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Experimental results for the isobaric-thermal-expansion coefficient pP of pressurized 'He near the superfluid

transition temperature T~ are reported. Near T)„Pp is an asymptotically linear function of the specific heat at
constant pressure C„. Therefore these measurements yield some of the same critical-point parameters as those
derivable from CP. The measurements were made with high-temperature resolution over the range

2)& 10 '
~
t~=~ T/T„—1~ ( 7)& 10 ', along nine isobars. They span the pressure interval 56 P ( 30

bar. A new experimental technique was employed which yielded a temperature resolution of two parts in 10'
and a pressure stability of 1 )& 10 ' bar. The results for each isobar were fitted with the equation

pP = (A/a)t (1+ Dt')+ B above T~, and with the same expression with primed coefficients below T),. When

the amplitudes D and D' of the confluent singularity are assumed to be equal to zero (i.e., the data are
fitted with a pure power law), the leading exponents are pressure dependent and vary from 0.00 at low P to
0.06 at high P. This analysis also yields B' ) B. The inequality between B and B', and the pressure

dependence of a and a', are contrary to the predictions of the phenomenological and renormalization-group
theories of critical phenomena. When D and D' are permitted to assume nonzero values, it is statistically

allowed by the data to impose the theoretically predicted relations a = a', x = x', and B = B' as constraints
in the analysis. With these constraints, and the value of x chosen to be equal to 0.5, we obtain pressure-

independent (universal) amplitude ratios and leading exponents, as expected from theory. Their values are
a = a' = —0.026 ~ 0.004, A/A' = 1.11 ~ 0.02, and D/D' = 1.29 + 0.25. Similar results are obtained when x
is chosen to be equal to 0.4 or 0.6. The result for a is consistent with that derived previously from specific-

heat measurements. The universal A/A' is contrary to the previous report of a pressure-dependent specific-
heat amplitude ratio. Using thermodynamic relations, we compare our Pp results directly with the Cp

measurements. For P ( 15 bar the agreement is excellent; but at the higher pressures there are small but
significant differences of unknown origin.

I. INTRODUCTION

The superfluid transition of liquid helium has
been investigated in recent years in great detail
and with high precision' in order to test theoreti-
cal predictions pertaining to continuous phase
transitions. The results of those studies have been
compared with predictions of scaling, ' of univer-
sality, ' and of the renormalization-group theory of
critical phenomena. ' These theories predict that
exponents, and certain dimensionless amplitude
ratios, which describe the singularities of various
properties near critical points, are universal in
the sense that they depend only upon such general
properties of the system as its spatial dimension-
ality d, and the number of degrees of freedom n

(spin dimensionality) of its order parameter. This
concept of universality received strong support
from a variety of experiments, "although there
appear to be some experimental results which con-
tradict this theoretical prediction. "

For the superfluid transition, one has n=2 be-
cause the order parameter is complex. Since
neither n nor d (nor any other known relevant
property of the system) change as the pressure of
the fluid is varied, one expects from renormaliza-
tion-group theory that critical-point parameters
such as exponents and certain amplitude ratios
should be constant along the entire A. line. None-
theless, recent measurements of the specific heat
of 'He near Tz yielded an amplitude ratio A/A' of
the leading singular part of C~ which depended
upon the pressure I'.' Since those results disagree
with the predicted universality, the present work
was undertaken with the intention of providing a
second measurement of A/A' by another indepen-
dent experimental method. We measured the iso-
baric thermal expansion coefficient P~ of 'He near
T„ for 2&&10 '=--

~t~ (7&&10 ' and for 5~P 30 bar.
Here t= T/Tz —1 and P is the pressure. Using the
thermodynamic relations, one can show that P~ is
a linear function of Cp sufficiently near Tz (see
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below). " Therefore the same amplitude ratio
A/A' and the same critical exponents a and n' can
be derived either from P~ or from C~. Our results
for P~ are thermodynamically consistent within
expected experimental uncertainties with the
specific-heat results' for pressures I' s 15 bar.
However, there exist small but significant incon-
sistencies between the two sets of data at the high-
er pressures which increase with pressure and
with approach towards Tz.

me analyzed the results for P~ by fitting them
to the function'

O =8/~)lfl "(I+Dl&l*)+&

for T & Tz, and to the same function with primed
coefficients for T & Tz. In the analysis of mea-
surements near critical points, it is often assumed
that the amplitudes D and D' of the confluent sing-
ularity in Eq. (1.1) are negligibly small. Initially,
we therefore also made this assumption, although
there is of course no yarticular justification for
doing so. The fit to the remaining pure power law
yields exponents a and ~' which depend significant™
ly upon the pressure and vary from about 0.00 for
small I' to about 0.06 nea, r the melting line (P = 30
bar). This analysis also gave values of B' which
were consistently and significantly lax ger than
those of B. From renormalization-grouy theory
it is expected that 8 =B',' and tha, t a = a' and in-
dependent of the pressure. %e do not regard these
departures from the theoretical predictions to be
real, however, and will show that full agreement
with theory can be obtained by permitting the am-
plitudes D and D' of the confluent singularity in
Eq. (1.1) to assume nonzero values. When the
terms D[f~" and D'[f~* are included in the data
analysis, it is possible to have 8 =8' and a = n',
as expected from theory, without causing statistic-
ally significant departures of the data from the
fitted function. The data and Eq. (1.1) with these
constraints, and withx =x' =0.5, yield a =a'
= —0.026+ 0.004, A/A' = I.ll+ 0 02, and .D/D'
=1.29+ 0.25. These three yarameters within their
experimental uncertainty are independent of pres-
sure along the entire A, line, as expected from
theory. The value of a = a' is in agreement with
that given by the specific-heat measurements. '
The results for C~ also had revealed already that
the scaling prediction a = a' was satisfied by the
data only when nonzero values of D and D' were
allowed in the data analysis. But the pressure
dependence of A/A' which was indicated by the C~
results is not confirmed by the present data for
P~. Although we have been unable to find an ex-
planation for the discrepancy, we are inclined to
believe that the previous xesult should be regarded
as spurious and that the universal A/A', based

upon Pz, reflects the true behavior of the system.
Although we have no rational basis for this belief,
we do call attention to the fact that the present
measurements give P~ directly, whereas the re-
sults for C~ are not based on direct measurements.
Instead, C~ was derived via thermodynamic rela-
tions from the measured heat capacity C„at con-
stant volume.

In Sec. II we describe the principle of a new high-
yrecision technique which was used to measure
P~. In Sec. III we discuss the cryogenic and elec-
tronic aspects of our experiment and the experi-
mental procedure. Section IV contains the analysis
performed to calculate P~ from the raw data, and
a discussion of the experimental errors. The re-
sults a,re presented in Sec. V. Section VI contains
the discussion, and in particular a comparison of
our results for critical exponents and amplitude
ratios with predictions of scaling, universality,
and renormalization-group theory. A summary of
our results is provided in Sec. VII.

A brief report on this work has been given pre-
viously. "

II. PRINCIPLE OF THE EXPERIMENTAL METHOD

Thermal-expansion coefficients of liquids usually
have been determined either by measuring volume
changes in a yycnometer, or by measuring dielec-
tric constant changes in a capacitor. Our measure-
ments were made by a new technique which is cap-
able of very high resolution, a,nd which is especial-
ly suited for investigations near the A. line. Our
method reduces the experimental procedure to a
high-pxecision regulation of the sample pressure,
and the measurement of temperature changes. It
avoids the direct measurements of changes in vol-
ume or dielectric constant.

The principle of the method is demonstrated in

Fig. 1. Pa,rt of the helium used for the measure-
ments occupies the "sample" volume v„and the
remainder is in the "hot" volume v& The experiment
is yexformed at constant pressure, and at con-
stant total volume (v, +s„). The temperature T, of
the sa,mple is held near Tz, where the expansion
coefficient has a large negative value and is
strongly temperature dependent. The volume v~ is
connected to v, via, a small capillary. The capil-
lary diameter is small enough to result in a toler-
able heat transport, and yet large enough to yield
only negligible pressure gradients. The tempera-
ture T„of the hot volume is kept between 2.5 and
4 K, and is free to change in this range where the
expansion coefficient is positive and has a small
regular temperature dependence. " The pressure
I', is measured by a cayacitance strain gauge, "
which is attached to the samyle volume. Any devi-



2098 K. H. MUELLER, GVENTER AHLERS, AND F. POBELL 14

P 0

PRESSURE

SENSOR

SAMPLE
VOLUME

P, ,T,
vs

lT~- T, I 10 K

I

LK

"
HOT "VOLUME

]I I I '

Ps T)

v„0.1v SIGNAL TO HEATER

2.4 K &Th & 4.0 K

ERROR SIGNAL )NTEGRATING

ELEGTRONIG
REGULATOR

10 ' bar. With the experimental apparatus to be
discussed in Sec. III we obtained a pressure regu-
lation of typically 10 7 bar, and a resolution in the
temperature measurement of 5T/T= 1X—10 '.

A particular advantage of our method is that we
use a closed system at low temperatures, thus
eliminating any possibility of mass exchange with
hotter parts of the apparatus. A further positive
aspect is that we placed critical components of
our measuring systems, such as pressure trans-
ducers and reference resistors, on the sample
chamber or at another well-regulated low temper-
ature. Under these circumstances, thermal-ex-
pansion effects in the constituent parts are small,
and extremely high stability and reproducibility
can be achieved.

