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The excitation spectrum of massive fermions with self-interaction moving in one space dimension is calculated,
using exact solutions for the spin-I/2 chain problem. This spectrum is shown to be the same as in the massive

Thirring model, sine-Gordon equation, and Tomonaga-Luttinger with gap, with suitable relations between

coupling constants. Solitons and bound solitons occur, corresponding to magnons and bound magnons in the
spin chain. The soliton mass is calculated as a function of lattice spacing, and the ratio of binding energy to
soliton mass is shown to be given correctly by the WKB approximation.

I. INTRODUCTION

This paper reports a calculation of the excita-
tion spectrum of a model of massive fermions in
one space dimension, the massive Thirring mod-
el. ' It has been recognized that this model is
equivalent to many others in one space and one
time dimension, such as the sine-Gordon equa-
tion, ' and the backward scattering model' familiar
in solid-state physics. I discuss here the relation
of these models to yet another, which is interest-
ing because it has been solved. "' This model,
the spin-& x-y-z chain, gives the eigenvalues for
these problems on lattice. The treatment reported
here applies directly to these other problems as
well.

The continuum limit of the lattice theory can be
taken, which requires renormalizations of the
parameters in the theory. The spectrum contains
massive particle states and bound states and ls
found to be identical to the WEB approximate re-
sults given by Dashen, Hasslacher, and Neveu. '
This provides confirmation that their result is
indeed exact, and proves solitons to be ubiquitous.

It is now well known that the continuum theories
are unbounded from below for certain values of
coupling constant. I suggest that these instability
problems ean be understood and resolved with the
lattice theory. The lattice theory for the massive
Thirring model is the x-y-z spin-& chain problem
solved by Baxter' and by Johnson, Krinsky, and
Mccoy. ' The instabilities of the continuum theory
occur at special symmetry points of the spin
problem. But, on the lattice, these points are
simply crossover points to another ground-state
symmetry. After observing this crossover, the
continuum limit of the new theory ean be taken.
In this way, the Thirring model in an unstable
region maps back onto a new massive Thirring
model in a stable region. The new mass gap re-
moves the instability of the old theory, and the
field operators become redefined in the new eon-

tinuum limit.
An important application of these results is in

the area of statistical mechanics and solid-state
physics. The results are cast in a form directly
applicable to solve models' of the one-dimensional
electron gas. In a subsequent paper, the details
of this solution are presented. I believe that these
areas wi11 provide physical realization of these
one-space-dimension models, and that measure-
ment of the soliton and bound soliton spectrum can
provide experimental confirmation of the ideas
discussed here.

The appearance of equivalent models in these
different fields of theoretical physics makes it
imperative that some knowledge of the results
from one field also penetrate into others. Until
now, the same developments have occurred inde-
pendently. I try to collect these models and relate
them, and hope that this will be of some use to
subsequent investigations, as well as to this one.

II. SPIN MODELS AND FIELD EQUATIONS

In this section, the relations between continuum
and lattice field equations are discussed. The pro-
cedure I use is backwards, for rather than putting
the continuum field theory on a lattice, the spin
chain problem on the lattice is shown to have the
continuum field theory as its continuum limit. In
any case, there results a consistent prescription
for introducing the proper theory on a lattice. In
a subsequent section, this equivalence is exploited
to discuss the questions concerning stability of
these field theories.

The starting point is the Hamiltonian for the lat-
tice problem, the spin-& x-y-z chain:

where n=x, y, or z, 8,. is a, spin-& operator, and
the sum runs over the N sites on a chain. Using
the Jordan-%igner transformation to fermion op-
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0 (k) = (2/L)" g «""'
(k) —(2/L)&/2 Q a eikins 1)s

and use the density operators, p =a„a„s ' and

pL = a~„a„„s', where n is an even integer which
is summed over the &N even sites. The k vectors
lie within the Brillouin zone —zj 2s& k& z/2s. Writ-
ten out by components, /~ and pL satisfy the field
equations

iPv (k) = v sinksPz(k) —i J, cosksPz(- k)

