the details of the de-

termination of each of the five functions g„„, g
g„, g, and g„. However, to illustrate the way
in which this was done we outline the determination
of g andg

By eliminating g between Eqs. (3.12a) and
(3.12b) we find that g„, satisfies the equation

The four constants a, b, c, and d appearing in
Eqs. (3.22) and (3.25) are not independent, how-
ever. When we substitute Eqs. (3.22) and (3.25)
back into Eq. (3.12a) or (3.12b) we find that c and
d can be expressed in terms of a and b according
to

COc = i'4-n,' ——"k'+ a, (3.26a)
ni(Cis+ C44 k C44 C44

where

n', =-,'[x+ (x'-4y')'I'],

n,'=-.'[x- (e -4y')'~'],
(3.18a)

(3.18b)

k — 6 (x, —xs), (3.17)
C44 Ms Css Css

COd= i -ns ——'k + b. (3.26b)
44 k C44 C44

The constants which remain, a and b, are now
determined by substituting Eqs. (3.21), (3.22), and
(3.25), and (3.26) into the two boundary conditions,
Eqs. (3.12c) and (3.12d). The results can be ex-
pressed in the following form:
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g (k(y/8'')=[D(k(d)]'[A„, (k(d)e"'"8 8'+A»(klo)e 1'8 '8*8+A81(k(o)e 8'8 ""8+A»(kid)e "*""&']+g8(klo)888'),

(3.2V)

g (k(oI8 g') = -8 ~ a8 ——"k'+ [A (klu)e '1'*8+*8'+A (klo)e ~1'8 ~8"8]C p4)

(e»+ c44)a1k e44 c44 D(klo)

8
44 a8 —"k8+~ [A»(kid)e 8"8 '1"8+A»(kid)e 8'8~8']+g8 (kid/8@8).

(c18+c44)a8k e44 e44 D(k&)
(3.28)

In these expressions ere have that

A„(kid) = M88(klo)C„(kid) —M»(klo)C»(ku&),

A»(k&o) = M»(k&o)C»(k&o) —M»(k&u)C»(k&u),

A»(k&o) = -M»(k&o)C»(klo)+ M„(k&o)C»(k&o),

A»(kid) = -M»(k&o)C»(k&o)+ M»(klo)C»(k1o);

D(klo) =M»(kid)M»(ke) —M»(k&o)M»(kid),

(8.29a)

(3.29b)

(3.29c)

(3.29d)

(3.30)

Cyy g pQp
Ml {y 81(klo) -(c18+e44) al 8+ e44 a 1 8 ——k +

(c18 44~ li8-
Q

2 &Sa&44 2 &~X 2
M8(1 8 3(k(o) (c» + e44)k + Q~2- —k +

e» c44 xs

(S.Sla}

(3.31b)

2&44 ~ j.,a —0'a, x
' ss 33 33

pk 1 2 ~C ~ p{d 2
C8(1,8)(») =

8 e18 a1,8 k (e18 44} 1,82@x 2CxsCc4 Q~ 2
—Q2 j. 833 G33

In the same may me obtain the following results for the Green's functions g„, and g„:

(8.32a)

(3.82b)

g„,(k(o/8x,'}= [B»(klo)e 1"8 8'+ B»(kid)e 1"8 8 8+B(81k)(de'8"8 1'8+ B»(hd)e 8' 8 ]8+g(8klo~x8x8),

(3.38)

g88(k&d/8x~) = -8 al ——k + [Bll(klo)e 1 "8 8 +B»(k(u)e 1 8 8 8]
e

(e„+e~)ka, ' c~ e~ D(klo)

2a'- —"k'+ [B (k&d)e '8"8 1"8+B (kid)e 8 "8'"8']+g (k|d~8'8')
(e18+ e44)ka8 ' c~ e44 D(klo}

(3.34)

g8 (k&o)8')=- " (e 1'"8 8'-e 8'"8 8')sgn(8: -x')88 8 8 2c e a8 a8 3 3 0
33 44

g' (kid/ x,') = a'--"k'+ e 1"8 8'+ a'-~k'+ ep j c

pbbs

„~ p
2~x~33 ~x —~2 ~+a 2~2~33 +x

B»(k&o) =M»(kid)C,', (kid) -M»(kid)C8, (k&d),

B»(k&o) =M»(k&d)C,'8(k&o) -M»(k )C '4o(k 88), 4o

B»(k&o) = -M81(k&o)C,', (k&d)+ M»(k&d) C8, (kid),

B88(klo) = -M81(k&o)C,'8(k(o)+ M„(kid)C»(kid);

Np xx 2C, (, )8( kl)d= 8 8 e44 a1,8- k + -(e»+~44)a1, 8 l
182~33 44 j.8 3 28 & - 44 ~44

jp 2 +as+ &44 xx 2
C811,8)(k+) 8 8 a1,8+e18 k ——k+

2&&3 +s.,2- +2, j. &33&&& &44 &+a

(8.3Va)

(S.SVb)

(S.SVc)

(S.8Vd)

(3.88a)

(8.38b)



2206 L. DOBRZYNSKI AND A. A. MARADUDIN 14

The other functions appearing in these expressions
have already been defined.