FIG. 1. Schematic representation of the experimental
method.

ation of P, from a reference pressure produces an
error signal which is used to change the tempera-
ture T„so as to return P, to its reference value.
Any change AT, of the sample temperature there-
fore has to be compensated by a change h T„of the
temperature of the hot volume if the pressure is to
stay constant. The amount of liquid flowing out of
(or into) the sample volume due to a temperature
change LT, at constant P has to be allowed to flow
into (or out of) the hot volume by changing the tem-
perature of v„by an appropriate amount hT„.
Thus, the isobaric temperature change ET„ is
proportional to the isobaric molar volume change
g V of the fluid in v, . The thermal-expansion co-
efficient P~, of the liquid in the sample is then
given by

p = lim —P~ g (2.1)
o

' b, TsNss

where P~ „ is the isobaric thermal-expansion co-
efficient of the fluid in the hot volume, N, is the
number of moles in the chamber i, and N„/N, can
be determined from the measured volume ratio
v„/v, . The data then consist of readings of the
temperature changes AT„of the hot volume which
are caused by various regulated isobaric tempera-
ture changes AT, of the sample volume. By choos-
ing v, = 10v„, we have under most circumstances
l~&al '101~&,l because usually IA. al & IP~,.I.
Therefore, the accuracy of the data depends es-
sentially only on the resolution with which AT,
can be measured, and on the pressure regulation.
The requirement for the latter is rather severe.
For a thermal-expansion coefficient of 0.1 K ' and
a compressibility of 10 ' bar ', which are typical
for 'He near Tz, the pressure resolution corres-
ponding to a temperature resolution of 10 ' K is

III. DETAILS OF THE APPARATUS AND THE PROCEDURE

A. Cryogenic apparatus

General arrangement
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FIG. 2. Schematic diagram of the low-temperature
portion of the apparatus.

The main part of the cryogenic apparatus is
shown in Fig. 2. It is contained in a vacuum can
which is surrounded by a helium bath at 4.2 K.
The first stage inside this can is a continuous 'He

refrigerator" with a 'He volume of about 5 cm'.
The operating temperature of this refrigerator is
about 1.35 K and is constant to +3 mK. In order to
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steel bellows of the valve. The stainless-steel
tubes which lead to the German silver seat and to
the stainless-steel needle of the valve are heat
sunk with copper braids to the 4.2-K 4He bath, to
the 1.35-K 'He stage, and to the isothermal plat-
form. A heat leak from the sample cell to the iso-
thermal platform of tyyically 5&10 ' W is pro-
vided by the tubes of the cold valve. This heat
leak is of course very constant in time because of
the constancy of the isothermal platform tempera-
ture.

T
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FIG. 3. Schematic diagram of the details of the sample
cell and hot volume.

improve the thermal stability of the sample cell,
a copper disk is used as an isothermal platform"
between the 1.35-K stage and the sample. The
isothermal platform temperature is regulated at
about 1.5 K with a heater, and a germanium
thermometer in an ac bridge, to +8 pK. A thin
copper wire and the necessary structural members
provide a heat leak typically of 1X10 ' W from the
isothermal platform to the 'He pot.

All wires and capillaries that lead to the sample
cell are carefully heat sunk at the top flange of the
vacuum can (4.2 K), at the 'He pot (1.35 K), and at
the isothermal platform (1.5 K), before they are
connected to their final destination. Radiation
heat input is reduced by radiation shields in all
tubes leading to the vacuum can, and around the
sample cell.

In Fig. 3, more details of the central part of the
apparatus are shown. The sample volume and hot
volume can be filled through a valve with liquid
helium. The valve is at the same temperature as
the sample volume. It is actuated mechanically
from outside the low-temperature part of the ap-
yaratus. It has a German silver seat with a
0.1-cm-diam hole, and a stainless-steel needle
with a 3' taper. A copper capillary (0.02-cm i.d.
and 0.1-cm o.d.) leads from the valve to the sam-
ple cell. After filling the sample and hot volumes,
the valve is closed and the filling capillary (stain-
less steel, 0,08-cm i.d. and 0.01-cm wall thick-
ness) above the valve is evacuated. Emptying this
capillary is aided by raising its temperature with
a heater wound onto the top half of the stainless-

The top part of the sample cell contains the mov-
able diaphragm of the pressure transducer (see
below) and is made of beryllium-copper. The low-
er part of the cell is made of a single piece of
copper. The sample volume consists primarily of
0.1-cm-wide and 1-cm-high grooves, which are
cut into the lower copper part of the cell. Con-
nected to the sample volume via a capilla, ry is the
hot volume. This volume is made of a copper piece
into which 14 holes of 0.2 cm diameter and 3.4 cm
1.ength are drilled. Everywhere in the sample the
liquid is no more than 0.05 cm away from a copper
wall. In the hot volume this maximum distance is
0.1 cm. This design reduces thermal relaxation
times of the system to less than 10 sec even for
He I.

The hot volume v„ is approximately equal to 10%
of the sample volume v, . This volume ratio, and
the relative size of the expansion coefficient of
4He near T„and at high temperatures, assure that
the temperature change AT„of the hot volume will
be an order of magnitude larger than the tempera-
ture change AT, of the sample volume in a typical
measurement [see Eq. (2.1)]. The large gT„can
be measured easily with a relative error consider-
ably smaller than that of AT, . The random un-
certainty of a measured value of P~, therefore, is
determined primarily by the temperature resolu-
tion of 2&10 ' K of T, .

The stainless-steel capillary which connects the
sample and hot volumes has a 0.035-cm o.d. , a.

0.01-cm i.d. , and is 4 cm long. Its volume is
3&10 ' cm', which is only 2X10 'Q of the total
sample volume. Changes in temperature gradients
along this capillary will therefore have a negligible
effect upon the density of the fluid in v~ or v, .

When T, is less than Tz, part of the capillary
between e„and v, will contain superfluid helium in
a temperature gradient. The heat carried by the
superfluid flow is limited by dissipative processes
such as the so called "mutual friction, " and can be
estimated from detailed independent experimental
measurements" on a similar system to be about
30 pW when T, is 0.01 K below T„. This heat cur-
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rent vanishes when T, = Tz. The heat input to the
sample volume is balanced by part of the heat leak
to the isothermal platform. %hen T, & T» heat
losses from the hot volume are very small because
the fluid in the capillary between v~ and e, is He I.
Under these circumstances it is difficult to regu-
late T„; and we therefore deliberately introduced
a heat leak of typically 3X10 '% between the hot
volume and the isothermal platform.

The total volume v~+v, was determined by filling
it with liquid helium at a knomn pressure and tem-
perature, and then evaporating this liquid into
calibrated glass bulbs at room temperature. %'e

find

U, +e„=16.50+ 0.16 cm'. (3.1)

X-point detector

%e detected the superfluid transition by estab-
lishing the temperature at which thermal resis-
tance in the liquid is first noticeable. " For this
purpose, a. small thex'mal-conductivity probe is
attached to the bottom of the main sample" (see
Fig. 3). Some of the fluid can flow into this X-
point detector through a 0.1-cm-diam hole in the
sample-cell bottom. The therma3. -conductivity
cell is 0.1 cm high, has a 0.58 cm diameter, and
has stainless-steel walls of 10 ' cm thickness.
Power generated (typically 10 ' W) in a heater and
a thermometer which are attached to the thermal-
conductivity cell bottom has to flow primarily
through the 0.1-cm-thick Quid layer. It produces
a temperature difference across the A. -point de-
tector when T& Tz, and the thermal resistance of

The ratio v~/v, was determined by adjusting the
temperature of the two volumes to approximately
the same temperature near 2.4 K. Here P~ is a
regular, slowly varying function of T, a,nd known
from the measurements of Elwell and Meyer. "
With the pressure held constant, measurements
of V' and T, were made ~ust as for the data near
T), (details of the procedure are given below), but

in this case the expansion coefficient of the Quid
j.n both volumes ls known and l,t 1S possible to cal-
culate the volume ratio. The effect of possible
errors in the measurements of Elwell and Meyer
ls mlnj. mlzed by having Pp „—-P„„for 1f the two
expansion coefficients were equal, one would have

v„/v, =r T, /6T„. We measured v„/v, near the
maximum and minimum pressures of the experi-
ment, and found the same ratio within the resolu-
tion of 0.1%. This is consistent with our estimate
of the flexure of the pressure sensor diaphragm,
which corresponds to a change in v, of 0.05k due
to a pressure change of 30 bar. We find

v„ /v, = 0.096 15+ 0.000 10.

the fluid is nonzero. This temperature gradient is
detected by comparing the thermometer at the bot-
tom of the probe with another on the main sample
cell. It is possible by this method to determine
T& in the A. -point detector to within the resolution
of the main thermometer on the sample volume,
or typically to +2&10 ' K. The A. point in the main
sample is at a slightly higher temperature because
of the effect of the gravitational field. " The mea. -
surements of T& are easily corrected for this
gravity effect, and our final values pertain to the
middle of the sample volume which is located 2.3
cm above the A. -point detector.

In the immediate vicinity of Tz, the temperature
difference across the A. -point detector provides a
very sensitive measurement of the temperature of
the main sample. Temperature changes of 10 ' K
can be resolved over the 10 '-K temperature inter-
val where the He II-He I interface moves vertical-
ly through the thermal-conductivity cell. " We

have utilized this extremely high sensitivity to
regulate the sample temper'ature in this tempera-
ture interval to better than 10 K. With the sar@-
pie temperature held constant, we were then able
to evaluate the performance of the pressure regu-
lation system and of the hot-volume thermometer
system (see Sec. Ill C).

Six heaters and six thermometers at va. rious
points of the low-temperature apparatus (see Fig.
3) made it possible to regulate and measure the
temperatures of the various stages. Heaters were
generally made of 0.01-cm-diam Karma wire, had
resistances of several kQ, and were attached to
various points using GE 7031 varnish. %e used
encapsulated germanium thermometers" which
were pushed into holes containing Apiezon type N
grease. They were all model CR 2500I., except
for the one on the sample volume which was model
CR 000." Al thermometer eads were th rmal y
a,ttached to the substrate whose temperature was to
be measured.

5. Pressure gauge

The pressure gauge is an integral part of the
sa,mple cell. It is a capacitive pressuxe trans-
ducer of the type employed by Straty and Adams. ""
An elastically deformable diaphragm is part of the
beryllium-copper top piece of the sample cell (see
Fig. 3). It is 0.15 cm thick and has a diameter of
3.2 cxn. A 3-cm-diam plate is glued rigidly with
Stycast FT 2850 epoxy to a post on the center of
the diaphragm (see Fig. 3). Any diaphragm de-
flection is therefore transmitted to this plate; but
the plate is electrically isolated from its surround-
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8. Electronics

Qur method of measuring the thermal-expansion
coefficient required the precise measurement or
control of three parameters. These are the liquid
pressure, and the temperatures of the sample and
the hot volume.

