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Phase transitions of a nearest-neighbor Ising-model spin glass
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Monte Carlo calculations exhibit a critical point in square S = 1/2 Ising lattices with random nearest-neighbor
interactions, which are distributed according to a Gaussian with mean zero and width 5J, at 5Jjk„T, 1.0.
The susceptibility y has a cusp there, while the specific heat C has a broad peak with a maximum at
somewhat higher temperatures. In nonzero external fields H the cusp of the susceptibility is rounded off, in

qualitative agreement with experimental observations. Below T„hysteresis is found, but the remanent

magnetization decays to zero very slowly. Similar nonexponential decay with time is also found for the
autocorrelation function (cT,(0)n;(t)). Some qualitative information on the occurrence of correlated spin

clusters and their kinetics is also given.

I. INTRODUCTION

If magnetic ions (e.g. , Fe) are diluted at random
in a nonmagnetic meta. llic matrix (e.g. , Au) at low
concentrations (~1%), a new type of magnetic phase
occurs, "which is neither ferromagnetic nor anti-
ferromagnetic but is nevertheless characterized
by some sort of ordering since a rather sharp
cusp in the zero-field susceptibility is found at a
freezing temperature T,. It is believed that due
to the oscillating nature of the long-range Ruder-
man-Kittel-Kasuya-Yosida. ' (RKKY) exchange inter-
actions the spins interact with randomly competing
forces and are frozen in below T, (i.e. , in the spin-
glass state) in random directions. These systems
have found enormous recent experimental4 and
theoretical' " interest.

Most of the current theoretical efforts"" "con-
centrate upon the model of Edwards and Anderson'
(EA) where one does not attempt to calculate the
actual interaction distribution from the RKKY
interaction, but rather uses random forces J,, be-
tween spins at lattice sites i,j, which are distrib-
uted according to a Gaussian distribution with zero
mean value:

P( J', ,) ~exp[--,'(8,,/LJ)'] .

Mean-field approximations' "'"suggest that this
model exhibits a sharp phase transition where
both the susceptibility and the specific heat have
a cusp. A renormalization-group treatment" sup-
ports these findings, but is restricted to space di-
mensionalities d close to d= 6. The experiments,
on the other hand, show a cusp in the susceptibility
X only, while the specific heat C rather exhibits"
a broad maximum at a temperature of about 20'/o

above T,. In addition, the magnetic fields re-
quired to produce a rounding off of the cusp in X

similar to the experiments"' are about 20 times
as large as in the experiment. " Thus the avail-

able treatments of the EA model do not give a
satisfactory account of the experiments. "'

Two reasons for these discrepancies may be
imagined: (i) the EA model does not contain the
essential characteristics of real spin glasses;
and (ii) the EA model is a reasonable model for a
spin glass, but the mean-field approximations' "
are inadequate. As is well known, mean-field ap-
proximations yield only an inaccurate description
of the properties of second-order phase transi-
tions. " More important, mean-field approxima-
tions also predict sharp phase transitions in cases
where only a gradual variation occurs in reality,
such as one-dimensional spin systems (where the
"transition" occurs only at zero temperature) or
higher-dimensional systems of finite size (where
the "transition" is rounded"). " A gradual freezing
in of the spins has in fact been predicted by tun-
neling models. ' Qn the basis of high-temperature
expansions Matho" recently suggested that the
fluctuations neglected by mean-field theory pre-
vent the system from having a sharp transition,
and that the cusp in y is a nonequilibrium phe-
nomenon. "

In order to clarify the question of whether the EA
model with interactions of short range" has a
sharp or a gradual transition, we have performed,
for the first time, Monte Carlo computer simula-
tions of a model spin glass. '4 This approach al-
lows" —at least in principle —a determination of
equilibrium properties with an accuracy which is
much better than that of the mean-field approxi-
mation. Moreover, it allows a study of non-
equilibrium relaxation phenomena, which is inter-
esting in its own right in view of the observed ir-
reversible behavior of the magnetization below
T,.""'" Since in the mean-field approximation
there is no significant difference between Ising
and Heisenberg models, "we treat the Ising S= ~

case only, considering two-dimensional square
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lattices with nearest-neighbor interaction only, "
both in zero and nonzero magnetic fields. This
model is much too simplified to allow a direct
application to experiment, ' but it allows a strin-
gent test of the validity of the mean-field approxi-
mations.

