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The surface of a spin-polarized electron gas is used to model the conduction electrons at the surface of both a
simple metal in a magnetic field and ferromagnetic gadolinium. A self-consistent calculation based on the
Hohenberg-Kohn-Sham density-functional formalism obtains the densities of majority and minority-spin
electrons at the surface. For a simple metal, we calculate the position-dependent susceptibility which describes
the response of the surface to a uniform magnetic field. For gadolinium, we obtain the change in work
function, surface magnetization, and surface energy between the paramagnetic and saturated ferromagnetic

states.

I. INTRODUCTION

The surface of a paramagnetic electron gas has
long served as a model for the conduction elec-
trons at the surface of a simple metal. This jel-
lium model results when the metal ions are re-
placed with a uniform positive charge density which
ends abruptly at the surface plane. The basic
validity of the jellium model has been demonstrated
by Lang and Kohn who derive values for the work
function and surface energy of the alkali metals in
good agreement with experiment.!':?

The present work considers the surfaces of two
metallic systems which can be modeled by a spin-
polarized electron gas, the conduction electrons
of a simple metal in a uniform magnetic field and
the conduction electrons of ferromagnetic gadoli-
nium. The models adopted for these two systems
differ from the jellium model only by the presence
of a polarizing field —j, which introduces a mag-
netic term —o-J into the Hamiltonian and lowers
(raises) the energy of electrons with spin o paral-
lel (antiparallel) to J. For a simple metal in a uni-
form magnetic field, J is a constant field propor-
tional to the magnetic field J= u;B. Treating this
system in the limit of small B, we obtain an ac-
curate result for the surface susceptibility of an
alkali metal. For ferromagnetic Gd, spin polari-
zation results from an exchange interaction be-
tween the conduction electrons and the localized
4f moments. From the viewpoint of the conduction
electrons this exchange interaction is conveniently
represented by an exchange field, mathematically
equivalent to a magnetic field, having a magnitude
roughly proportional to the magnetization of the
4f electrons. To model the surface of Gd we
choose a J which is constant in the bulk and falls
abruptly to zero at the surface, thus simulating
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the sudden disappearance of 4f magnetization at
the surface. While the resulting model is highly
simplified in that it neglects both the d character
of the gadolinium conduction band and inhomogen-
eities in the bulk exchange field, it otherwise in-
cludes the essential physical elements. Estimates
are obtained for the surface magnetization of the
conduction electrons, the work function, and the
surface energy of paramagnetic and ferromagnetic
Gd.

The two spin-polarized surface models con-
sidered are simple and yet physically interesting.
The solutions obtained are accurate self-consis-
tent solutions based on the density-functional
formalism of Hohenberg and Kohn® and Kohn and
Sham* as extended to the spin-polarized case by
von Barth and Hedin® and Rajagopal and Callaway.®
These solutions represent the first self-consistent
calculation of the surface magnetization of a metal-
lic system.

By neglecting the periodic potential a jellium
model omits band-structure effects entirely. For
the alkali metals, in which the periodic potential
can be replaced by a weak pseudopotential, the
jellium approximation is justifiable. In the case
of gadolinium, which has a complex band struc-
ture, neglect of the periodic potential is clearly
an oversimplification. The jellium approximation
has been adopted here for reasons of calculational
simplicity. In principle, density-functional cal-
culations could be extended to include the periodic
potential, just as the work of Lang and Kohn' has
been extended by Appelbaum and Hamann.” With
this in mind, we have chosen to explore the spin-
dependent density-functional formalism in some
detail. In particular, we compare accurate self-
consistent solutions to the surface problem based
on the Hartree-Fock (HF) and random-phase-ap-
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proximation (RPA) energy functionals.