Both temperatures were measured by deter-
mining the resistance of calibrated germanium
thermometers. This was done by using an alter-
nating-current bridge method, which to a large
extent has been described elsewhere. " Homever,
some of the details of the thermometry have been
optimized over the intervening years. ""' We
show a schematic diagram of the circuit in Fig. 4.
Metal film resistors" were used as standards in

the bridges. They were mounted in the cryostat
on the isothermal platform in order to eliminate
any effects due to their already small tempera-
ture coefficient and to reduce the size of the John-
son noise. Their resistance changed typically

- I SOL AT lON TRANSFORMER

RATIO TRANSFORMER
&WY Y W&YYW~

NULL

DETECTOR
ROOM T EMPE RAT URE

FIG. 4. Schematic diagram of the thermometry bridge.

ings. A second plate of 3.0 cm diameter is glued
similarly in a fixed position and also electrically
isolated. A three-lead method can therefore be
used to determine the capacitance between the

plates. This capacitance is a measure of the plate
separation, and therefore of the pressure in the
cell.

Both of the capacitor plates are lapped to a, flat
mirror finish. The gap between them is adjust-
able by means of shims of various thicknesses to
provide maximum sensitivity at a particular oper-
ating pressure. A typical gap width was 30 p. m
and yielded a pressure sensitivity of 10 ' bar with
the capacitance resolution of one part in 10'. With
the cell evacuated, the pressure gauge had the
negligible temperature dependence (l/AT)(AC/C)
= 1.8& 10 ' K ' over the range 1.6 ~ T ~ 2.6 K.

The capacitive pressure gauge was calibrated
with an accuracy of +0.03 bar by comparing it with
a Heise bourdon-tube gauge. "

by 2 k upon cooling from 300 to 2 K. Temperature
stabilization of the ratio transformers was not
considered necessary because their transfer char-
acteristics are virtually independent of the labora-
tory temperature. They contribute little to the
noise because they are in principle nondissipative
devices. One frequently encountered problem in
high-resolution thermometry is the effect of
changes in the lead resistance upon the bridge
balance which might be associated with long-term
changes in temperature gradients along the leads
in the cryostat. To first order, these changes
tend to cancel even when only three leads are
brought out of the cryostat. However, we used
five leads for each thermometer, and operated
the ratio transformers" at a frequency near 35 Hz
mhere their impedance was at least an order of
magnitude larger than the resistance of the ther-
mometers and reference resistors. This serves to
further minimize the importance of lead-resis-
tance changes. A much higher operating frequency
was not considered desirable because it would
increase the size of the out-of-phase signal due to
any capacitive bridge unbalance. The out-of-phase
signal was minimized by adjusting the variable
capacitor shown in Fig. 4. The amplitude of the
excitation signal from the reference oscillator of
the lock-in detector" varied by less than 0.1'go.

This assured a time-independent power dissipa-
tion in the thermometers. It is important to main-
tain a constant thermometer power dissipation
because me operated at maximum tolerable bridge
power in order to maximize the temperature
resolution. The self-heating of the temperature
sensors above the temperature of the substrate
was typically 10 4 K. %ith a power stability of
about one part in 10', temperature changes of
10 ' K can thus still be measured if the noise
level of the bridge is sufficiently lorn, The gain
stability of the lock-in detector was not a critical
factor since measurements were nearly almays
taken close to a null condition and the precision
to which the size of the out-of-balance signal had
to be known was at most a few percent. Repeated
checks on the sensitivity of the bridge system
verified that this requirement was met. Drifts
in the null position of the lock-in detector were
always negligible.

Pressure measurements were made with the
capacitance transducer described in Sec. IIIA 5.
The capacitance was determined by a three-lead
technique with a commercially available bridge'4
in a conventional guarded capacitor arrangement.
Coaxial cables were used throughout. The internal
arrangement of the capacitance bridge is essen-
tially that of a ratio transformer, and a switch-
selectable bank of standard capacitors which have
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FIG. 5. Schematic diagram illustrating two possible
modes of operation for the experiment. See text for de-
tails.

a temperature coefficient (I/A T)(AC/C) of (2-3)
X10 6 K '. Since we wanted a stability of one part
in 10', it was necessary to regulate the tempera-
ture of these standard capacitors. They were
already enclosed in a hermetically sealed metal
container and thermally insulated. Therefore it
was necessary only to provide a heater and ther-
mometer to obtain a system suitable for regulation.
A thermistor was used as temperature sensor,
and its resistance was measured with a dc Wheat-
stone bridge. After suitable amplification a signal
proportional to the deviation from a fixed tem-
perature was provided to the heater. The thermal
stability as measured with a second independent
thermistor was +10 mK long term (weeks) and
x1 mK over several hours. Thus, over the period
of a set of measurements the standard capacitors
were estimated to be stable to a few parts in 10'.

Each of the bridge circuits discussed in this sec-
tion was used at some time in a regulation loop,
which made it possible to maintain balance at any
desired point. In order to obtain maximum ac-
curacy and stability, each regulatory system in-
cluded a feedback controller" which was capable
of being adjusted to the frequency response of the
cryogenic system so as to maximize the stability
of the control loop." The controller could main-
tain the integral of the out-of-balance signal at
zero, thus eliminating entirely effects associated
with the gain of the bridge null detector.

C. Performance and procedure

%'e always used the capacitive pressure gauge
on the sample volume in a regulation loop to adjust
the hot-volume temperature so as to keep the pres-
sure of the fluid constant. However, for the tem-
perature control of the sample volume, we had
several different methods at our disposal and we
used the one best suited for the purpose at hand.

Two of these are shown schematically in Fig. 5.
With the switch shown in Fig. 5 in the A position,

the sample thermometer is used to provide power
to the heater on the sample volume at a level suffi-
cient to maintain the sample temperature T, at a
constant value. Although this would seem to be the
most direct way of conducting the experiment, it
is not the most advantageous one. The reason for
this is that in some sense the sample thermom-
eter, although it gives T, most directly, has a
lesser temperature resolution than other more
indirect indicators of T,. At a thermometer power
level of 2&&10 ' W, the peak-to-peak noise on the
sample thermometer is typically equivalent to
10 ' K. When the sample thermometer is used to
regulate the sample temperature (switch position
A. in Fig. 5), this noise is converted into actual
temperature fluctuations of about the same size.
In the absence of pressure regulation, these tem-
perature fluctuations mould be accompanied by
pressure fluctuations because of the nonzero ex-
pansion coefficient of the fluid. However, the
pressure-regulation loop counteracts these pres-
sure fluctuations by adjusting the temperature of
the hot volume. Because of the relative size of the
hot and sample volumes (see Sec. III A 2), the
associated temperature fluctuations of the hot
volume are at least an order of magnitude larger
than the fluctuations of the sample temperature
(see Sec. II). They are thus easily measurable
with the hot-volume thermometer, and they con-
firmed that this mode of operation did indeed re-
sult in sample temperature fluctuations which had
a peak-to-peak amplitude of typically 10 ' K.

In order to maintain the sample temperature at a
more nearly constant value, we used an alternate
method which is illustrated in Fig. 5 with the switch
in position B. Under these circumstances, the hot-
volume thermometer is used to provide power to
the sample heater and to hold the sample tempera-
ture constant. Since the hot-volume thermometer
under most conditions is at least an order of mag-
nitude more sensitive to changes in T„ the noise
on T„, equivalent to fluctuations in E„of 10 ' K,
will produce temperature fluctuations in T, of less
than 10 ' K. However, with this method of opera-
tion the system is unstable to large-amplitude per-
turbations of T,. We therefore always used the
system first with the switch in position A (Fig. 5)
to obtain an approximate balance after a change
in T„and then switched to position 8 to obtain the
greatest possible stability of T, and T„.

Well above T)„ there is a temperature T, where
P~ vanishes. In the vicinity of T,„ the hot-volume
temperature becomes insensitive to changes in T,.
Under those circumstances, it became necessary
to leave the switch (Fig. 5) in position A and to use
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the sample thermometer to regulate T,. But in

that case, T, —T& is large and large increments
~T, can be used for the measurement. Therefore,
it is no longer as important to hold T, very con-
stant.

The use of T„ for the regulation of T, (switch
position B, Fig. 5}requires that the hot-volume-
thermometer system and the capacitive-pressure-
gauge system are free from drifts and spurious
changes at the level of resolution of one part in 10'
or 10' of the measurements. Because of this non-
trivial requirement, we used yet another method
of holding T, constant in order to test the stability
and performance of the other bridges. We adjusted
the sample temperature to such a value that the
He II-He I interface was in the thermal-conduc-
tivity probe. As explained in Sec. IIIA3, under
these circumstances the ~-point detector is sensi-
tive to changes of less than 10 ' K in T, and can
thus be used to regulate T, at this level of resolu-
tion. With T, regulated in this manner, and with
T„controlled by the pressure gauge, we monitored
T„and T, with the two thermometers which were
not involved in any regulation loop. The hot-volume
thermometer was stable within its resolution as
long as it was monitored (up to several hours}. It
was reproducible after thermal cycles of T, away
from and back again to Tz. This implies of course
not only the absence of drifts in the bridge used to
monitor T„but also the absence of drifts in the
pressure sensor and capacitance bridge. In order
for this mode of operation to yield a constant T„,
it was necessary also to have a constant total
amount of fluid in the system. We were therefore
able to use it to ascertain with very high resolu-
tion that the cold valve had been properly closed
and that there was no leak in the sample system.
There were very slight changes in T„ from day to
day, equivalent to changes in Tz of perhaps 10 ' K.
We do not know the cause of these changes; but
they are not particularly surprising since the
mechanical disturbances involved in transferring
helium for instance can be expected to cause slight
shifts in the pressure gauge capacitor. In any
event, these changes from day to day are insignifi-
cant in relation to the measurements.