In Sec. II we describe the model and our simula-
tion technique. In Sec. III the numerical results on
the time-dependent relaxation phenomena are pre-
sented, while Sec. IV contains our estimates for
the "equilibrium" value of susceptibility, magneti-
zation, energy, and specific heat. Section V sum-
marizes our conclusions.

II. MODEL AND SIMULATION TECHNIQUE

We consider a. model system of Ising spins
(o, = 28;. = + 1) described by the Hamiltonia. n

(2)

where the spins are situated on a N x N square lat-
tice with periodic boundary conditions, H is the
magnetic field, and the exchange constants J,, be-
tween the spins are chosen at random according to
the Gaussian distribution, Eq. (1). For simplicity
only exchange between nearest neighbors on the
lattice is taken into account (in principle, the ex-
tension to include exchange between more-distant
neighbors would be straightforward, but it requires
more computing time).

We emphasize the point that this model does not
necessarily imply the existence of physical short-
range (i.e. , in the angstrom range) interactions of
the type of Eq. (1). In fact, the lattice considered
here is not the lattice of the host material of the
spin-glass system. Imagine rather that the mag-
netic impurities, distributed at some concentra-
tion c in the host matrix, are labeled by some in-
dex i. We may rearrange the labels in the form of
a lattice approximately preserving the topology
(i.e. , which spins j are nearest neighbors of spin
i), to obtain Eq. (2). Since Eq. (1), which is com-
monly used in the mean-field theories, """is not
at all a realistic representation of the actual dis-
tribution P(Z, ,) which would follow from a more
microscopic treatment based on the RKKY inter-
action, ' it is legitimate to restrict the interactions
to nearest neighbors: We rather are concerned
with a general model of random systems with fer-
romagnetic and antiferromagnetic bonds equally
important, rather than with a realistic theory of
actual spin-glass systems. The motivation for
such an ideali. zation is, of course, that in the
study of other critical phenomena" it turned out
that many features of the phase transition do not
depend on the details of the model studied, but are

in common to wide classes of models ("univer-
sality""'"). While we thus hope in this spirit that
we nevertheless obtain results which are of quali-
tative use for the understanding of experimental
results, we emphasize that the price paid by the
above idealizations is that nothing whatsoever can
be said about the concentration dependence. Apart
from a trivial dependence of the number of spins
per cm' on c, the pa. rameter hZ in Eq. (1) (and
hence the spin glass freezing temperature T,)
should also depend on c; and more than just a
nearest-neighbor interaction should be taken into
account.

As an illustration of the above remark on the in-
adequacy of Eq. (1) we have used the RKKY inter
action' (kz is the Fermi wave number of the host
conduction electrons)

J(r, ,) = Z,(kp~, ) ')cos(2k~x, ,)

—(2k~r, ,)
' sin(2k~x, ,) ]

to calculate the actual distribution P( Z„.) by dis-
tributing 10' spins at random in a volume
V= (50k~)~, where d is the dimensionality (d= 2
and 2), calculating the distances r, ~ and using Eq.
(2). The results are displayed in Fig. 1 which
shows that the actual P(Z,.&) rather diverges for

~
J;.~ ~

-0. On the other hand, this divergence need
not be realistic either, since it comes from the
distances r, , —~, where Eq. (2) need no longer be
valid: these interactions may be damped out by
mean-free-path effects of the electrons, finite
size of mosaic blocks in the host crystal, etc.
Therefore we did not attempt to use the distribu-
tion shown in Fig. 1 instead of Eq. (1) in the simu-
lations.

The simulations are done as follows. Using
pseudorandom numbers, first a set of exchange
constants J,, in our lattice is chosen in accordance
with the probability distribution of Eq. (1). Then
the initial state of the system is specified. Three
types of initial states have been chosen: ferro-
magnetic, antiferromagnetic, or random. Then
runs are made for selected values of ksT jhow and

psH/r J, utilizing standard Monte Carlo tech-
niques. "'" lt is important to note that this
technique corresponds to letting the system de-
velop according to a Glauber equation for the
probability distribution P(&r„. . . , o„q, f) of the
spins,

= —Q W(o, ——o,}P(.. . , o, , }.
+ 8' —0,.-0,. P . . . , —o, ,
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FIG. 1. Distribution of exchange constants
volume 50k +~ for (aj d' = 2 and (b) 4 = 3.
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RKKY interaction distributed at random in a

where the transition probability S' depends on the
cost in energy SC involved in the spin flip,

m=
'~ (E(t')) dt' '~ (o,.(t')) dt'

g,. ty —t; ', . t~ —t;