4JzN ' g cosk'sg-v(k —k')pz(k'),

zgz(k) =v sinksg (k)+i J, cosksp~z(- k}
(4)

4 JzN ' p cosk'spz(k —k') pv (k') .

erators, Si =ati expizZ, ' 'ni, etc. , where S;. =S",

+iS&, a, is a Fermi operator, and n&=ay» this
becomes a simple Fermi Hamiltonian. Under the
further transformation a„-(i)"a„, the result is

X(i),
(2)

X(i) 2 tv(a'ai I+ ai 1 ai)+ 2 i'(aiais 1+ aiai+1)(
7+ J,a&a&a;,a&+»

where 2v= J,+ J„, 2J~= J —J„, and terms linear in

n& have been dropped, since the ground state has
zero magnetization. Together with translational
invariance, this requires the ground state average
of n, to be 2, and "new" operators n; = n, ——,

' can be
used. 'This replacement is correct to all orders
in J~. In many-body theory, this corresponds to
choosing the chemical potential as the single-par-
ticle reference energy.

The definition of the continuum limit used here
requires converting the chain of N discrete fermion
states, one at each site, to a string of length L
involving an infinite number of ferrnion states.
That limit is best understood by considering the
Fourier-series transformation for operators at a
lattice site. As the lattice constant s=L/N tends
to zero for fixed L, this discrete sum becomes an
integral, with cutoff. Calculations are to be per-
forrned with these equations of motion and the
limit s -0 taken afterwards, which defines our
cutoff prescription. There are renorrnalizations
of the parameters in the lattice theory which fol-
low from the requirement that the observable
quantities be finite in this limit, s -0.

It is helpful to define the Fourier transform of
two fields Pv(k) and gz(k) by the relations

In order to construct the continuum limit of these
equations, we note that the prescription for de-
termining the Hamiltonian density X,(x), from the
lattice Hamiltonian X,(i), is given by

where x=si is a fixed distance in the continuum
theory, and X,(x}- s 'X(i). As s -0, i -~ such
that this distance (is) -x remains fixed in the ratio
i/N=x/L The. field equations then become

iPz(k) = vki(v(k) —im, g(- k)

—4JzL P g (k —k )pz(k')

(6)

igv(k) = vkgz(k) + im, t/iiz(- k)

4 JzL Q gz(k k )p (k )~

where m, = J', /s, and these equations are under-
stood to be supplemented by a cutoff at s ' arising
from the inherent restriction of k to the first
Brillouin zone. These are recognized as similar
to the field equations for the massive Thirring
model, except for the g appearing instead of the
usual g. We return to this difference below. The
solution of the spin--,' x-y-z model on a lattice
therefore provides a solution to this cutoff field
theory.

Relation of this to the usual massive Thirring
model can be established by a formal mass per-
turbation expansion, as given by Coleman. The
comparison is best accomplished by expanding
the partition function, Z= Tr e ~~. This expansion
will involve n-point functions of the form

n

II &0~4'(x)0'(x;)0 (x)it' (x,)~0}
Cz j

with x, = (x, t); for it the temperature P is assumed
large, and (0

~

is the massless vacuum. I now re-
peat Coleman's argument that equality of the
n-point functions, which occur in expansions of Z,
with those of the massive Thirring model proves
that the theories have the same eigenvalue spec-
trum. The form of n-point functions is found using
standard methods. First, define v 2$, (k}= i) z(k)
+ gv(k) and W2$, (k) = i) (k) —Pz(k). The field equa-
tions become

i', (k) = v, k P, (k) —im, /zan(- k)