While regulating T, with the ~-point detector, we
discovered that unfortunately the thermometer
used to monitor T, was subject to measurable
drifts. " These drifts never caused any problem
in the determination of 4T, during a measurement
of P~ because the time involved in this measure-
ment is only of the order of 1 min; but the ac-
curate determinating of T~- T, required a frequent
measurement of the thermometer resistance R ~
at T),. Usually, Rz was determined after a set of
6-8 measurements of P~ had been completed.

D. Calibrations

R =R„d6t/(I —6t). (3.3)

When calculating a temperature from a measured
bridge ratio, excactly the same value of Rsfd was
used. For each thermometer, the calibration val-
ues of R, and the corresponding temperatures,
were least-squares fitted to the equation

c$

log, (T) = A, [log, o(R)]'
=0

(3.4)

over the temperature range 4.23~T -1.75 K. De-
viations from the fits generally did not exceed
1x10 ' K.

Our pressure scale was maintained on a Heise
bourdon tube gauge" which had a pressure range
of 0-32 bar and which could be read with a resolu-
tion of +0.02 bar. Before the measurements, the
Heise gauge was calibrated against a dead-weight
tester with an accuracy exceeding the resolution
of the gauge. After the experiment, the calibra-
tion was checked by comparison with a precision
manometer having an absolute accuracy of +0.04
bar. These calibrations revealed no changes in

the pressure scale of the Heise gauge during the
course of this work. We estimate that ambient
pressure and temperature variations could intro-
duce errors of +0.03 to +0.06 bar, depending c..i
how frequently the gauge zero was determined.
The uncertainties quoted below for P~ are based
upon these error considerations, and differ some-
what between the different runs.

The capacitive pressure transducer (see Sec.
III A 5) was calibrated prior to a set of measure-
ments on a particular isobar against the Heise

The thermometers on the sample volume and the
hot volume were calibrated on the 1958 4He vapor-
pressure scale of temperatures" (T„). For this
purpose, 'He exchange gas was put into the vacuum
can (see Fig. 2), and the 'He-bath vapor pressure
was measured. For T & T~, calibration points
were taken only after bath temperature decreases,
and hydrostatic head corrections were made.
Pressure measurements were obtained with a
Barocel" measuring system which had been cali-
brated against a mercury manometer. In the tem-
perature regions of interest for the sample and
hot volume we believe that our temperature scale
differs from T„by no more than 1x10 ' K.

The temperature measurements consisted of
values for the "bridge ratio" @, which is equal
to the settings of the ratio transformers in Fig. 4.
The resistances R of the germanium thermom-
eters at the calibration points were calculated on
the basis of an adopted value R,t~ for the standard
resistor, using the relation
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C =X, +X,/(W, -P), (3.5)

with A, =8.1069 pF, A., =1812.'7 pF bar, and

A, =33.602 bar. %'e found the capacitance gauge
to be stable over long time periods within the
resolution of our calibration, provided that the
pressure never exceeded the value at which the
two plates touched. After such an overpressure,
a new calibration was required. The isobar pres-
sures based on Eq. (3.5) are given as P~, in the
second column of Table III, and agree within the
estimated uncertainties with the values based on
the individual calibrations over the narrow pres-
sure ranges.

gauge. This was done by comparing the two at
several pressures over about a 1-bar range which
included the pressure of the isobar in question.
Thereafter, the cold valve was closed, and the hot-
volume temperature was adjusted to a value which
yielded the desired sample pressure. The pres-
sure was then determined from the capacitance
of the pressure transducer and the calibration
over the 1-bar range. This value of P is given as
P)„ in column 1 of Table II.

In order to determine the sensitivity of the capa-
citive pressure transducer, a calibration against
the Heise gauge was also obtained over a wider
pressure range. Over the range 5-25 bar the data
could be represented within +0.1 pF by

(n p). = (~&—/~, ) (&p), (4.1)

where (4p)„=p» —p». It remains to determine
(&p)a.

For T, & T~, it is clear that isobaric conditions
prevail in v„as well as in v, because classical
thermomolecular pressure gradients across the
capillary connecting the two volumes are com-
pletely negligible, However, for T, & T~, P„will
differ from P, by an increment P& due to the
fountain pressure across the capillary. Nonethe-
less, we will assume that P„ is constant and
neglect the effect upon (np)„of changes nP& in Pf
which are associated with temperature changes
&T, . Justification for this approximation is given
in Appendix A. With the assumption of isoba. ric
conditions in v„, the data of Elwell and Meyer"
(EM) for the molar volume V as a function of tem-
perature at va, rious pressures were used to de-
termine

IHD. The initial calculation, leading to the deter-
mination of p~, consists of determining (&p),/&T,
and an appropriate mean temperature T, from
these data. Here (Ap), is the change in density of
the fluid in the sample volume which is associated
with r T,. We use T, = ', (T„-+T„) Si.nce the hot
volume v„, and the sum of the amount of fluid in
v„and in the sample volume v„remain constant
during a measurement, one can show that

(np)„=M/v„, M/v„, . (4.3)
IV. DATA ANALYSIS AND ERRORS

A, Analysis

The measurements consist of a pair of values
1'», T„ for the temperatures of the hot volume and
the sample volume before a temperature incre-
ment, and of a similar pair T„„T„aftera tem-
perature increment. The temperature change
4T, =T» —T» of the sample volume is of course
isobaric because the pressure transducer which
controls T„senses the sample pressure P,. The
temperatures are derived from the corresponding
thermometer bridge ratios as described in Sec.

(4.3)v(T)= P m,. T'
i=0

for a given isobar. The data did not deviate from
the fitted function by more than + 0.001 cm'/mole.

Here V» and V» are the molar volumes of the fluid
at the temperatures T» and T„„and M=4.0038 g/
mole is the molar mass of 'He.

In order to obtain a smooth representation of the
EM data which made it possible to calculate even
small changes in p, we least-squares fitted the
molar volume data of EM to the equation

TABI,E T. Coefficients of Eq. (4.3).

P (nominal)
Sa.r)

T I'Rnge

K
WE 0

(cms/mole)
f?l f

(cms/mole K)
m2

(cm3/mole K2)
m3

(cm3/mole K~) (cm~/mole K~)

j0
28
25
20
15
10

5

2.4-4.u

2.4-4.0
2.4-4.2
2.2-4.0
2.4-4.0
2.4-3.9
2,9-3,8

2 1.604
21.9372
23.6319
23.8416
23.2088
25.7386
24.2154

0.268 99
Q. 11444

-1~ 545 22
-1.07146
0.474 72

-1.626 81
1.05102

-0.024 294
0.021 814
0.751 735
Q.496 186

-0.201 140
0.727 395

-0.326 632

0.009859
0.005805

-0 134615
-0.072 153

0.067 943
—0.108 591

0.073 621

0
Q

3

0.010 212 9
0.005 023 2

-0.004 7134
0.008 831 5

0 8

1 axed,
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themselves, however, are subject to a 3% un

certainty.
The isobars investigated by EM were rather close
to those used by us; and since the expansion co-
efficient is only mildly dependent upon the pres-
sure, no correction needed to be made for the
slight differences in pressure. Only at the very
highest of our pressures was it necessary to ex-
trapolate slightly the measurements of EM in order
to obtain a reasonable function for the molar vol-
ume. This extrapolation was done along isotherms,
using smoothed and interpolated values of the ex-
pansion coefficient P~. The extrapolated P~ data
were fitted to a polynominal in T, and this function
was integrated to obtain V (except for an additive
constant which is not needed to calculate changes
in p). The parameters for Eq. (4.3) are given in
Table I.

Having obtained (np), /n. T„ it remains to cal-
culate

V. RESULTS

A. Results for P+

Measurements of the isobaric volume expansion
coefficient P~ were made along nine isobars. The
corresponding values of P„and T„are given in
Table II. In addition to P~ and T„ for the nine
isobars of our p~ measurements, Table II also
contains results for three isobars along which P~
was not measured. The first two colums in this
table give the pressure as determined from the
two calibration methods of the capacitive pres-
sure gauge, which were discussed in Sect. IIID.
The third column gives our measured T,. We
compare our X-line parameters with those of Kier-
stead in the fourth column of the table, which con-
tains P,» determined from Eq. (3) of Ref. 30, using
our T„. The difference between our P, and P~K is
never larger than reasonable estimates of errors
due to uncertainties in P„and T~. The highest
pressure given in the table corresponds to our de-
termination of the intersection of the X line and the
solidification curve.

The range of

P
-i ~~ l; ~~ ~s (4.4)

We used the density data along the X line which are
given by Kierstead, "and integrated our own d p/
4T data to get the temperature dependence of p.
This temperature dependence is always quite
small; and even as far as 0.02 K below T„, (p~ —p)/
p„~ 0.02.

A curvature correction" was applied to the data
to correct for the difference between (n p/n. T)~
and (sp/a T)&. This correction never exceeded 3%,
and usually was less than 0.2%.

f =—T/Ti —1 (5 1)

spanned by the data varied somewhat for different
isobars. Near T, is usually extended to

~

t
~

—= 2

X 10 ', and away from T, measurements for some
pressures went as far as ~t~

—= 0.07. Representa-
tive samples of the data a,re shown as a function of
1 g«o~f~ in Fig. 6. Altogether, 725 data points
were obtained, and they are a,va, ila,ble in numerica, l
form elsewhere. "

B. Errors

TABLE TI. ~-point parameters for thp isobar%.

PX2
(bar)

PxK
(bar)(bar)

30.13 '
30.08
28.76
25.15
25.12
20.49
20.07
20.07
20.06
15.16
10.05
5.08

30.11+0.06
30.05+ 0.06
28.76+ 0.06
25.28+ 0.09'
25.24+ 0.06
20.64+ 0.09
20.18+ 0.06'
20.18+ 0.09
20.10+ 0.06
15.24+ 0.06
10.09+ 0.06 '
5.05+ 0.06

1.7633
1 ~ 7642
1 ~ 7876
1.8479
1.8486
1.9202
1.9265
1.9265
1.9268
1.9962
2.0625
2.1211

28.71
25.22
25.13
20.55
20.21
20.12
20.06
15.23
10.05
5.06

Uncertainty in T& is+lx 10 K.
Upper ~ point.
Isobars on which Pz was measured.