W=1/r, EfC(0, t&3C= Q J,~o,o)+ 2tteHo;,

W= 1/rexp( 5tC/ks T), %C) 0,

(5a}

(5b)

"'t (o',(t'))dt'.
ty —t;

(6b)

&E(t&) =~„& ~( o)&=tQ N, ,

&&(t)& = Q
f

(6a)

where 1/r is an (arbitrary) rate constant. Equa-
tions (5) are consistent with detailed balance and
thus ensure that the system settles down at a
thermal equilibrium state for large times, t- ~.
Performing then a time averaging during these
late times allows one to estimate thermal equilib-
riurn properties. Owing to extremely slow relaxa-
tion in spin glasses, this final equilibrium is not
always reached within the available computing
time, and then one records only nonequilibrium
phenomena. The quantities recorded are energy
(E(t)& per spin, magnetization (o,(t)) per spin,
staggered magnetization (o';(t)) per spin, and
"order parameter" q(t}:

(6c)

I The order parameter q originally is defined as
q= ((o,.&') = (m'), where the inner brackets denote
thermal averaging in equilibrium. The resulting
square of the magnetization (o,.)'= m' is then
averaged ((m')) over all possible configurations
of exchange interactions according to their given
probability distribution, Eq. (1). Our computer
program simulates the thermal averaging by a
time averaging, ( )- fdt'/t, and the configura-
tional averaging by spatial integration,
( )-N 'Z, Thus Eq. (6c) is a reasonable
definition for ergodic systems in the thermo-
dynamic limit. j

The time t, after which the system is considered
to be "in equilibrium" is determined from an in-
spection of the fluctuations of energy and magneti-
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[&cr,(t,)) —m]'
X=

'"rka T (Vb)

Ng
"'

l&o', (t, )& m, ]'
nrk~T

(7c)

Also the autocorrelation function of the spins is
recorded:

&o,.(0)o~(t) )

zation. The time t& up to which the simulation is
extended is typically about 2000 Monte Carlo steps
per spin (i.e. , 2000 xN~ attempted spin flips). Q
in Eq. (6a) is the reciprocal lattice vector of anti
ferromagnetic ordering. From the fluctuations we
compute the specific heat C, susceptibility X, and
staggered susceptibility X,[n, = (tz —t,)Iat. , ht being
typically 10 Monte Carlo steps per spin]:

[ &E(f,)) —&E)]'
ng(ka T)'

the magnetization and the staggered magnetization
remain zero. The energy, on the other hand, ap-
proaches rather quickly nearly the same value in
both cases. Our simulations support the conclu-
sion' that in a spin glass there should be a large
number of states with (at least nearly) the same
energy, and that hence the relaxation via tun-
neling should be important. No tunneling is in-
cluded in our simulation, however, which amounts
to purely classical statistical mechanics. Never-
theless such simulations may be used as valuable
input data for a calculation of tunneling rates in a
spin glass, too."

Since the state with a remanent magnetization
m„of Fig. 2(a} is clearly not a true equilibrium
state but (at best) a metastable state, we have
carefully checked if there is any dependence of m„
on the linear dimension N, performing runs for
N=40, 80, and 160. Curves for n=80 and 160
were indistinguishable, while the curve for N =40
gave again the same average value for m„, but
showed statistical fluctuations more distinctly,

0& $' 0'& t'+ $ dt' tf
j &fy/t)»i b, S

kgT

For large times t, this quantity should reduce to
the "order parameter" q defined in Eq. (6c).

Since the linear dimension N of the lattice chosen
was not very large (N = 24 to 160 for d = 2), we
have made several runs with different sets of J,,
[for the same P( J,,)] in order to reduce the effect
of fluctuations.

While Eqs. (1)-(5) represent a well-defined dy-
namical model, one has to worry about the ques-
tion to what extent it corresponds to the actual
kinetics of a physical spin-glass system. Such a
correspondence exists only if the kinetics of the
lattice is due to a coupling of the spins to the other
degrees of freedom of the hostlattice (like lattice
vibrations}, and not due to the exchange interac-
tion. However, in the latter case one can have
at least a qualitative similarity of the time evolu-
tion.