4J,L ' Q g, (k-—k')pz(k'),

ig, (k) = —v,kP, (k)+ im, tP( k)-
4J,L-'g q,(k- k')-p, (k').
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Here v, = v —(2z) 'Jz, using a known result that
interactions of the form pypy only renormalize the
velocity. ' The n-point functions in the mass per-
turbation theory are evaluated using methods de-
veloped' in solving the Luttinger model:

n

II «IT&l(x')ct(x')c (x,)c.(x,) I»
jz i"-1

quantities $ and l are defined by

I2 (g2 J2)(g2 g2) 1

C

2(= dx(l —I sin x) '
0

with c=arccos(-Jz/J, ). The function K(I) is given
by

n

=exp 28 —' 'ln x. —x& s, 8
j&j

K(I) = dx(I P sin2x)-»2
0

(14)

where 26= (zv, —2Jz)' '(zv, + 21z) '~', and v is
chosen such that the renormalized velocity'
v, [e+ (48} '] '=1. This is identical to the result
found for the massive Thirring model, '

II (o
l
To'(x,.)o-(y,.) lo)

and I' = (1 —I')'~'. The quantity k, is to be evalu-
ated by solving the equation

K(k', }K(l')= PC(k,),
with k', = (1 —k', )'~', and finally the object y is de
fined by

yK(l'} = nK(k, )[K(l) —8]. , (16)

+4 JzL ~ p gi(k —k )p2(k )

iq, = -ky, + impy,
(10)

II, , [(x,. y, )'M2]& /

provided we identify P'= 8z8.
It is also possible to perform a direct canonical

transformation on the fields to arrive at the usual
massive theory. The transformation P, (k) P,(k)
leads to the new field equations, for ks«1,

ig, =ktt}, —im, P,

It is helpful to introduce the va.riable g by p,K(l)
= m$ such that y can be written as

y = n(z/g —1}K(k',),
and any value of the positive integer n is a solu-
tion provided that the left-hand side of Eq. (11) is
less than &m. This variable p, will shortly be re-
lated to the exponent 8 of a certain correlation
function. Solutions to Eq. (17) for neO correspond
to the soliton bound states.

In the limit of weak anisotropy, J„=J, or l=0,
these equations simplify, for then k', =0. The
ratio of the bound-state energy to the free-state
solution, A„, is then given by

+4 JzL 'g P, (k —k')p, (k').
nm m . nm 8

A =sm ———1 =sm—
2 p, 1

2 1 —8
(18)

These equations provide the basis for calculating
the excitation spectrum of these various equivalent
problems, for they all relate to the basic x-y-z
spin chain in the continuum limit. The calculation
of the excitation spectrum for this model follows.

III. SOLUTION OF LATTICE PROBLEM AND THE
CONTINUUM LIMIT

The excitation spectrum of the spin chain, Eq.
(1), has been given by Baxter~ and by Johnson,
Krinsky, and McCoy. ' The pertinent results are
summarized by the "free"-state solutions at zero
momentum

6 = 2 J,sn(2$, l)[K(k, )k', /K(l')], (11)

and the "bound" states, to be identified with bound
solitons,

6„=Asn(y, k,') sn(2K(l) —2(, I) [sn(2$, I)] ', (12)

where sn(a, k) is the Ja.cobi elliptic function. The

Provided the x- y anisotropy remains small,
l"-0, the quantity p, is related to the exponent of a
transverse spin correlation function, 8, in the
spin chain. This relation follows from the defini-
tion above Eq. (17), p = are cos(-Jz/J„), and the
result from the appendix for the exponent 28 = 1
+ (2/z) arcsin(- J,/J, ), giving p, = z(1 —8), which
I have used in Eq. (18}. This equation for A„,
expressed as a function of exponents only, should
not depend on convention, such as continuum or
lattice cutoff. This is discussed in the appendix.

The constraint that y be less than —', z in Eq. (1'I)
provides a limit on the largest integer n for a
given exponent 8. This exponent is a function
which decreases from —,

' to 0 as the interaction is
made ferromagnetic, J,&0, while it increases to-
wards 1 as the antiferromagnetic point is ap-
proached, J~- —1. The allowed values of n are

n=0, 1,2, . . . , 8 ' —1,
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and bound-state solutions occur whenever 8 ~ —,',
which is the ferromagnetic region. The v=0 solu-
tion always occurs, that is, the free particle
(free in sense of unbound) solution is stable.