Random errors in our data for P„very near T„
are determined prima. rily by the resolution of 2

&& 10 ' K in the measurement of &T,. Errors due

to the resolution of the ~T„measurements usually
were negligible because 4T„was much larger than
n T,. Further away from T, (~ T„—T

~

~ 10 ' K),
where temperature resolution was not a limita-
tion, random errors were typically 0.2%. Random
errors in T„—T, were somewhat larger than the
temperature resolution because of the drifting of
the sample-volume thermometer; but they never
exceeded the larger of 1 pK or 0.1% of

~
T, T, ~. —

Systematic errors in our data for P~ of as much
as 3/0 could exist because of the uncertainties
quoted by Elwell and Meyer for their molar vol-
ume mea, surements. We believe that all other
sources of systematic errors are considerably
smaller than this, and amount to no more than
0.5%. It should be emphasized that systematic
errors in general. do not influence the values of
dimensionless critical-point parameters such as
the exponents n and o' and the amplitude ratios
A/A' and D/D' The leading amp. litudes A and A'
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0.00— 00
000

00 OoQ

TABLE III. Parameters for Eqs. (5.2), determined
with the constraints given by Eqs. (5.3}.

250 g& 1 1 oo 25
f, 1 ~~ O ~O

g go 11 ~ 28.8
28.8

0 OO ~
0

Q 111 Oo~50
1

1 8
~ 1

O «f

~ P 1
~ 1

8 1
~P 111

1
pO

- 0.15—

-0.20—

00 O DO+0
0

0
0 0 Bo 115

-0 05 — 00 o ~ 10g50 &+0 0 0O 1 ~
ao

lQ Q 0 ~ gqo ~
0 ~ + 0 O

8 OO

30.05
28.76
25.28
25.24
20, 18
20.10
15.24
10.09
5.05

-102A' (K-'~

3.234
2.976
2.471
2.452
2.000
1.990
1.650
1.437
1.203

-B' (K '~

1.1932
1.1035
0.9232
0.9166
0.7531
0.7503
0.6251
0.5459
0.4542

0.408
0.357
0.294
0.284
0.233
0.216
0.174
0.109
0.080

A =0 0 P+0 ~+8 I
B'=b +b,P+b I +b,P',

(5.4a)

(5.4b)

form, me obtained from least-squa. res fits the val
ues of A', 8', and D' which are presented in
Table III.

In order to obtain a reasonable interpolation be-
tween our pressures, the parameters in Table III
mere fitted to the polynominals

0 25 io l

logio i T/T) -)i (5.4c)

FIG. 6. Representative samples of the results for pz
on seven isobars, as a function of log&) t). The numbers
near each set of data points are the nominal pressures in
bar. The solid symbols are for He II, and the open ones
are for He I.

8. Closed-form representation of P+

In order to facilitate thermodynamic calculations
based on the measurements of Pp, it is convenient
to have a closed-form expression for P~ mhich fits
all the data mithin experimental uncertainties. As
will be shown in detail below (Sec. VI), the equa-
tions

The coefficients a, , b, , and d, are given in Table
IV. %e will refer to the values of p~ given by Eqs.
(5.2)-(5.4) and the coefficients in Table IV col-
lectively as our reference values.

The deviations of the individual measurements
from the reference values are shown as a function
of Iog, olt I

in Fig. 7. Although occasionally slight
systematic deviations are revealed by the data,
the fit is generally quite good and the reference val-
ues usually give P~ to within 1 x 10 ' K ' provided

0.003.

C. Comparison with other results for P&

p =(X/a)tt/- (I+D/t/ )+a (5.2a)

p~= (A'/n') lt ( (I+8' ltd' )+ 8'

for t&0 with

(5.2b)

a = n'= —0.026,

x=x'=0.5,
A/X =1.11,
D/D' = 1.11,

(5.3b)

(5.3c)

(5.3d)

(5.Be)

serve this purpose for ~t
~

0.003. Given this

The isobaric volume expansion coefficient along
isobars near T~ wa.s measured previously by El-
mell and Meyer. " Since me used the results of
EM well above T, (2.4-4.2 K) in our method of
determining Pe (see Sec. IVA), it is particularly
desirable as a cheek on the internal consistency of

TABLE IV. Parameters of Eqs. (5.4). The units are
bar'for P and K forA' andB', D' is dimensionless.

10"a; —8.409 -0.8955 0.043 16 -0.001320
10~b i -31.716 —3.3666 0.156 14 -0.004 677
109, —1.551 -1.410 0.050 68 -0.001 530
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both sets of data to make a comparison of the re-
sults near T,. We have done this by subtracting
our reference values of P~ from the measured val-
ues of EM" for five of their isobars. This dif-
ference is shown as a function of log» lt l

in Fig. 8.
It can be seen that within the scatter of the EM
data there is good agreement with our data.
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FIG. 8. Difference between the values of Pp measured
by Elwell. and Meyer (Ref. 33) and the reference values
given by Eqs. (5.2)—(5.4) with the coefficients in Table IV.
When comparing with Fig. 7, note the difference in the
vertical scales.
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FIG. 7. Differences between our measured values of pp,
and the reference values given by Eqs. (5.2)—(5.4) with
the coefficients in Table IV.

Recently, a rather precise set of measurements
of P~ at saturated vapor pressure has been made
by Van Degrift and Pellam. '4 Although our results
are only for P ~ 5 bar, it is interesting to compare
those direct measurements with the extrapolation
of our data to vapor pressure (0.05 bar) which is
provided by Eqs. (5.2)- (5.4) and Table IV. We will
not make a detailed comparison with the individual
data points. Instead, we compare the coefficients
of Eq. (5.2). With the constraints n=n'= —0.026,
x = x' = 0.5, and B= B', Van Deg rift and Pellam
obtained the results shown in the first row of Table
V. Qur extrapolated results, which are based on
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TABLE V. Parameters of Eq. (5.2) at saturated vapor
pressure. In each case, u =a' =-0.026, x =&' =0.5, and
8 =8' was assumed.

Source A /A' A' (K ') B' K )

Ref. 34
Eq. (5.4)
From |"p

1.118 —U.uus s1 -u.324 -0.04
1.110 —0.008 45 —0.3 19 -0.016
1.110 ' n On909 n. q9" -n.nO9

' Held fixed in the analysis.

the additional constraint A/A' =1.11, are given in

the second row of the table. The agreement for
A/A' is excellent. Any difference in D' is in-
significant because at vapor pressure D' is small
and its uncertainty relatively large for both esti-
mates. The differences in A' and B', although
only a few percent of A' and B', are appreciable
compared to the accuracy of P~ and indicate that
our reference values should be used with some
caution at pressures less than our lowest pres-
sure of 5 bar. At vapor pressure, there is a
roughly constant difference of 0.007 K ' between
our extrapolation and the values of P~ obtained by
Van Degrift and Pellam, to be compared with

typical uncertainties of 0.001 K ' for direct mea-
surements.

D. Comparison with the heat capacity at constant pressure

I. Vapor pressure

The heat capacity at constant pressure C~ near
T~ is an asymptotically linear function of Pp.

"
Specifically, along isobars

C~= VT pJ+ T— (5.5)

2. Higher pressures

At pressures higher than the saturated vapor
pressure, the specific heat at constant pressure
has not been measured directly; but it has been
calculated via thermodynamic relations from the

For
~

t
~

~ 3& 10 ', the parameters T(BS/BT), and
V1' are essentially constant, and equal to their
values T~(BS/BT)„and V~ T~ at T„. We used Eq.
(5.5) and the known X-line parameters at vapor
pressure'" to calculate the coefficients of Eq.
(5.2) for Pp from those of a similar expression
for the heat capacity at saturated vapor pres-
sure. ""The specific-heat parameters which we
used were also based upon the constraints given by
Eqs. (5.3). The results a.re given in the third row
of Table V. They are consistent within experimen-
tal uncertainties with the thermal-expansion re-
sults of Van Degrift and Pellam. The yield values
pf P~ which differ by less than 0.001 K ' from the
direct measurements.

measured heat capacity at constant volume C~.'
These results for C~ had been interpreted to imply
that the leading specific-heat amplitude ratio is
pressure dependent. ' This interpretation is con-
trary to our present results for A/A', based on

pp, to be discussed in Sec. VID. A detailed com-
parison of C~ and P~ is therefore warranted. We
have restricted this comparison to the pressure
range P~5 bar of the P~ data. For the pressures
of the specific- heat measurements, ' we calculated
CBP, using Eq. (5.5) and the reference values for
p~. We approximated (BS/BT), by (BS/B T)~, and
restricted the comparison to the range ~f

~

—0.003
where this approximation introduces a negligible
error. ' For (BP/B T)„we used the values given by

Eq. (1) of Ref. 30, and (BS/BT)~ was obtained from
Eqs. (4.16) and (4.17) of Ref. 7. The relative dif-
ference, in percent, between the measured Cp
and that derived from P~ is shown in Fig. 9. For
pressures up to 18.18 bar, this difference is gen-
erally less than 1~/0. For higher pressures, sys-
tematic departures occur between C~ and C~~. At
25.87 bar the differences are as large as 3% near
~t~ = 10 ' and as large as 4.5% near (t ~=10 '. This
systematic difference, and in particular its depen-
dence upon t, corresponds to the difference in the
results for the amplitude ratio A/A' when this ratio
is deduced either from P~ or from the high-pres-
sure results for C~.

The above comparison of C~ and C~ will be af-
fected by errors in the direct measurement of
C~, ' in the thermodynamic calculation necessary
to obtain C~ from C~, ' in our own measurements
of P~, in the measurements of P~ at high temper-
atures by Elwell and Meyer" (to which our data
are in effect normalized), and in the X-line pa, ram-
eters (BP!BT)„"and (BS/BT),.' In view of this,
we find it gratifying that the differences between

C~ and C~~ for P ~18.18 bar are generally less
than 1%. In fact, even the larger differences at
the higher pressures are only of the same size as
reasonable estimates of the combined systematic
errors (3-4%) that might be expected for all the
experiments. However, the known possible sys-
tematic errors should be essentially independent of
t; and it is the t dependence of the difference be-
tween C~ and C~~ that leads to the different conclusion
regarding the amplitude ratio A/A'. We have no
explanation for the cause of the t dependence at
high P of (C~ —C~~)/C~~.