(a)

m&&4s\a% ~

N-80I

0 20

0 SE(t)&/aX

-2.0 - random

I
ferromagnetic

20
-25-

FYlr

t (MC$/spin)
40

T
=10.7 N =40

B

.initial state

40 60
t (MCS/spin)

III. KINETICS OF THE RELAXATION TOWARDS

EQUILIBRIUM

In Figs. 2(a) and 2(b), typical examples of "raw
data" are shown. Figure 2(a) gives the relaxation
of the magnetization at low temperatures in zero
field. Although the model does not favor ferro-
magnetism, the system settles down at a nonzero
remanent magnetization m„, if one starts out with
a ferromagnetic initial spin configuration, while
the staggered magnetization stays at zero. If in-
stead we start with a random initial state, both

0.2

0.1

kgTlh7

FIG. 2. (a) Relative magnetization per spin as a func-
tion of time [in units of Monte Carlo steps per spin]; (b)
energy per spin plotted versus time; (c) remanent magne-
tization plotted versus temperature.
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FIG. 3. Log-log plot of magnetization versus time for several temperatures in a 80 x80 system. Inset shows tempera-
ture variation of the exponent a, Eq. (10).

as expected [see, e.g. , Fig. 2(a)]. In order to
define the remanent magnetization precisely, we
used

250m„=,—,', {o,(t')) df'.
50

The temperature dependence of this quality is
linear, as seen in Fig. 2(c). A similar linear
variation of m„vs T has been found in recent ex-
periments. "'"

In Eq. (9) we have used a rather small value for
f& since it turned out that (o,.(t)) did not stay in the
vicinity of m„ for larger times, but rather decays
to zero. Hence the remanent magnetization cannot
uniquely be defined; it depends on the observation
time. This result is again qualitatively similar
to experimental results where it was found that
the remanent magnetization decreases with time t
according to a log t behavior and vanishes typical-
ly after a few days or hours. The time dependence
of (o,(f)) as observed in the simulation is also can-
sistent with a logarithmic behavior over the same
range of times. It would be best consistent (Fig.
2) with a power-law behavior:

(o,.(f)) f-', a= .'I,T/r Z (r-o). -
Vfe failed to detect any influence of the magnitude
of the linear dimension N on this behavior.

In order to clarify what goes on in the system

during this process on the microscopic scale, we
have recorded the microstates, examples of which
are given in Fig. 4. Reversed spins are shown a.s
black dots; up spins are not shown. It is seen that
the spins form an irregular percolating network
of rather ramified clusters. As time goes on,
these clusters become slightly more compact
while the general structure of the pattern stays
the same.

It is interesting to note that this slow nonex-
ponential variation with time is suppressed in the
presence of an external magnetic field H, where
the magnetization settles down much more quickly
to a nonzero equilibrium value m =(o,.(~)); see
Fig. 5.

According to the conjectures of Refs. 8-12 one
would expect that the autocorrelation function
(cr,(0)o,(f)) relaxes to a nonzero value of the
"order parameter" q below T, as f, goes to infinity.
Figure 6 shows that our data are consistent with
that conjecture. The same data are replotted
versus log t in Fig. 7, however, which shows that
the data are well accounted for by a decay similar
to the remanent magnetization (apart from
ke T/n. Z= 0.5 where definite approach to equilib-
rium seems to occur, as indicated by the broken
line).

A more conclusive answer to the question if a
spin glass has a nonzero "order parameter" is
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FIG. 4. Snap-shot picture of the state of a 60&60 sy-
stem at temperature kzT/6 J = 0.7 at a time of 30 Monte
Carlo steps per spin after the start from (a) a ferromag-
netic initial. configuration and (b) at a time of 900 Monte
Carlo steps per spin. Reversed spins are shown as
black dots; up-spins are not shown.

obtained from the time dependence of q(t) [Eq.
(Bc)], cf. Fig. B(b). For ttsT/n,

s'il.

0, q(t) re-
laxes monotonically towards zero very slowly (Figs.
Band &). At lower temperatures it first decreases
[note q(0) —= 1], but then increa. ses again and ap
proaches a nonzero equilibrium value after very
slow damped oscillations [Fig. 8(b) shows only
parts of the recorded variation with time]. Owing
to this nonmonotonic varia, tion we could not make
a reliable extrapolation to t- ~, which would be
necessary to estimate the temperature dependence
of the order-parameter reliabl. We expect that
it behaves qualitatively like the broken curve in
Fig. 8(a).

