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The low-temperature specific heat, sublattice magnetization, zero-point spin reduction, and ground-state
energy of CsMnC1, .2H, O have been confronted with a spin-wave calculation, which was based upon the
particular magnetic structure of this compound. In this numerical calculation the eA'ect of small interchain
interactions and a temperature-dependent amsotropy gap have been included. A good agreement with the
experimental heat capacity was obtained for an intrachain interaction J/k = —3.0 K and a ratio of the inter-
to intrachain interaction

~
I/J~ = 8 X 10 '. These values compare favorably with the results from other

studies. The predicted sublattice magnetization, including the zero-point spin reduction of 19%, is in good
agreement with the experimental evidence. The calculated ground-state energy corresponds with the value
obtained by direct integration of the experimental magnetic heat capacity. It was concluded that
unrenormalized spin-wave theory offers a fair description of the magnetic behavior of CsMnCl, 2H, O up to
—0.6 T„.

I. INTRODUCTION

Cesium manganese trichloride dihydrate
(CsMnC1, 2H20) can be considered as a fair repre-
sentation of a linear-chain Heisenberg antiferro-
magnet. The one-dimensional behavior, especial-
ly at higher temperatures, has been reported in a
large number of publications. They include sus-
ceptibility and magnetization, "magnetic specific
heat, ' and electron-spin-resonance4 results. The
reported values for the intra- and interchain inter-
actions indicate that the system can be character-
ized by 2,/k = —3.3 + 0.3 K and (Z, +Z,)/Z, = 10 '-
10 4. The small interchain interactions 4, and J,
give rise to a three-dimensional ordered antiferro-
magnetic state below T„=4.89 K with a magnetic
space group P»c'ea'. ' Inelastic-neutron-scatter-
ing experiments' by Skalyo et al. showed that also
in this ordered state the spin-wave dispersion re-
lation strongly reflected the pseudo-one-dimen-
sionality of the system. Recently Nishihara et al. '
reported that the proton spin-lattice relaxation
time in CsMnC1, 2H,O could be satisfactorily ex-
plained on the basis of a detailed calculation of the
spin-wave dispersion relation taking into account
the influence of the interchain interactions. The
influence of these (small) interchain interactions
may be anticipated to be important in the m'dered
state because in the (nonphysical) limit of the (or-
dered) purely one-dimensional chain the density of
states diverges in the origin of k space. In view of
this it seemed worthwhile to analyze the other
thermodynamic quantities as well. In this article
we will focus our attention on the specific heat,
sublattice magnetization, spin-reduction and
ground-state energy. In a recent article Iwashita
and Uryu' performed a similar analysis of the sus-

ceptibilities and the temperature dependence of the
sublattice magnetization.

II. THEORY

Since the magnetic structure of CsMnCl, 2H,O is
well established" the calculation of the spin-wave
spectrum is rather simple if only nearest-neighbor
interactions are taken into account. The magnetic
structure is shown in Fig. 1. The intrachain in-
teraction along the a axis is denoted by J,; J, and
cJ3 repr es ent the inter chain interactions . It is evi-
dent that all interactions are antiferromagnetic and
all neighboring splns belong to different, sublat-
tices. The system is therefore described by the
Hamiltonian
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FIG. 1. Spin array of CsMnCI,
& 2H20 in the ordered

state.
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The anisotropy field H„arises from —relatively
small —dipolar and crystal-field effects and the
indices l, m run over the "+"and "-"sublattice,
respectively. Within the Holstein-Primakoff' for-
malism the Hamiltonian can be written in terms of
creation and annihilation operators. If all terms
which are of higher order than quadratic in these
operators are omitted, the conventional diagonal-
ization procedure yields" "

E„~=NS(S+1)g J(r„)-gpeH„N(S+ 2)

+g(n +-,')e(k)+g (p+-,')e(k),

b(k) = —2S g J(r„)e'"'&

corresponds to the maximum energy of the spin-
wave spectrum, which is twofold degenerate in
zero applied field. If the slight zig-zag of the
chains along the a direction is ignored, we obtain