VI. COMPARISON WITH THEORETICAL PREDICTIONS
A. Theoretical predictions

The predictions of modern theories of critical
phenomena that pertain to P~ are the same as those
for C~. This can be seen easily from Eq. (5.5).
The coefficients VT (BP/BT)„and (BS/BT), in this
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been discussed extensively in the recent liter-
ature, ""and we shall only summarize them here.
They can be expressed readily in terms of the
parameters defined by Eqs. (5.2a) and (5.2b). From
scaling, ' it is expected that

{6.1)

This result has been confirmed by the more re-
cent renormalization- group theory of critical
phenomena. ' In addition, it is expected from re-
normalization- group theory that

(6.2)
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and that'

B =B'. (6 3)
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FIG. 9 Difference between the specific heat at con-
stant pressure reported in H, ef. 7, and that calculated
via Eq. (5.5) from the reference values given by Eqs.
(5.2)-(5.4) and the coefficients in Table IV.

equation can be shown to be less singular than P~
and Cp, and near T~ approach a constant value with

a leading temperature dependence given by terms
of order t and t' ."'" Therefore P~ is an asymp-
totically linear function of C~ and has the same
exponents and amplitude ratios as C~. Some of
the amplitudes themselves, and any regular con-
tributions, will of course be different", but the
amplitudes and regular terms for Cp can be cal-
culated from those of P~ and the known X-line de-

rivativess.

The predictions for C~, ' and thus for P~, have

The term B =B' therefore represents a regular
contribution to P .

The existence of confluent singularities, such as
the terms D If I" and D' It I*' in Eqs. (5.2a) and
(5.2b), has been established by experiment in the
case of the superfluid density, "the specific heat, '
and the thermal conductivity" near T&. Their ex-
istence near critical points in general has been
predicted from renormalization-group theory. "
For the Ising model, these terms have been found
also by high-temperature series expansions. ~~

They may contribute significantly to experimental
results, and therefore should be included in the
data analysis. It is of course possible that D and
D' are very small or vanish accidentally for a
particular system.

ln addition to the results Eqs. (6.1)-(6.3), it
was predicted that certain dimensionless combi-
nations of parameters are universal in the sense
that they depend only upon very general symmetry
properties of the system. ' These predictions have
also been supported by the more rigorous results
of renormalization-group theory. ' Specif ically of
interest here is the prediction that the exponents
a and x, and the amplitude ratios A/A', D/D', and
D'/a (a is the amplitude of the confluent singularity
of the superfluid fraction p, /p) should be inde-
pendent of the pressure P along the A. line.

The earlier specific-heat measurements were
consistent with the predictions Eqs. (6.1) and (6.2)
and the univer sality of o. and x. But when these
theoretical results were imposed as constraints
in the data analysis, those data yielded BWB' at
the higher pressures, contrary to Eq. (6.3). They
also resulted in an amplitude ratio A/A' which de-
pended upon P for P ~15 bar (see Table XI of Ref.
7). This disagreement between experiment and

theory provided the main motivation for the pre-
sent work, and we shall see that the measurements
of P~ are consistent with Eq. (6.3) and a universal
A/A'. The inconsistencies between the measure-
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ments of P~ and C~ have been discussed in Sec.
V.

B. Method of analysis

In order to extract from the measurements
parameters which can be compared with theoreti-
cal predictions, we used a nonlineax least-
squares-fitting procedure which has been des-
cribed elsewhere ' to fit pairs of data, separately
for each isobar, to Eqs. (5.2a) and (5.2b). For
weights we used%; = P, ', where our estimate of
the probable error P; of the ith data point was the
larger of a 0. 1'P() random error, or an error due
to the 2X10 ' K temperature resolution. ~' %e did
the analyses over the range ~t( «0.003. Although
this choice is somewhat arbitrary, this range of
t was wide enough to include a large number of
precise data points, and yet confined (f

~
to suf-

ficiently small values to render negligible terms
of order t„(t( ' ", and (t~'" provided those terms
have coefficients which are no larger than of or-
der unity. Unless otherwise stated, results
given below are based upon this temperature
x'ange.

The errors quoted below are standard errors.
They do not include systematic errors; but we are
not aware of any appreciable systematic errors in

n, o. ', x, x', D, O', A/A', and D/O'. Specifically,
we have ascertained that an error of 1 &10 ' K in

the determination of T~ has a negligible effect
upon the values of these parameters. The standard
errors do, of course, include the correlation with

all other parametex s which were least-squaxes ad-
justed in a particular fit. For the same set of
data, they therefor e may be strongly dependent
upon any constraints imposed upon the analysis.

It is perhaps worth mentioning that differences
up to about two standard exrors between two in-
dependent determinations of the same parameter,
although they should be infrequent, may occur
occasionally without necessarily implying any real
inconsistency. In particular, the fact that a few
of the points for a =u', A/A', and D/D' shown in

Fig. 14 below have error bars which do not quite
overlap with the mean values of these parameters
should not be regarded either as an indication of
the presence of significant unsuspected systematic
errors, or of a departure from universality.

an order of magnitude. Unless extremely precise
and extensive data are available, the statistical
errors which result from fits to Eqs. (5.2a) and
(5.2b) or their equivalent can be larger than typi-
cal differences between parameters for systems
which belong to different symmetry classes.
These large errors tend to imply that the mea-
surements do not contain particularly useful in-
formation about the critical behavior of the sys-
tem under investigation. %'e shall show in Sec.
VID that a careful analysis of our results, in-
corporating reasonable constraints suggested by

theory, yields significant information even when

confluent singularities are included. However,
it is the purpose of this section to demonstrate
that their omission leads to serious conflicts with

theoretical predictions.
When we fitted the data over the range ~t( - 3 x10 '

to Eqs. (5.2a) and (5.2b), setting D =D'=0, we ob-
tained values of n and a' which at all pressures
were consistent with Eq. (6.1). We therefore im-
posed Eq. (6.1) as a constraint in a second set of
least-squares fits, and obtained the values of n
=a shown as open circles in Fig. 10. It is im-
mediately clear that in this interpretation ~ =~'
is nonuniversal, varying from about 0.00 for P
near 5 bar to +0.07 for P near 30 bar, with stan-
dard errors (shown by the bars in the figure) of

I

Q=Q', 0=0 =0
—0 B INDEP. OF B

e B=B'

0.05—

0.00—

C. Analysis without higher-order singular terms

In the analysis of measurements pertaining to
critical phenomena, the confluent singularities
O (f ~* and O' [f [" which a e contamed m Eqs. (5.2a)
and (5.2b) often are assumed to be absent. To a
large extent, this is done because their inclusion
in the analysis will increase the uncertainties of
all other parameters, sometimes by as much as

p [bar]

l

50

FIG. 10. Results for the leading exponent e =G.' of Pz
based on fits of the data to pure poorer laws.
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FIG. 11. Results for the constant terms oP and nP'
[see Eq. (5.2)] based on fits of the data for P~ to pure
power laws.

typically only + 0.005. The values of B and B'
obtained from this fit are represented by the data
in Fig. 11. Here we multiplied B and B' by o. or
n' because aB and n'B' depend much less upon
n (note that 8 and 8' diverge as a. approaches
zero, whereas aB and a'8' remain finite). It fol-
lows from Fig. 11 that Eq. (6.3) is not satisfied by
the parameters obtained in this analysis.

Further manifestations of the difficulties are
contained in the behavior of the amplitude ratio
A/A'. We demonstrate this by plotting in Fig. 12
the parameter

5' =—(1 -A/A')/o. ' (6.4)

as open circles. The behavior of this quantity
has been discussed on the basis of renormaliza-
tion-group predictions" and experimental re-
sults for a number of systems, ' and it was found
that $' is rather insensitive even to such relevant
properties of the system as the spin dimension-
ality. From experiment, it was found that S'

assumes values in the range 3.6-4.6 for systems
with short-range forces. The open circles in
Fig. 12, which pertain when B is independent of
B', all correspond to 6' = 0, and therefore differ
qualitatively from the behavior of other known
systems near their critical points. Furthermore,
although 6' is predicted to be universal, it is found
to be pressure dependent in this interpretation of
our measurements.

0

D=D =0
a=a'

0 8 INDEP. OF 8'
~ 8= 8'

0
0

0

0
I

10
p [bar]

20 30

FIG. 12. Results for 6'= (1-A/A')/o; based on fits of
the data for Pz to pure power laws.

Although the results in Fig. 11 clearly indicate
that Eq. (6.3) is inconsistent with our data if
D =D'=0, we have nonetheless imposed B =B' as
a constraint in our analysis in order to study its
effect upon the other parameters. For a =o. ' we
obtained the values shown as solid circles in Fig.
10. Although these results are not completely
consistent with universality, their pressure de-
pendence is a great deal less than that of the open
circles. The corresponding values of 6' are shown
as solid circles in Fig. 12. They, too, are not
quite universal; but they are much less pressure
dependent than the results with B independent of
B'. The values of 6' are now largely in the ex-
pected range.

Although the imposition of the constraint B =B'
appears to have removed to a large extent the in-
consistencies with the predicted universality,
we hasten to add that the resulting fits of the data
by Eqs. (5.2a) and (5.2b) with D =D'=0 are sta, -
tistically not satisfactory. We demonstrate this
in Fig. 13, where we show the square roots of the
variances o which are obtained both with and
without the constraint B=B'. At the highest pres-
sure, o is increased by a factor of 3.5 when
B =B' is imposed as a constra, int. With the large
number of data points available for these fits,
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FIG. 13. Square root 0' of the variance of the data for
Pp based on fits to pure power laws.

even a change of only a few percent in 0 must be
regarded as significant.

x =x'= 0.5 (6.5)

D. Analysis with higher-order singular terms

We saw in Sec. VI C that an analysis of our data
in terms of a pure power law leads to parameters
which disagree with some of the theoretical pre-
dictions. In this section we will present the re-
sults which are obtained when confluent singu-
larities are included in the analysis. We will
find that the resulting parameters are consistent
with pertinent theoretical results.