In the small-/ limit, sn(2), l)- sin2$ and p =2).
Using Eq. (15) to solve for k,' in terms of $ gives

where we have used the small-q expansion for
K(q') =ln(4/q), withq'=(1 —q')'~'. Substitutmg mto

Eq. (11), using l =0 and p =2), leads to the result

(21)

for the lattice theory, X,(i). In the continuum

theory, 3C,(x) = s '3C, (i), the bare mass is given
by J, s '-E' s ' for small J~. Changing the bare-
mass scale from I' to (I')' changes the renormal-
ized-mass scale by (I'/I)'~".

It is now possible to take the continuum limit
and justify the above assumption of small anisot-
ropy, /=0. The convention for this limit was dis-
cussed with Eq. (5). The ground state of the chain
problem is of the form E~= 4 ~N, for large N,
where Co is independent of fq (or s). As s-0,
this becomes E~ = (4oS ')I, snd diverges. Excita-
tion energies above the ground state are finite as
N- ~, and it is these we wish to calculate in the
continuum-limit theory. Consequently, we sub-
tract this infinity from the problem, which is
trivial since 4~ is known for the lattice model.
%e then keep the length of the string I. finite while
performing the calculations, and finally take the
I —~ limit last.

In this limit, the J„coupling constant in Eq. (21)
becomes replaced by J„s ', and 6 would diverge
unless the bare coupling constant, the anisotropy
parameter /, is renormalized to zero. That re-
quires E-/„s"~', where E„ is the renormalized
coupling constant which is finite as s -0. This
shows that l-0, provided p, & 0, in the continuum
limit, as assumed in the derivation of Eq. (21).

The other coupling constant in the thoery, 8„
enters through the exponent y, , or 8=1 —p/v. In
the appendix, this exponent, 8, is shown to be
identical to the parameter P'/Sv of the sine-Gordon
theory, which in turn is related to the usual Thir-
ring model' through P'=4m(I+g/v) '.

Substituting these relations into the formula for
the bound-state ratios A„, Eq. (1S), gives the re-
sult

A„=sin(ny'/16), (22)

where y' = p~(1 —p2/Sv) '. This is the WEB ex-
pression' for A„, and the derivation of this result
from t'he continuum limit of the lattice theory veri-
fies that the %KB approximation is exact for this

quantity.
Together with the formula relating the observed

mass to the bare mass,

where we have taken 0„=1 as the energy unit, and
I„=fs '~'. The result of Eq. (22) completes the
determination of the mass gaps in the excitation
spectrum. Since the theory is Lorentz invariant
in the limit s-0, it follows directly that the mo-
mentum dependence of these excitations is given
by

rg(k) = 62+ k', (24)

IV. INSTABILITIES OF THE CONTINUUM THEORY

As shown by Coleman, ' the ground-state energy
in the massive Thirring model is unbounded from
below for the coupling constant p & 8w in addi-
tion to the instability occurring for P'& 0. Similar
stability restrictions are known for the Luttinger
model, when the parameters are defined as in the
appendix. I propose a method in this section for
understanding the meaning of this instRbllltles and
circumventing them.

It is suggestive to consider the relation between
exponents in the continuum theory and the lattice
theory, discussed above and in the appendix. This
relation identifies the exponent P'/Sw of the mass-
less Thirring model theory with the exponent 8

'arccos(J, /J„) in the isotropic (J„=J„or I =0)
spin chain theory. The point P'= 0 is seen to cor-
respond to J,=J„(=J,), that is, the ferromag-
netic point, while P' = Sv is the antiferromagnetic
point, O', =-J„. (To see this, reflect every other
spin about the x —y plane. ) It is interesting to
note that P' =4m is the isotropic x —y model, J,=O,
which is known to be a free-field theory.