Q J (r„)= 2 (J, +J, +J,),
(4)

~~J(r„)e'" "I'=2(Z, c'os-,'k, a+J, cos&k, c+/, cosk, b)
h

The density function N(e) may now be calculated for
a given set of exchange constants according to the
procedure described by Nishihara et al. ' In Fig. 2
some representative results are plotted. Ep de-
notes the minimum energy of the magnon spectrum,
corresponding to k = 0. As anticipated before, the
low-energy part of the spectrum appears to be very
sensitive to the ra. tio

~
J,/J, ~. It seems likely that

these low-dimensional characteristics will also be
reflected by the thermodynamic properties at low

temperatures.
The magnetic specific heat is related to the nor-

malized spin-wave spectrum by

g (T) =E —e' 'r(e" —1) 'N(e) d&.
kT (5)

The integral may be evaluated numerically. In the
actual calculation, one should note that from neu-
tron-diffraction experiments' the energy gap 6p

has been found to be temperature dependent. The
observed temperature dependence could be de-
scribed by assuming a renormalization of Ep pro-
por tional to the sublattice magnetization. In the
calculations in this paper, the observed variation

n, P=0, 1, 2, . . . . (2)

In this expression r„=r, —r,
e (k) = {t —[b(k)]')'

= —2S J rh +g p~H

0 E:m

FIG. 2. Magnon density of states N(~) vs e calculated
for CsMnC13 2H20 for different sets of exchange con-
stants. The curve marked 1d denotes the purely one-di-
mensional limit (J2= J3= 0). The dashed curve indicates
the small-k approximation for a representative set of
exchange constants.

of the energy gap has been taken into account ex-
plicitly by adapting the value of H„.

The magnetic ground-state energy E may be ob-
tained by considering Eq. (2) for T=O, which yields

E = 2NS(S + 1)(J, + J, + JJ-g p e H„N(S + g )

'm
+— eN(e}de, (6)

6p

if the density function is normalized to 1. Since it
has been shown" that the inclusion of fourth-order
terms in the spin-wave Hamiltonian produces an
increase of only 0.5/p in E for a S = ~ antiferro-
magnetic linear-chain model, Eq. (6) will very
likely offer a good estimate of the actual ground-
state energy of CsMnCl, 2H,O.

The sublattice magnetization M, may be found
rather directly by differentiating the energy (2}
with respect to its conjugate thermodynamic vari-
able. This variable is the "staggered" field H„,
which points along the preferred direction of spin
alignment, being positive at the "+" lattice sites
and negative at the "-"lattice sites. As can easily
be seen, H„enters in the Hamiltonian (1) in the
same way as H„, and hence it may be added to H~
in the final solution (2) and (3). In zero applied
field the result is

1
' e„N(e)Ms= zNg p.~ S+ 2 — d&

2E

'm e N(e)
~( '"-&) )'

p

which is, in fact, equivalent to the expression giv-
en by Kubo. "

III. RESULTS AND DISCUSSION

The magnetic heat capacity has already been re-
ported in a previous publication. ' The data at low
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temperatures are presented in detail in Fig. 3 by
open circles. They are obtained by subtracting the
inferred lattice contribution from the experimen-
tal data. Because in this temperature region the
lattice heat capacity amounts to less than 6% of the
total specific heat, the result will reflect the mag-
netic contribution rather accurately. The drawn
curve corresponds to the best fit of the spin-wave
prediction (5) to the data. Since the theoretical be-
havior at these temperatures wa. s found to depend
on lJ, +J',

l
rather than on J, and J, separately, and

several experimental studies indicate that lJ, l«
l
J, l, the problem has been simplified by putting