The task of obtaining useful information from
the data by fitting to Eqs. (5.2a) and (5.2b) is a
most difficult one because of the extremely high
correlation between the ten parameters. Even if
numerical techniques were developed to ac-
complish it, the standard errors for the parame-
ters would be so large as to render their values
meaningless for any comparison with theory. As
was done before, particularly in the analysis of
specific-heat measurements near magnetic phase
transitions, ' "'"we have therefore adopted some
of the more general predictions of theory as con-
straints in the data analysis. The remaining free
parameters were then least-squares adjusted,
and can be compared with additional independent
theoretical predictions. The approach thus is one
of testing for consistency between experiment and
some of the theoretical results on the one hand,
and the remainder of the theoretical predictions
on the other.

We adopted the value

A /A' = 1.112+ 0.022,

and

D /D ' = 1.29 + 0.25.

(6.6b)

(6.6c)

From this analysis, we also obtain

S' =4.32 +0.19. (6.Gd)

When the same analysis was performed with the
adopted value x=x'=0.4, we still found o. =e',
A/A', and D/D' to be universal. Their average
values were —0.029+ 0.005, 1.124+ 0.027, and
1.33+0.22. For 8' we obtained 4.24+0.20. These
results differ very little from Eqs. (6.6a)-(6.6d).

It is also important to obtain best estimates of
the nonuniversal parameters A', B', and D' be-
cause they are useful in certain thermodynamic
calculations, and because some of them can be
combined with results from measurements of

as a constraint in our analysis because the value
of x is very poorly def ined by thermal-expansion
and specific-heat data. The value of x given by
Eq. (6.5) is suggested by measurements of the
superfluid density p„"which should have the same
correction exponent as R~ and Cp,

"and by high-
temperature series expansions for the three-di-
mensional Ising model. " Additional support for
this value, and for the weakness of the dependence
of x upon the spin dimensionality n, comes from
renormalization-group theory. " As a precaution, we

repeated our calculations with x = x' = 0.4 and x = x'
= 0.6. These values represent reasonable estimates
for the lower and upper limits of x as determined from

p, or from the Ising-model series. We found that a
change in x by 0.1 did not influence our conclusions.

Further, we assumed that n =a'. This constraint
is predicted by theory and was statistically al-
lowed by the data. We also assumed that B =B'.
Although we saw in Fig. 11 that a pure-power-law
analysis did not permit this constraint, the equa-
lity B =B' was statistically allowed by the data
when D and D' were permitted to differ from zero.
With the above constraints [ Eqs. (6.1), (6.3), and

(6.5)], we fitted the data, separately for each iso-
bar, to Eqs. (5.2a) and (5.2b) by least-squares ad-
justing simultaneously the six parameters a', A',

A/A', D', D/D', and B. Our main objective was
of course to determine whether u', A/A', and
D/D' were independent of pressure as predicted
by theory. The results for these parameters are
given in Fig. 14. It is evident from the statistical
errors indicated by the bars on the points, and
from the scatter, that the results are consistent
with universal values for n', A/A', and D/D'.
Weighted averages of the points for the various
isobars are

n = a ' = —0.026 a 0.004, (6.6a)
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0.00
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Q=Q = —0.026 i 0.004
justing A', B', and D'. The resulting parameters
are given in Table III.

O
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1

D/D'=1. 29 f 0.25

E. Comparison with specific heat

We know already that the results for @=a',
A/A', and D/D ' which follow from the specific-
heat measurements' differ from those obtained
here from Pp when the pressure is greater than
about 18 bar. But at lower pressures we would

expect the two sets of measurements to give the
same results. The comparison cannot be made
immediately, however, because the specific
heat had not been analyzed with the constraint
B =B'. We therefore refitted the specific-heat
data to the equivalent of Eqs. (5.2), using Eqs.
(6.1), (6.3), and (6.5), as constraints. Appro-
priate weights' were employed, and the tempera-
ture range was gati = 0.003. This analysis is in

every way equivalent to the one which led to the
data in Fig. 14 and to Eqs. (6.6). We obtained the
parameters in Table VI. All four parameters
given there are consistent with universality for
P «15.03 bar. Over this pressure range, the
mean values are

1.0

I

10
p [bar j

I

20

o. =o. ' = -0.016 + 0.002,

A/A' =1.068 + 0.010,

S' = 4.21 + 0.06.

(6.7a)

(6.7b)

(6.7c)

FIG. 14. Leading exponent n =e', and the amplitude
ratios A/A' and D/D', of Pp based on fits to functions
which include a confluent singularity [see Eq. (5.2)1.
The correction exponent was assumed to have the value
~ =x' =0.5. The dashed lines correspond to the weighted
mean values given in the figure and by Eq. (6.6).

other properties of the Quid to form additional
universal ratios or products. We therefore,
somewhat arbitrarily, proceeded as follows.
First, we imposed the constraints x=x' =0.5 and
@=a' =-0.026. When in addition we chose
A/A' =1.112, a slight trend of D/D' with pressure
was observed. The values of D/D' remained
within the error bars given in Fig. 14, however,
and the pressure dependence can be attributed to
the extreme sensitivity of D/D' at low P where
D and D' are both very small to the choice of
A/A'. We found that more nearly universal values
of D/D' were obtained with the constraints
a = a ' = -0.026 and A /A' = 1.110. With this choice,
the weighted average of D/D' was found to be
1.110. We adopted this set of universal values,
given also by Eqs. (5.3a)-(5.3d), as constraints,
and reanalyzed the data by least-squares ad-

TABLE VI. Parameters a =n', A/A', 6', and D/D'
derived from the specific heat (Ref. 7) with the con-
straints Eqs. (6.1), (6.3), and (6.5). All data had gati

~0.003 ~

P (bar)

0.05
1.65
7.33

15.03
18.18
22.53
25.87

-0.016+ 0.002
-0.019+ 0.007
-0.014+ 0.005
-0.015+ 0.004
-0.038+ 0.003
-0.069+ 0.005
-0.045+ 0.003

1.068 + 0.006
1.081+ 0.030
1.059+ 0.020
1.063+ 0.016
1.16 + 0.02
1.31 + 0.03
1.20 + 0.02

4.15 ~ ~ ~

4.24 ~ ~ ~

4.17 1.2 + 0.6
4.28 0.6 + 0.4
4.34 1„39+0.16
4.53 1.74+ 0.13
4.57 1.37+ 0 ~ 10

These results can be compared with those derived
from pP and given by Eqs. (6.6). Both a=a' and
A/A' as derived from C~ differ somewhat from the
corresponding results based on P~; but the dif-
ferences are only slightly larger than the sums of
the standard errors and are probably not signifi-
cant. The values for (P are more consistent with
each other. In fact, even at the higher pressures
where a=a' andA/A' change appreciably, (P re-
mains rather close to its low-pressure value.
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F. Comparison with superfluid fraction

where g is defined by the equation

(6.9)

The result quoted previously" for & was 0.67
+0.01. This, and Eq. (6.6a) or Eq. (6.7a) for n',
clearly satisfy Eq. (6.8). However, a more de-
tailed comparison is possible if it is assumed
that n' and g are universal. In that case, the
value of n' obtained here can be compared with
the value of ( derived from data at saturated vapor
pressure. For tha, t pressure, the thermodynamic
parameters'~ necessary to derive p, /p from sec-
ond-sound velocity measurements" are known
more accurately than at higher pressures, and

p, /p can be obtained with higher precision. In
addition, the mes. surements of p, /p, Cp, and of

P~ all show that the confluent singularities have
small amplitudes at low pressure, and therefore
the leading singularity can be measured more
accurately. We reanalyzed the results" for
p,/p at vapor pressure, premitting k, g, a, and

T~ to be least-squares adjusted. We used data
with If I

~0.01. For y we chose the fixed values
0.5 and 0.3, and obtained the results given in
Table VII. As always, the errors are standard
errors. The change ~T~ of T„quoted in the table
is the difference between the least-squares-ad-
justed value of T~ and the value measured experi-
mentally. " It is apparent that the measurements
of p, /p at vapor pressure define t' with great ac-
curacy, and that the value of f does not depend
appreciably upon the exponent of the confluent sing-
ularity. We adopt the best estimate

g = 0.675+ 0.001,

to be compared with

—', (2 —n') = 0.6753 + 0.0013

(6.10)

(6.11a)

Several of the parameters for P~ are expected
to be related to those of p, /p by scaling laws or
universal ratios. For the leading exponents of
these two properties, we have"

(6.8)

which follows from Eq. (6.6a) or

—,'(2 —o!') = 0.6720 + 0.0007 (6.11b)

which follows from Eq. (6.7a). Clearly the agree-
ment is very good in either case, although the
value of n' derived from P~ is more consistent
with g and scaling. The above comparison of ~'
and P constitutes the only experimental confirma-
tion of a scaling law with para, meters which are
determined by fitting to functions which include
confluent singularities.

In addition to the leading exponent, one can in
principle compare also the correction exponent;
for it is expected from renormalization-group
theory" that x =y. None of the data define x or y
with sufficient accuracy to provide a very string-
ent test; but within the fairly large uncertainties
the measurements are consistent with the predic-
tion.