This correspondence is made precise in the
appendix, where the equivalence of the massive
theories to the spin chain problem is proven to
all orders in perturbation theory. It suggests a
resolution of the instability question, by studying
the behavior of the corresponding spin chain

which completely determines the excitation spec-
trum.

The result here does not give any direct informa-
tion about the wave functions which would be
needed to prove the theory has interesting scat-
tering states. It is possible to construct these
scattering states from the corresponding states
in the lattice theory, and perform the continuum
limit. I do not yet know if this produces a non-
trivial result.
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theory at the special values of the coupling con-
stants. It turns out that the spin chain has a
crossover from one type of ground state to another
as lZ, l

goes through Z„. A simple transforma-
tion reduces the lZ, l& Z„problem toanewproblem
with l~,'I» ~„, and itis then possible to talte the
continuum limit of this new theory a.eeording to
the prescriptions of Sec. III.

Consider the spin chain problem of Eq. (I),

X,=-g Z. S,. S;.. .
zy@

for the anisotropic case J„aJ, as in Sec. III, but
now with J,& J„as well. A rotation about the y
axis interchanges the x and z spin operators.
Fol1ow this by a rotation about the z axis to a,r-
rive at

3C,'= —Q (Z, S,'"S;'"„+J,S,"S",„+J,S' S';;,) . (25)

The coupling constants are now in the order J,'
& J,'& J' as in Sec. III, where primes denote
transformed quantities. This new problem ha, s
a mass term, J~- J', —J„, and the exponent 8' is
in the stability region 0 & 8' & 1. The theory on
the lattice is, of course, always well defined.
These transformations simply reduce the problem
to an equivalent form whose continuum limit has
been discussed.

Passing to the continuum limit, leads to the re-
normalization of the bare mass, /- J, —J„-0,
while the J,' coupling constant, which equals J„
is unrenormalized. The results of Sec. III can be
applied to solve for the eigenvalues of this trans-
formed problem.

From this perspective, we are able to discuss
the massive Thirring model as the coupling con-
stant P' increases through the instability at P'= Bm.

Clearly, on the lattice, no instability is ever en-
countered since the ground-state energy is always
finite. Infinities are only possible in the continuum
limit. In the region 0&P'&Bm this limit can be
taken, since the eigenvalue spectrum as calculated
in See. II is well defined.

At the point P'=Bm, 8=1, the soliton gap just
does vanish, and although not explicitly discussed
here, the excitation spectrum has massless parti-
cles corresponding to the spin-wave excitations in
the Heisenberg antiferromagnet, and a continuum
limit is possible.

For P2& Bm, the continuum limit ca.nnot be taken,
a,nd the theory must be put on the lattice. Identify
the coupling constant P' with the J, spin coupling
constant, the bare mass with J„and perform the
rotations in the spin space to arrive at a new the-
ory in thestableregion, with 8'&1„and P'2& Bg,
where the primes refer to transformed quantities.

The new continuum limit is now permissible be-
cause this problem is of the type discussed in Sec.
II.

It is interesting to observe the differences in
coupling constant renormalization required by this
procedure. For the original bare coupling con-
stant P'& Bm', the bare mass is renormalized to
zero as s - 0, but P' (J, on the lattice) is not re-
normalized. Solving for P2(Z,), we can define the
theory for P'&8m', where this statement means
the bare coupling constant J,& J„. Afterperform-
ing the rotations to transform the equations into
the form suitable for the continuum limit, we see
that the new coupling constant J', is not renormal-
ized and the new mass term, corresponding to J'„
is. This is an interchange of the situation for P'
& Bn, for the new J', was the old bare mass, and
the new J', was the old bare coupling constant. In
order to make sense of these transformations, it
is obviously necessary to know the relations be-
tween bare and renormalized parameters.