Finally, we write the result for g, :

g„(k(o~x,xB) =
2

e B("B~B'+g~„(k(d g,x,'),
44 t

d,"~)(k(d)BxB) =g S„(k)S„a(k)g(0„)(k(d~xBxB),

(3.43}

a, =(

(
2 1/2

cubi
—cx2 k2
C44 C44

B (C~k —C~B)k' & p(d

P& C~~ —Cg2 2
2 j. /2

-Z
c44 2c44

1
p(d & B(ckk —ckB)k

g~ (k(dg x') = e
2c n44 t

where

(3.39)

(3.40)

(3.41}

where the matrix 8(k) is given by Eq. (3.5}. It
should be clear, from the derivation of the

{g,~(k&gg, x,')}given in the first part of this section,
that the Green's function g(0())(k(dg, x,') is just the
particular solution g~()(ksrg, xB) we have obtained
in the process of determining g,~(k~~x,x,'}, since
no reference to the surface of the elastic medium

has been made in obtaining these particular solu-
tions.

We now combine Eqs. (2.14), (3.1), and (3.42) to
obtain an expression for the function Q(y) useful
for its asymptotic evaluation

00 d2k
Q(y}=-SQ dx,

(2 )Q [d, (kiy~x, xB)

—d(0,)(kiy~xx, ,)]
We are now in a position to relate the surface

contribution to the low-temperature specific heat
of our hexagonal medium to the Green's functions

{g ~(k(dg, x,')}. Let us denote by U(o~)(x, x'; (d2) the
dynamical Green's function for an infinitely ex-
tended elastic medium. It is the solution of Eqs.
(2.12) with the terms proportional to 6(x,) omitted
from the left-hand side, subject to exponentially
decaying or outgoing wave conditions at infinity.
In parallel with Eqs. (3.1) and (3.8), we introduce
the Fourier coefficients {d',~J(k+~x~B)}and

{g",'(k(d ~x,x,')}by

d k2

U (x x'(d) = e~" *)( %)d( )(k(d(lx x )I()» (2~)B (y() ( B 3 y

(3.42)

(3.44)

where S is the area of the surface of the semi-in-
finite elastic medium. Since the trace of a ma-
trix is invariant against a similarity transforma-
tion, in view of Eqs. (3.8) and (3.43) we can re-
write Eq. (3.44) in the form

00 d2k
A(y} = -SQ dx, , [g (kiygBx, )

g'..(ki-y ~~~.)]

(3.45)

With the use of Eqs. (3.27), (3.34), and (3.39) the
integration over x, in Eq. (3.45) can be carried out

directly, with the result that

S BB k A»(kiy) A»(kiy)+A2~(kiy) A~(kiy) S Bdk pk

. B "' k c )P.—cc)y —Py' B(k y) B, (ki,y'I 'c P,'—c,k —Py' B (k'y) B (kiy„))„
2w, D(kiy) (c»+ c~)kP, 2P, P, + P, (c»+c~}kP, P, + P, 2P,

(3.46)

In obtaining this expression we have defined py p2,
P, as a,(kiy), a,(kiy), and a, (kiy), respectively,
subject to the restrictions Rep, &0, Imp, &0, where
i=1,2, t. We have also used the fact that the in-
tegrand in Eq. (3.45) is a function of k only through
its magnitude to carry out the angular integration,
which merely yields a factor of 2z. Finally, in
evaluating the remaining integral over k in Eq.
(3.46), we have cut off the integral at an upper

limit k = k„where k, is of the order of the recip-
rocal of a lattice spacing. Such a cutoff arises
naturally in a lattice theory, where the allowed
values of the wave vector are restricted to lie in-
side the two-dimensional first Brillouin zone for
the semi-infinite crystal, but it must be imposed
explicitly in a continuum theory. We will find in
Sec. IV. that O(y) has a logarithmic dependence
on k„ in the limit as ~y~-0, so that a precise
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value of k, is not needed for our purposes.
We now turn to the determination of the small