A third pair of parameters that can be compared
are the amplitudes D' and a of the confluent singu-
larities. On the basis of general renormalization-
group considerations, their ratio D'/a is expected
to be universal. " Results for D' are quoted in
Table III and are given by Eq. (5.4c) and the par-
ameters in Table IV. Values of a as a function of
P had been obtained previously" only by simul-
taneously least-squares adjusting k, &, and a.
These results are subject to sizable experimental
errors because of the high correlation between
& and a. They are rea.sonably consistent with a
universal ratio D'/a, however. A more detailed
test of the universality of D'/a can be obtained
by fitting the mea, surements of p, /p to Eq. (6.9),
with Eqs. (6.10) for t' as an additional constraint.
Such a fit yielded the values of a given in Table
VIII. Here the results at vapor pressure are
omitted because D' and a are so small tha, t they
have not been determined with meaningful accur-
acy. Also shown in the table are the values of D'
at the pressures of the p, measurements as com-
puted from Eq. (5.4c). The corresponding ratios
D'/a are given in the fourth column of Table VIII.
There is a monotonic trend of D'/a with pressure
which, if real, would be contrary to the expected

TABLE VII. Parameters for Eq. (6.9}, obtained by
refitting the results from Ref. 37 at vapor pressure with
the constraints y = 0.5 and y =0.3. ~1'& is in K. P thar) D' D'/a

TABLE VIII. Amplitudes of confluent singularities for
PI, (D') and p /p(a).

k
a

1066.T z

0.5

0.6750 + 0.0005
2.548 + 0,010
0.007 + 0.021
0.7 + 0.2

0.3

0.6747+ 0.0008
2.540 + 0.019
0.010 + 0.017
0.6 + 0.2

7.27
12.13
18.06
24.10
29.09

0.43
0.77
1.22
2.00
2.98

—0.09
-0.14
-0.20
-0.28
-0.37

-0.21
-0.18
—0.16
-0 ~ 14
-0.13
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universal behavior. However, both D' and a are
very sensitive to slight changes in g, n, or x. In
addition, we have not explored the effect on D' and
a of neglecting additional terms of higher order
than D' It I"' and n

I
t l'. Therefore we cannot be

sure that the values of D'/a in Table VIII are suf-
ficiently free from systematic errors to be in-
consistent with universality. It is encouraging
that D'/a varies by only about a factor of 1.6,
whereas D' and a separately varied by factors of
4 and 7, respectively.

Finally, it should be possible to compare the
leading amplitude of p, /p with that, of P~ via, the
predicted two-scale-factor universality of Stauf-
fer, Ferer, and Wortis. ' However, we feel that
the leading amplitudes of p, and of P~ are subject
to sizable systematic errors. The uncertainty of
A is of the order of 3%, and that of k for P greater
than vapor pressure is perhaps as large as 6 or
8% because both C~ and the entropy S must be
known in order to derive k from the mea. sured
second-sound velocity. In view of these uncer-
tainties, it seems premature to reexamine the
Stauffer- Ferer-Wortis ratio at this time.

VII. SUMMARY AND CONCLUSION

We described in this paper a new method of
measuring with high temperature and pressure
resolution the isobaric thermal-expansion
coefficient P~ of liquid 4He near the superfluid
transition. We presented experimental results for
P~ in the vicinity of T„ for nine isobars. It was
possible to represent these measurements by a
single eQLlatlon, both as a fui1etlon of temperature
and pressure.

The results were compared with other results
for the expansion coefficient, "'"and with the heat
capacity at constant pressure C~."4 Except for
C~ at pressures greater than about 15 bar, all
the results are consistent with each other, and
differences do not exceed reasonable estimates of
possible systematic or random errors of the vari-
ous experimental results. For P greater than 18
bar, there exist systematic differences between
the previous results for' C~ and estimates of C~
based upon P„. These differences slightly exceed
reasonable a priori estimates of the possible sys-
tematic errors of the data, and become as large
as 4p% at the highest pressure and closest to T„.
For P less than 18 bar they do not exceed 1% how-
ever. The origin of the problem at high P is not
known at present. It is worth noting, however, that
the results for C~ were not obtained directly; in-
stead, they were calculated via thermodynamic
relations from measurements of the heat capacity
at constant volume C~.' It is desirable to further

investigate the discrepancy by performing direct
measurements of C~.

Our results for P~ were compared in detail with
theoretical predictions based on scaling, ' univer-
sality, ' and on the renormalization-group theory
of critical phenomena. ~ For this purpose, we first
fitted the data to pure power laws. This analysis
yielded exponents and amplitude ratios which were
dependent upon the pressure. Such a pressuxe de-
pendence is contrary to theoretical predictions
based on universality arguments' and the renorm-
alization-group theory. ' This analysis also yielded
values for the additive constant 8 above T„[ ese

Eq. (6.2)] which differed from the constant 8' be-
low T~. This also is contrary to the predictions of
renormalization- group theory. '

Since the data analysis based upon pure power
laws resulted in serious conflicts with theoretical
predictions, we reanalyzed the measurements by
fitting them to functions which, in addition to the
leading singularity also included a confluent sing-
ularity [see Eq. (5.2)]. This analysis yielded pa-
rameters which were consistent with the theoretic-
ally predicated result 8 =8'. We then imposed the
prediction 8 =8' as a constraint in the analysis.
This constraint reduced the statistical errors for
the remaining free parameters very appreciably.
We found that the leading exponents & = +', the
leading amplitude ratio A/A', and the amplitude
ratio D/D' of the confluent singularities ail were
independent of pressure within their statistical
errors, as expected from theory, 3'~ We conclude
that agreement between theoretical predictions
and the experimental results is obtainable, but only
if the contribution to P~ from confluent singularities
is taken into consideration. Our best estimates
for o'. = n', A. /A', and D/D' are given by Eq. (6.6).

The exponents and amplitude ratios of P~ were
compared with those derived from C~. For this
purpose, the specific-heat results' were rean-
alyzed in a manner consistent with the analysis
of the expansion-coefficient data. For P~15 bar,
the data for C~ yielded values of n = o.' and A/A'
which differed only very slightly from those de-
rived from )3p [see Eq. (6.7)J. Although the small
differences which do exist are slightly larger than
the statistical errors derived from the data, they
probably should not be regarded as significant. In
any event, they are much smaller than typical
differences in these parameters for systems which
belong to different universality classes. ' For
higher pressures, both o. = n' and A/A' as derived
from C~ are pressure dependent and inconsistent
with the values obta, ined from P~. The specific
heat did not yield values of D/D' with meaningful
accuracy.

We also compared some of the parameters of P~
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with those of the superfluid density p, . For this
purpose, we reanalyzed the p, data at vapor pres-
sure" in a manner which is more consistent with
our analysis of P~. The result /=0. 675+0.091 and
our value m = n' =-0.026+0.094 rather accurately
obey the scaling law" & = —', (2 —o'). This compari-
son of & and n' is the first experimental confir-
mation of a scaling law with parameters which
are derived by fitting data to functions which in-
clude confluent singularities. We also examined
the ratio D'/a. Here D' and a are the amplitudes
of the confluent singularities of P~ and p„re-
spectively. This ratio is expected to be independ-
ent of the pressure. ' We found that D'/a varied
by about a factor of 1.6 over our pressure range;
but we were unable to show that this pressure de-
pendence exceeded systematic errors in D'/a. In
any event, B' and a by themselves change a great
deal more with pressure and vary by a factor of
4 and 7, respectively, over our range of P.
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A»'h &h h

(A2)

When the left of this equation is small,

5(n p)„(Sp/BP) r, „de
(~ p)a (sp/sT) p, h dTn

(A4)

where we used dP„=dP&. Using the relation
(Sp/sP)rl(Sp/BT)~= (BT/BP), and Eq. (Al—), one

APPENMX A: FOUNTAIN-PRESSURE EFFECTS

For T, & T„, the pressure P„ in the hot volume
will differ from the sample pressure P, by an in-
crement due to the fountain pressure P& across
the capillary (see also Sec. IVA). Since Pz de-
pends upon T„ the pressure P„will also depend
upon T, because P, is held constant. Therefoxe
changes in fountain pressure 4' which are
associated with sample temperature changes 4 T,
will result in hot-volume density changes 5(n p)„
in addition to the density changes that would occur
if conditions in the hot volume, too, were iso-
baric. The change 5(&p)„was neglected in our
data analysis. The relative error in P~, due to
this approximation is given by

~p.„/~,„=~(n p)„/(n p)„.
It can be estimated by considering

gets from Eq. (A4)

OP»,„er dug

P ., ~P „dT„

With Eq. (2.1) in the form

dTa && PJ, s
(A6)

one finally obtains

&P», s &I, P», a ~&

For the purpose of estimating the size of the
error in P~ „we use N„/N, —= 0.1,P~ „—= -P~,
(under most conditions of the experiment ~P~, ~

& p»), and (BT/BP), „=2 x 10 ' cm' K/dyn. '" We
find approximately

P», 2~ ~0
p, , (AB)

with P~ ln dyn cm
There are no measurements of the fountain

pressure across a capillary similar to ours in the
vicinity of T„. and there is also no rigorous quan-
titative theoretical prediction. An upper limit for
Pf is given by the London equation, "and can be
written as

P, ~ pS(T, T,) . — (A9)

where q is the normal-fluid viscosity, / is the len-
gth of the tube, Q is the heat current, and a is
the tube radius. For T & 2K and at vapor pres-
sure, measurements on a slit geometry by Keller
and Hammel" have shown that the rule of Allen
and Reekie holds remarkably well, although at
lower temperatures substantial departures from
the rule exist for lax ge temperature gradients. "'"
When departures do occur, the rule seems to
yield an overestimate of P&." On the basis of

Departures from the equality increase with in-
creasing capillary diameter. Our diameter is
rather large (0.01 cm), and we expect our Pz to
be much less than that given by Eq. (A9). One
finds" that p8=2&10' ergcm 'K ' along the A.

line, and that
~ 5P~,/P~, ~

«0.04.
A more realistic, but empirical, estimate can

be obtained from the rule of Allen and Reekie. 4'

These authors used the proportionality between
the pressure gradient in a channel or tube and the
associated heat curxent which is given by linear
two-fluid hydrodynamics, and proposed that this
proportionality should hold approximately also for
large heat currents when dissipative processes oc-
cur. For a cylindrical geometry, one has"
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previous measurements in a geometry"' similar to
ours the heat current in our capillary can be es-
timated to be Q = 9 x 10'f'07' erg/sec. Here
f =—(T„—T )/T„. With g=2 x 10 P, /=4 cm, and

a=5 x10 ' cm, one obtains P&=540t"" dyn/cm',
and dP&/dT, = 19-0 dyn/cm'K for f -=0.01. The
error in P~ „given by Eg. (AB), is obviously neg-
ligible.
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