At this point it is in order to comment why the

Monte Carlo method yields here rather poor re-
sults, while it has yielded very accurate results
in ordinary Ising and Heisenberg model simula-
tions, especially for the respective order param-
eters. " The reason for this failure is twofold:
(i) in ordinary (kinetic) Ising models, the relaxa-
tion is exponential and hence the systems reach
their equilibrium rather quickly, apart from the
immediate vicinity of critical points where crit-
ical slowing down occurs; and (ii) in equilibrium
one may obtain the order parameter not only from
time or ensemble averages but also from a spatial
average of a single configuration (since fluctua-
tions are of the order X t' and hence negligible
for large N). In contrast, the "order parameter"
q(t) in Eq. (B) is meaningless for a single ob-
servation, of course q(0) =-1 at any temperature.
One could circumvent this difficulty if one intro-
duces phase functions p',"for the ground state of
the system such that in the ground state (which
has the degeneracy n~)

y(t)g
(ll)

In an ordinary ferro- and antiferromagnet, n = 2

and P',."= 1, QP'= —1 (for the ferromagnet), or
g"'=e "o P'."=—e'"~'~ (for the antiferromagnet}.
The quantity qI on the left-hand side of Eq. (11) is
the order parameter of the system (ferro-or anti
ferromagnet} at arbitrary temperatures, the
susceptibility and correlation length associated
with its fluctuations diverge at the critical point.
We speculate that the behavior of the spin glass is
analogous, only the determination of the phase
functions @ is highly nontrivial. We have not yet
attempted to find 4' for the spin-glass problem"
but note that from the above remarks it is clear
that the energy and magnetization are obtained
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FIG. 6. Autocorrelation function plotted versus time (in units of Monte Carlo steps per spin) for varioustemperatures.

The inset shows the behavior at short times. All data refer to a 24 &24 system.

with much better precision than the "order param-
eter" q; and hence in the following we concentrate
on the former quantities.

IV. EQUILIBRIUM PROPERTIES OF THE SPIN GLASS

In Fig. 10 the temperature variation of the ener-
gy is plotted for some of the calculated values of
the field. These data are typically based on the
last 1000 Monte C arlo steps per spin of runs with
2000 Monte Carlo steps per spin. It is seen that
in the vicinity of the freezing temperature

(ks T,/J J= 1.0) the energy is still rather close to
its ground state value. In Fig. 11 we present
selected data on the magnetization process of the
spin glass (ferromagnetic starting configuration;
i.e. , Fig. 11 corresponds to the physical situation
where the system is cooled to the considered tem-
perature in a very high field and the field then is
put to the considered value). The values of the
remanent magnetization in Fig. 11 differ from that
of Fig. 2(c) since in Fig. 11 we used f&=2000
throughout instead of t~= 250.
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FIG. 7. Semilog plot of autocorrelation function versus
time (in units of Monte Carlo steps per spin). Solid
straight lines indicate a (o';(0) 0';(t)) ~ const-log t behav-
ior.

FIG. 8. (a) "Order parameter" q(t) plotted versus
temperature for various values of time (in units of Monte
Carlo steps per spin). (b) "Order parameter" q(t) plotted
versus time. The parameter of the curves is k g T/~ J.
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By graphical differentiation of the curves shown
in Figs. 10 and 11 (and of similar data at other
fields and temperatures) we obtain the results
for specific heat and susceptibility shown in Fig.
12. The specific heat has (at zero field) a, broad
peak at about kaT/d, J= 1.25; in nonzero field this
peak is slightly reduced in height and shifted to
higher temperatures.

In zero field, data on the energy and specific
heat for linear dimension ¹40have been ob-
tained as well. We did not observe any finite-size
effect which exceeds the statistical error (which
has the size of the data points in the case of C,
and is about twice as large in the case of )(). This
absence of appreciable finite-size rounding effects
is not surprising, of course: Previous studies"'"
of finite-size effects in ordinary Ising and Heisen-
berg models revealed that large rounding effects
occur for quantities only which have a critical
divergence, and they are restricted to tempera-
tures where the correlation length is compatible
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FIG. 11. Magnetization plotted versus magnetic field
at various temperatures.
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FIG. 10. Normalized energy per spin plotted versus
temperature for various values of the magnetic field.

FIG. 12. (a) Specific heat plotted versus temperature
for two values of the magnetic field. These data are ob-
tained via C =BE/BT from the data on which Fig. 10 is
based. (b) Susceptibility plotted versus temperature for
four values of the field. These data are obtained via
y = Bm/BH from the data on which Fig. 11 is based.
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to the linear dimensions of the system (for n = 80
in an ordinary Ising system, rounding is thus re-
stricted to ~l —T/T,

~
&2/o, which would be of no

interest for the scale of Fig. 12!). Hence we be-
lieve that the round maximum of C in Fig. 12 is a
real effect, which is strikingly similar to experi-
mental findings. "