It is probably worth noting that this procedure to
go around P'= Bm is not necessarily unique, be-
cause it is not possible to circumnavigate this
point knowing only the continuum-limit theory. If
there were several lattice theories with this con-
tinuurn limit, it might be possible to define an-
other continuation. I have been able to eonstruet
one other such theory, which however gives an
equivalent continuation, and have the opinion that
it should be possible to prove uniqueness.

~. MSCUSSIOZ

Construction and solution of the ma, ssive field
theory on a lattice and a discussion of the contin-
uum limit is helpful for understanding many pro-
blems in solid-state physics as well as model field
theories. An example is the one-dimensional elec-
tron gas, a problem treated by ma, ny workers. The
field equations of See. II are also encountered in
that problem, and the eigenvalue spectrum can be
calculated using these methods. This will be dis-
cussed in a subsequent paper.

An interesting application of this work is to
more-complicated problems of field theory, such
as models of particles with internal degrees of
fxeedom, The electron-gas problem is one such
example, for the electron spin constitutes an in-
ternal SU(2) symmetry. As mentioned above, the
massive-field-theory model appears in this pro-
blem, and, consequently, that solution is a solu-
tion to the SU(2) Thirring model. It is now inter-
esting to consider application of the methods used
to solve the SIJ(2) problem to the more interesting
SU(N) models.

The application of these SU(iV') continuum field
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theories to statistical mechanics is a further di-
rection worth pursuing. Many authors have studied
the relationship between the Ising model in two
dimensions, and the free-field theory, and the re-
lationship between the Baxter model and the inter-
acting-field theory has also been discussed. ' The
field theories with internal symmetries correspond
to more-complicated critical phenomena problems
in two dimensions, such as the x -y or Heisenberg
models. I believe solution of the SU(N) field the-
ory also solves the &- component theory of statisti-
cal mechanics. A solution of the N= 2 problem using
these methods has already been constructed
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APPENDIX: SCALING, CONVENTIONS, AND RELATIONS
BETWEEN MODELS IN ONE SPACE DIMENSION

It is important to discuss further the nature of
the continuum limit, for there is obvious concern
about the meaning of continuum-field equations.
Some of the questions are simple matters of defi-
nition. I will show here that the results for the
exponents of correlation functions, e.g. , 8 of Sec.
IV, depend on the definition of the limit. There
are, however, unique field equations, and the
specification of limit procedure corresponds to
selecting a convention for the coupling constant.

There is clearly a mathematical ambiquity in the
continuum-limit field equations, but there is some
physical content which is not. That physics takes
the form of "scaling laws, " familiar from statisti-
cal-mechanics problems, and involves relations
between the exponent of different correlation func-
tions. These relations are argued to be indepen-
dent of coupling constant definition.

First, consider the exponent 8, which has a sim-
ple meaning. It is the anomalous dimensions of
the single fermion operator appearing in those @-
point correlation functions written down by Cole-
man. In the continuum limit, with his convention,
8= P'/Sv. The exponent w/p, relates the gap in the
excitation spectrum 4 to the bare gap, or mass,
or 4, term, &-J', ". It is conventional in the
phase-transition problem to relate & to the tem-
perature scale, using Z, -(5T)', where 5T is the
temperature away from the critical point. This
defines the exponent v, &-(5T)", where 2v—= w/p. .
I will argue that 2v= I —(9 is the additional "scaling
law" which relates these two exponents, and is in-
dependent of convention.

For the spin chain problem, the equivalent of the
n-point functions have not yet been calculated, and
it is necessary to derive (9 indirectly from other
results. I show below this also gives 2v = (1 —8) '.
The relation 2v = (1 —8) ' has already been derived
for the "massive" Tomonaga-Luttinger model, "
which corresponds to a continuum limit of the spin
chain problem. ' That derivation, and the following
derivation for the massive Thirring model, require
a homogeneity assumption about a certain vacuum
expectation value, which is proven to all orders in
the mass perturbation theory. This concludes the
listing of results needed to understand the different
conventions for the continuum limit of the spin
chain, Thirring, and Tomonaga-t, uttinger models.
The results are summarized, in order, by the
equations

p.=arccos(- J,/8, ),
8= P'(Bv) ',
8= (1+ V)'~'(I —V) '~'(2) '

which together with p, = v(I —8), enable use of the
mass-gap formula with other coupling-constant
conventions.