J, equal to zero. The result obtained from the set
of exchange constants reported by Iwashita and
Uryu' from their fit of the spin-wave prediction to
the low-temperature susceptibility is represented
by a dashed curve. For comparison the predic-
tions from some purely one-dimensional models
are also given. The curve marked "1d, " repre-
sents the estimate from linear spin-wave theory
given by Kubo" for J/k = —3.0 K, the curve marked
"1d„„"corresponds to the low-temperature be-
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FIG. 3. Magnetic heat capacity of CsMnCI&. 2H&O at low
temperatures. The open circles correspond to the ex-
perimental data corrected for the lattice contribution.
The drawn curve denotes the best fit of the spin-wave
prediction to the experimental results. The result ob-
tained from the set of interactions reported in Ref. 8 is
represented by a dashed curve. The curve marked 1d,~
reflects the prediction from purely one-dimensional spin-
wave theory. The result of a numerical calculation of the
heat capacity of an infinite linear chain (Ref. 12) is rep-
resented by 1d~m .

havior of a S =-,' Heisenberg antiferromagnetic lin-
ear-chain system, inferred from recent numerical
calculations. " As might have been expected, these
curves are systematically too high. Three-dimen-
sional spin-wave theory, however, is found to give
a fair description of the data up till -0.6TN. The
intra- and interchain interactions, which gave the
best over-all fit with the experimental results are

J;/k= —3.0K, lJa/Jil =8 x10 ', J, =0,

and they compare favorably with the values cited
in literature.

Inspection of Fig. 3 shows that the agreement be-
tween theory and experiment gets worse at the low-
est temperatures, although one would expect a spin-
wave analysis to be most accurate in this region.
This systematic deviation partially arises from the
high-temperature tail of the nuclear Schottky
anomaly of the Mn" ions caused by the hyperfine
coupling S A ~ I in the magnetically ordered state.
Assuming lA l

/k = 0.012 K, a value which can be
considered as representative for Mn" ions in an
octahedral environment, "we arrive at a nuclear
contribution to the specific heat of about 0.02
J/molK at 1 K, which accounts for -30/o of the ob-
served deviation. The remaining discrepancy may
presumably be removed by the introduction of
small nonuniaxial terms in the anisotropy. Suscep-
tibility experiments' have indicated the existence
of such terms.

Substitution of H„and the set of exchange con-
stants given above in the expression for the
ground-state energy E (8) yields E, = —357 J/mol.
If we assert that the dominant contribution to E,
will arise from the large intrachain interaction,
this value may be confronted with the rigorous
bounds given by Anderson" for z =2 and J'/k
= —3.0 K. The result is —312 &E, & —374 J/mol,
which is consistent with the value calculated above.
Of course, the ground-state energy may be calcu-
lated directly from the experimental data by inte-
grating the C~-vs-T curve. If such an integration
is performed for the magnetic heat capacity given
in Ref. 3 for J/k= —3.0 K, we obtain E = —361 J/
mol, which is in excellent agreement with the pre-
diction from linear spin-wave theory.

The behavior of the sublattice magnetization
M,„» has been determined from NMR measure-
ments on the hydrogen nuclei. From the variation
of the proton absorption frequency as a function of
temperature the relative behavior of M by may be
found. In order to obtain an estimate of the abso-
lute value of M,„», the observed local fields at the
proton sites can be compared with the calculated
internal fields originating from the magnetic di-
pole moments on the Mn" ions. Whether such a
dipole sum really reflects the actual local magnet-



DE iONGE, KOP1NGA, AND S%USTE

J)&k = —3.0K
-3

J2Q) = BX10
J3=0

J)/k = -3.2K
-3

of J2~J] = 7X10

psMnCl3 2H20

o.s

J2U) = /x

J3m0
oo

0

i.c fields at the proton sites depends on a number
of conditions, which have already been pointed
out" and will therefore be summarized only brief-
ly. First, the direction of the magnetic dipole mo-
ments (or M,„») has to be known exactly. In

CsMnCl, 2H,O this is given by symmetry as the b

axis. Second, the hydrogen positions should be
known with a sufficient degree of accuracy. Fur-
therrnore, the hyperfine interaction of the hydro-
gen nuclei with the Mn" spins should be small
compared to the dipolar interaction, a condition
which is reasonably met in this kind of Mn" com-
pound. " If we compare the calculated dipole sums
at the proton sites, corresponding to the magnetic
space group P»e'ca', with the experimentally de-
termined internal fields, a magnetic moment of
4.0 p, ~ on the Mn" ions is required to fit the ex-
perimental fields extrapolated to 7.