~y~ behavior of Q(y), which in view of Eqs. (2.15)
and (2.16) is all that is required to obtain the sur-
face contribution to the low-temperature specific
heat of our semi-infinite hexagonal elastic medi-
um.

surface specific heat. Equation (3.46) for the func-
tion Q(y} can be written compactly as

Q(y) =— dkk—S 'c p
2'lT yo

1
+~(~. ) [4(aiy)+a(a(a))),

IV. LOCALIZED MODES AND SURFACE SPECIFIC HEAT

The frequency of vibrations localized near the
surface can be obtained from the equation

with

(4.9)

D(k(d) =0, (4.1)
A»(kiy) A»(kly) +A»(kiy) A»(kiy)

when one notes that its satisfaction introduces a
new pole in the surface Green's functions.

Using the preceding results for the matrix M

[Eqs. (3.31)], and defining

(4.10)

-ic44 1, 2 2, B»(kiy} B»(kiy)~~
(C„+C44)k P,

' '
2P1 P, +P, J

(d —C k
( }—p(d

C44 C33

the determinant D(k(d) can be expressed as

(4 2)

1
(p2 52) B21(»y} B22(»y)

(4.11)

where we have defined

(d = Caky (4.4)

and combining Eqs. (4.1) and (4.3), one finds as
the equation for c„

C33 CZ — CZ — + = C44CZ CZ ——

D(k(d) = e —a
ala2 k C13(C13+C44)

X [-(C13k'+ C33C44y', )r,r4+ C44(C23y 4+ C44k )y,']
(4.3)

Defining the speed of localized elastic waves,
c» by

p (k ) 11 12k2+py
C44 C44

P, (kiy} = a, (kiy},

P, (kiy) = a, (kiy),

5', (kiy) = (-I/c~)(py2+ c„k').
Let us also define

5,'(kiy) = (-I/c33)(py'+ c„k').
We note from Eqs. (4.13)-(4.16) that

p, p, =e,a, &0,

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4 5)

which is an equation of third degree in c2~. The
positive and real root of this equation gives the
speed of Rayleigh waves on the isotropic surface
of an hexagonal crystal (c„has to be smaller than
the speed of bulk waves).

It is interesting to check that in the limit of an
isotropic crystal, namely, when

1
C13 =C»~ C33 Clly C44 2(C11 C12)~ (4.6}

the result (4.5) reduced to the well-known equation
for the speed of Rayleigh waves"

C +C
p; p*. = (o;.~;. '-"'" ~).

33 44
(4.17)

D(kiy) = 'p, p, 1 1

5154 k C13(C13+C44)

(C13k C33 4451} 1 4

+ C44(C3354+ C44k )51]. (4.18)

It is convenient to rewrite the expression (4.10)
in the following way. Let us rewrite it as

Making the replacement &a iy in Eq-. (4.3), we ob-
tain

(2 —c'„/c', )4 —16(1 —c'„/c', )(1 —c'„/c', ) =0, (4.7) 8=[2P,P.(P, +P.)l '(8,+8.), (4.19)

2=C 1 Cll/P~ 2=C2 —C44/&. (4.8}

Let us now come back to the calculation of the

where the speeds of bulk longitudinal and trans-
verse waves are given, respectively, by

(4.20)

where, after use of Eqs. (3.29), 8, and 8, can be
expressed as

8, =M [P,P, (C„+2C„)+icC„]
—M21[PrP2(C»+ Clt)+ P1C12]
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8 -M„[P,P (C +2C,)+P,C ]

—M„[P,P,(C„+2C„)+P,'C„]. (4.21)

For simplicity we have omitted zndxcat1ng explicit-

ly the dependence on k and y of the functions in
these expressions. This way or rewriting the ex-
pression (4.10) is useful because it enables us to
remove a common factor (P, —P,)' from 8, and 831
Thus, finally 6 can be written

8= '
3

—
3 3 ~6164(6, —64) +k 6164 —2 — 6 4+~6 1+3 2+-at 6164
1 3C 2C C C C

(Pl Ps) 4(c13 c44} 6164 c13 - 44 13 13 13 c44 61

y46 6 (cls+ c44) 1 13 4
l 4 +~ ~

Cl3C
(4.22)

For the same reason we write

-2C~ ~ 1

2(c,s+c44) k P,'P,'(P, + P,)

with

(4.23)

~, =~ p:(P', 6;)Hp, p, )C,',.2P,C;.] M.,-p', (Pl 6l)HP, p.)C;. 2P.C,',], (4.24)

I.=~„p',(P.'+ 6')[( P+ p.)C;,+2P.C.', ] ~,.p'. (P', + 6,')H p, + p,)C' +2P,C:.] (4.25}