The calculations of 8 for the spin chain involves
Baxter's result for the singular part of the ground-
state energy, E~-4', ~', which is stated in the no-
tation of the Baxter-model phase-transition pro-
blem with n=2 —v/p. Recognizing/, as (5T)' in
that model, identifies the J, term in the spin
chain problem as the energy density operator in
the Baxter model. The energy-density-energy-
density correlation function (5&(x)5&) is then the
mass-mass correlation function. Since &-J", ',
which relates length scale to temperature scale,
the dimension of the energy-density correlation
function at 5T= 0 can be found from the usual ther-
modynamic arguments to be {5&(x)5(c) ) -x'

Examination of the equivalent mass term in the
fermion problem defines the exponent 6) in the lat-
tice theory,

(2'I)

and, therefore, 48= 2 —n/v, which gives 8= I
since a and v are known. "

It is not really necessary to construct the n-
point functions for the continuum limit of the spin
chain problem, because the form of the continuum
equations of motion together with cutoff prescrip-
tion, are clearly of the form considered previous-
ly. ' The only departure from published results
concerns the appears. nce of t/Pgt as the mass (or
4,) term, rather than the usual P~P, of the massive
Thirring problem. Within the framework of the
cutoff or lattice theory, this poses no problem for
our proof, for we observe that the perturbation
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expansion of the partition function for e " in the
mass term is, to all orders, the same for both,
provided the sign of the p, p, term is reversed.
The solution of one problem therefore gives the
solution of the other.

This proof is constructed as follows: Consider
the expansion of the partition function in powers of

Involved in this are products such as

ansatz for the continuum theory. This has pre-
viously been discussed for the Tomonaga-Lut-
tinger model. 9 Consider the calculation of the
correlation function ( g~t (x)g, (x)$2t P, )„ in the mas-
sive theory, denoted by the subscript M. The
formal perturbation expansion for this quantity
involves n-point functions of the type studied by
Coleman':

where x,. refers to a space-time (complex-tem-
perature) point, and the average is in the density
matrix of the massless theory. Only even n con-
tribute to this average, so that we always remain
in the same charge sector when averaging, since
charge is conserved in the massless theory. Un-
der the average sign, therefore, g, —g, changes
only the coefficient of p, p, in the Hamiltonian, that
is, the sign of 2, in the Hamiltonian of Eq. (7).
Thus, in turn, only affects the n-point function
through a change in sign of coupling constant. We
conclude that the n-point functions in the mass
perturbation expansion with the /~$2~-type mass
terms are identical to the gtP~ type, provided the
sign of the coupling constant is reversed. By de-
finition, this exponent is the P'/Bv which appears
in the mass perturbation theory. ' Together with
Eq. (27), this justifies the result 8=P /Bw used in
Secs. III and IV.

There now remains the proof of the scaling

where a cutoff mass equal to the lattice constant
must be introduced. Collecting the powers of x,
and integrating over 1I„Jd'x„, leads to the state-
ment that the mass perturbation series has the
form

((t, (x)(,(x)(2tg, ) =x '9 Q A„m,"(x'")' ', (29)
n=o

where 8=P2/Bw, and A„are coefficients arising
from the multiple integrations in the perturbation
series. This is a purely formal result, whose
only virtue is the dimensional statement that,

(2-28) ~
under scale change x-Ax, mo-moX" ' ' . This
is sufficient to identify m = m," with 2v = (I —8) '.
Of course this does not prove a gap exists. For
that, the solution for the lattice in the continuum
limit must be invoked. But this does show that, if
a gap exists, it satisfies the same dimensional
scaling law as in the spin chain problem.
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