The susceptibility in zero field is identical to
that of a noninteracting paramagnet for tempera-
tures larger than T„and has a rather sharp cusp
at T,. It goes to a constant value at lower tern-
peratures. In nonzero fields the cusp is rounded
off. Again the results are in striking qualitative
agreement with experimental observation. "
There is a large disagreement concerning the nu-
merical values of the fields necessary to produce
appreciable rounding, however: For T =15 K in
Au-Fe alloys the cusp is reduced in height by 20/o
in Fig. 12 by a fieM of about 6000 Qe while ex-
perimentally one needs only about 600 Qe. A
similar discrepancy occurs in the mean-field
treatment" as well, which indicates that the EA
model as a whole is not sufficient for a quan-
titative description of real spin glasses.

In Fig. 13 we finally present results on specific
heat and susceptibility in zero field, as estimated
from the fluctuations of energy and magnetization,
Eq. (7). We also computed the staggered suscep-
tibility, Eg. (7c), and found that it agreed with the
susceptibility within the statistical error. Figure
13 confirms the qualitative features of Fig. 11.
For ksT/r Ja1.4, Figs. '12 and 13 even give iden-
tical answers. For temperatures closer to the
freezing temperature (1.0» ksT/6 j»l.4) the r'e-
sults based on the fluctuations are systematically
somewhat smaller. We believe that this is a sys-
tematic error due to too short observation time.
Figures 7 and 9 show that in this regime the re-
laxation time is comparable to the observation
time, and therefore Ec!. (7) is not expected to
yield equilibrium phenomena. A similar slowing
down occurs at very low temperatures with re-
spect to the difference between the magnetization
and its frozen-in part: there the "susceptibility"
based on observation of fluctuations over a finite
time interval probably goes to zero.

't C/kit~ &

2-
N =65

2 kgT/43 3

Xh3'i &

1.0- ideal paramagnet

(ii) Above the transition, the susceptibility is
that of an ideal noninteracting paramagnet while
below T, it drops off to lower values. This cusp is
smeared out by an applied magnetic field. The
field strengths needed to produce a smearing out
comparable to the experiment are about 10 times
larger than in the experiment, however (Fig. 12).

(iii) The specific heat does not show any detect-
able anomaly at T„but rather exhibits a broad
peak at temperatures which are about 25~jI) higher
(Figs. 12 and 13). This result agrees surprisingly
mell with experimental observation, but disagrees
with mean-field treatments of the EA model. We
believe that this discrepancy is due to the incorrect
treatment of fluctuations in the mean field approxi-
mation.

(iv) In a magnetic field the peak in the specific
heat is both slightly suppressed and shifted to
higher temperatures (Fig. 12).

(v) The "order parameter" q =((o)') of the spin
glass decreases linearly with T at low tempera-

V. CONCLUSIONS

Qn the basis of the analysis of our above Monte
Carlo simulation data we suggest the following
behavior:

(i) The Edwards-Anderson model of a spin glass
with nearest-neighbor random (Gaussian) inter-
actions on the square lattice has a critical point
AsT, /nZ= 1.0 where freezing-in of the spins sets
in (Figs. 2, 6, 8, 12, and 13).

0() 2 k8T/h3 3

FIG. 13, Specific heat (upper part) and susceptibility
gower part) plotted versus temperature. These data are
obtained from the fluctuations of energy and magnetiza-
tion, respectively, Typical error bar, not including sys-
tematic effects due to short observation time, is shown
at one temperature.
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tures and vanishes at T, (Fig. 8). This quantity
is particularly cumbersome to obtain from Monte
Carlo techniques since it is meaningless for a
single observation (equal to the microstate), and
hence we are not able to estimate its critical ex-
ponent. We argue, however, that q may be not
the best possible choice for an order parameter
(the susceptibility of this local quantity, which
describes its fluctuations, is finite at T,), and
we discuss in which way a global quantity 4 play-
ing the role of an order parameter can be intro-
duced.

(vi) The kinetic behavior of our stochastic Ising
spin glass is characterized by very slow nonex-
ponential relaxation (close to log t or f ' behavior,
with a «1). This slow relaxation distinctly shows
up above T, in the autocorrelation function (Fig. 7)
and in the approach to equilibrium of the "order
parameter" q(f) (Fig. 9); below T, it also appears
in the decay of the remanent magnetization (Figs.

8 and 5). Qualitatively this behavior could be re
lated to the behavior of ramified clusters of re-
versed spins, which become slightly more com-
pact during the course of the time evolution (Fig.
4).
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