A number of recent calculations of both the sur-
face susceptibility of a paramagnetic metal®~'° and
the surface magnetization of a ferromagnetic
metal’ ! have been based on the Hubbard model.
The advantage of the Hubbard model over a jel-
lium model is that it introduces band-structure
effects in a simple fashion. The disadvantage is
that hopping integrals and intra-atomic Coulomb
integrals are difficult to calculate for the surface
layer. Although crude estimates for these quan-
tities can be obtained from renormalized-atom
theory, ' '2 they have usually been taken as free
parameters. Because the magnetic nature of the
surface solution is quite sensitive to the intra-
atomic Coulomb integral,'® '3 it has proven diffi-
cult to draw definite conclusions about real sys-
tems from the Hubbard model. While our results
for ferromagnetic Gd are also tentative, the phy-
sical origin of the model is clear and the solution
contains no free parameters.

Because a surface solution implies a bulk solu-
tion, we begin with a discussion of the uniform
spin-polarized electron gas, presenting in Sec.

II both the HF and RPA solutions. In Sec. III we
discuss the spin-polarized version of the density-
functional formalism. Equations for the surface
problem are developed in Sec. IV and solutions
for the two surface models are discussed in Sec.
V.

II. UNIFORM SPIN-POLARIZED ELECTRON GAS

Consider a gas of electrons at zero temperature
in the presence of a uniform neutralizing charge
density and a uniform polarizing field. The spin-
polarized electron gas is characterized by two
parameters, the density of electrons
n=3/4m(as,)® and the strength of the polarizing
field J. The Hamiltonian for the spin-polarized
gas is™
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where the direction of spin quantization has been
chosen such that the 0 =+ and o = - states are
parallel and antiparallel to 3.

The spin-polarized gas has not previously been
treated as a many-body system except in the limit
of small polarizing fields. A number of authors
have, however, investigated an electron gas that
is assumed to be polarized in the absence of a
polarizing field and much of this work can be ap-
plied to the system considered here.

A. Hartree-Fock approximation

For a uniform electron gas, the HF wave func-
tion is a Slater determinant of single-particle
states having definite momentum % and spin o.

The ground state is constructed by filling the plane-
wave states of lowest energy. For the ground

state all spin o states with momentum less than
kg, =(61°n,)"/* will be occupied; given that the den-
sity of spin o electrons is n,. The energy per
particle of the ground state can be written in

terms of 7, J, and the relative magnetization
¢=(n,—n.)/n as

€Hp =€p tEL +E, , (2.2)
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where €,, €, and €, are the kinetic, exchange,
and magnetic energies, respectively. Except for
the added magnetic term, this result is the same
as that of Bloch.'®

The relative magnetization of the ground state for
a given 7, and J is determined by choosing ¢ to
minimize the total energy. Requiring that
de 4p/dg =0 yields
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The value of £ which satisfies this equation does
not always minimize the total energy. The actual
dependence of ¢ on %, and J is shown in Fig. 1. For
7, >5.45, the gound state proves to be the £=1
state for all J. For 7,<5.45, the magnetization
follows Eq. (2.6) up to some critical polarizing
field and then switches suddenly from some partial
magnetization (¢ <1) to full magnetization (£=1).
The spontaneous ferromagnetism of the HF gas
for »;>5.45 is explained by the fact that in the HF
approximation electron correlation results entirely
from the Pauli exclusion principle and only spin-
parallel electrons are correlated. The interaction
energy of two electrons is thus less if the electrons
are of parallel spin than if they are of opposite
spin. As a result, the interaction energy of the
ferromagnetic state is lower than that of the para-
magnetic state. Because the alignment of spins
requires the transfer of electrons to high mo-
mentum states, the kinetic energy increases with
polarization. When 7 is small and €, >> | €, |the gas
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FIG. 1. Magnetic phase diagram for a HF gas. For
each 7¢ <5.45 there is a critical field at which the rela-
tive magnetization jumps from some { <1to ¢ =1. For
¥s > 5.45 the HF gas is fully magnetized even in the ab-
sence of a polarizing field. A polarizing field of 0.01
Hartree or 0.27 eV corresponds to a magnetic field of
47 million G.

is paramagnetic while for large 7, and €, >>¢, the
gas becomes ferromagnetic.