' = 0. Given the
small uncertainty of both the hydrogen positions
and the hyperfine contribution, we conclude that a
zero-point spin reduction of (20+ 4)/o is present.
The corresponding temperature dependence of the
sublattice magnetization is given by open circles
in Fig. 4. The dashed curve in this figure is ob-
tained from Eq. ('l) by substitution of the values for
the exchange interactions 7,/k = —3.0 K,

~
J,/J,

~

=8 &&10 ', J,=0 found from the analysis of the heat
capacity. The prediction resulting from the ex-
change constants reported by Iwashitaand Uryu' al-
most coincides with this curve, and has not been
shown separately. The drawn curve corresponds
to the best fit of (7) to the experimental data, given

a fixed value of J, and the observed temperature
dependence of e,. The value of

~

J',/J',
~

resulting
from this fit is somewhat smaller than the value
obtained from the low-temperature specific heat.
The calculated spin reduction, however, is in ex-
cellent agreement with the experimental evidence.

In view of the results of the present analysis of
both heat capacity and sublattice magnetization as
well as the interpretation of the susceptibility in
the ordered state, we would like to conclude that
linear spin-wave theory offers a fair description
of the magnetic behavior of CsMngls ~ 2H20 in the
ordered state. Unlike the purely three-dimension-
al case, where considerable renormalization ef-
fects occur as T„ is approached, the validity range
of the linear spin-wave approximation in this pseu-
do one-dimensional case extends up to 0.6 T„. The
only renormalization effect that has been consid-
ered in the present treatment is the observed tem-
perature dependence of the energy gap &,. The fact
that no other renormalization effects have been
taken into account does not seriously impair the
description of the thermodynamic properties, as
can be seen as follows. First, for spin waves
propagating in the direction of the chains, Skalyo
et a/. ' have shown that energy renormalization at
the zone boundary is only detectable far above T„,
and hence & may safely be considered as being
constant in the temperature region below T„.
Moreover, the calculation of the magnetic proper-
ties at these temperatures involves mainly the
density of states for low values of e. For spin
waves propagating perpendicular to the chain di-
rection, an energy renormalization of 10% was ob-
served at the zone boundary. This would give rise
to a small shift of the bump in the low-energy part
of the spin-wave spectrum. As can be seen from
Fig. 2, however, such a shift may —to a certain
extent —be compensated by a readjustment of the
value of (J', +Z, )/J, . This probably explains the
slightly different sets of exchange constants used
to describe the behavior of the various magnetic
properties. Since these differences are not very
significant, we are tempted to conclude that linear
spin-wave theory may provide very realistic esti-
mates for both the intra- and interchain interaction
in pseudo-one-dimensional magnetic systems.

0 1.0 2.0 3.0 &.0
T(K)

FIG. 4. Sublattice magnetization of CsMnCl&. 2820.
The open circl.es denote the experimental behavior de-
duced from proton-NMR measurements. The dashed
curve represents the spin-wave prediction for the set of
exchange constants inferred from the heat-capacity mea-
surements as we11 as the prediction resulting from the
set of exchange constants reported in Ref. 8. The drawn
curve is obtained by a small readjustment of the inter-
chain interaction.
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Note added in proof. When this article was in
preparation it came to our attention that Iwashita
and Uryu also performed a spin-wave analysis
of the specific heat of CsMnC13 2H20. Their

treatment is based on a Hamiltonian including
single-ion anisotropy terms. The results of this
analysis are in agreement with the present one.
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