Thus S finally can be written

1 1 C C 2C 3C

(Pl+ Ps) 4(cls+ c44} ts 6164 cls css css clscss css css

p3 tl' %2
~C1 g2 44 l + k4g2 K 13 44) l3 + 44

4 2
C33 Cl3C33 u4 C33 C~ Cl3 64

(4.26)

It is convenient to make the change of variable

a = iyi(u/c), (4.2V)

where c is an arbitrary constant with the dimen-
sions of a speed of sound, in Elis. (4.9), (4.22),
and (4.26}. E1luation (4.9) thereupon takes the
form

$ t;~c /[yt

A(y) = -—
~

du uE(u), (4.28)

where the expression for E(u) can be deduced from
Egs. (4.9), (4.22), and (4.26). If it were necessary
to evaluate this integral exactly, the determination
of A(y) would be a difficult problem indeed. For-
tunately this is not the case. We require only the
dominant term in Q(y) in the limit as ~y~-0. From
Ell. (4.28) we see that ~y~ appears only in the upper
limit of the integral. This means that the small
~y) behavior of A(y) is determined by the behavior
of uE(u) for large u. This is most easily seen by
breaking up the range of integration (0, cis,/~y~} into
two mtervals (0, t) and (t, cis,/'1yl), wh~~~ t is inde-
pendent of ~y~ and large enough that an expansion
of E(u) in powers of I/us is valid. Thus t should

C Q
6,' = ——"—+ O(u'),

C44 C

~C

P', +P', = —"- " -2—la y— +O(u'). (4.32)
Cgg C33Cg4 C33 C

(4.29)

(4.30)

(4.31)

With the help of the above expansions and Eqs.
(4.9}, (4.22), and (4.26) one obtains

u'E(u) =
2(cll cls) 4(cls cllc33/cls)

+ O(1/us), (4.33)

be greater than unity. The only y-dependent con-
tribution to Q(y) comes from the upper limit of
the integral over the interval (t, ck,/~y~), and the
dominant contribution as ~y~-0 arises from the
leading term in the expansion of E(u) in powers of
1/u' for large u. It is straightforward to obtain
from Egs. (4.15)-(4.1V) that for large values of u
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with

4 ~ ~1+ 1I 2 ll + 11 11 ~1
Cg j C33 C$3 C33 C44 C$3 C33

(4.34)

It follows, therefore, that the dominant term in
the small lyl expansion of Q(y) is given by

4(c.s —c»case. s)

x lnlyl+ o(lnlyl (4.37)

2 ll + 11 ~cl 2+ c13

(4.35)

(4.36)

Comparing Eqs. (2.15) and (4.37) and using Eqs.
(2.16), we finally obtain as the surface contribu-
tion to the low-temperature specific heat of an
hexagonal crystal

ac„(T)=6m—„, l'(3) ~ )ST' ~ (T )0*
C|] Cgg C]3 CQJC33 C$3

(4.38)

where R, P, and h are given by Eqs. (4.34)-(4.36).
When we specialize this result to the case of an

isotropic crystal with the aid of Eqs. (4.6) and Eq.
(4.8}, we obtain

hC (T)=3 —g(3) ' ' ' 'ST +o(T')

(4.39)

a result which was obtained earlier directly for an
isotropic crystal. ' '"

This T' law is the analog for the surface specif-
ic heat of the "Debye T' law" for the low-temper-
ature limit of the specific heat of a three-dimen-
sional crystal. It is given here for the first time
for a hexagonal crystal bounded by a stress-free
planar surface normal to its sixfold rotation axis.
Our result is the analog for hexagonal media of
the now classic result (4.39) of Dupuis et al.4 for
an isotropic medium. Just as the Debye T' law
for three-dimensional crystals can be shown to
hold only for temperatures below about 0.018D,
where OD is the Debye characteristic temperature
of the crystal, "the same kind of argument shows
that one expects the T' law for the surface specif-

ic heat to hold only for temperatures below about
0.0158D. This estimate presupposes that the elas-
tic approximation to the change in the frequency
distribution function of an infinitely extended crys-
tal owing to the creation of stress-free surfaces
on it coincides with the exact result for frequen-
cies as high as gp the highest normal-mode fre-
quency of the crystal, and is thus likely to be an
upper bound to the temperature range for which
the T' law obtains.

The principal significance of our result [Eg.
(4.38)j, is that it is exact, applies to a nontrivial
physical situation, and is given by an explicit ana-
lytic expression, something that purely numerical
calculations are incapable of yielding.
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