B. Random-phase approximation

At metallic electron densities, where the inter-
action energy and kinetic energy of an electron gas
are comparable, one anticipates that the Coulomb
repulsion between electrons will play an important
role in electron correlation. Since the Coulomb
interaction does not depend on spin, both spin-
parallel and spin-antiparallel pairs of electrons
are correlated by the Coulomb force. When Cou-
lomb derived correlation is taken into account, the
difference in interaction energy of electron pairs
with parallel and antiparallel spins is reduced from
what is was in the HF approximation. This fact
suggests that higher-order approximations such as
the RPA will yield a paramagnetic ground state at
much lower densities than the HF.

The RPA has been applied to an electron gas
assumed to be polarized in the absence of a polar-
izing field by von Barth and Hedin® and by Lam®®
who obtain the correlation energy as a function of
7s and {. When the RPA is applied to the electron
gas in the presence of a polarizing field,” it is
found that the correlation energy is unchanged.
Thus, the energy per particle of the spin-polarized
gas in the RPA can be written

6Rl’Azem""ek'Fex""ec.R.PAr (2-7)

where € rpa is the correlation energy calculated by
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FIG. 2. Energy per particle of an electron gas in the
absence of a polarizing field for relative magnetizations
of 0 and 1. Results are shown for the HF, RPA, and
SSTL approximations.

von Barth and Hedin and Lam. In the present work
we adopt the parametrization for €, rea(?;, £) sug-
gested by von Barth and Hedin, namely,

94/3 _ (a +£)4/3 -1 _§)4/3

€c,RPA =€f:, (‘rs) 2(21/3_1)
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where €© and €% are the correlation energies of
the paramagnetic (£ =0) and ferromagnetic ({=1)
states for which the following parametrizations
are suggested:

E}Z('rs):-CPF(Ts /VP) ’ (2-9)
eEr)==CpFlry /7e), (2.10)
F(2)=(1+2)In(1+1/2)-2Z%+3Z~-% , (2.11)

with Cp=0.0252¢2/a,, Cr=0.0127¢%*/a,, v =30, and
rp =T5.

In Fig. 2 we show the energy per particle of an
electron gas as a function of 7, and ¢ in the ab-
sence of a polarizing field for both the HF and
RPA approximations. The RPA gas remains para-
magnetic over the entire range of metallic den-
sities even though the HF gas becomes ferromag-
netic at »,=5.45. Lam' has calculated €, rea for
7,=12 and finds a paramagnetic ground state even
at this density.

The ground-state magnetization in the presence
of a polarizing field is determined by selecting &
to minimize egps. The equation obtained by setting
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FIG. 3. Magnetic phase diagram of the RPA gas. As
in the HF approximation, there is a critical field at
which the relative magnetization jumps from some {<1
tog=1.

degp/dE to zero determines most of the phase dia-
gram shown in Fig. 3. As in the HF approximation,
there is a critical field at which the relative mag-
netization jumps suddenly to one. At »,=6 the
jump occurs between £=0.84 and ¢ =1.

The accuracy of the RPA can be judged in part
by comparing it with more accurate theories. In
Fig. 2 we show the essentially exact results of
Singwi et al.'® (SSTL) for the total energy of the
£ =0 gas. Although the RPA overestimates the
correlation energy of the electron gas, the sus-
ceptibility calculated on the basis of the RPA en-
ergy functional by von Barth and Hedin® agrees with
more accurate theories' to within a few percent.

III. INHOMOGENEOUS SPIN-POLARIZED ELECTRON GAS

A. Density-functional formalism

Inhomogeneous systems present a difficult many-
body problem simply because they lack transla-
tional symmetry. Because electron correlation
often plays an essential role in inhomogeneous
systems, it is important to find approximate me-
thods for treating such many-body effects. The
density-functional formalism is the basis of a
number of such approximate methods.

In considering the density-functional formalism
we restrict discussion to systems for which the
inhomogeneities are determined by an external
charge density p,(r') and a polarizing field J(r) with
constant direction. If the direction of spin quanti-
zation is chosen to coincide with _f, then the elec-
tronic response of the system can be characterized

by 7, (t) and n_(r), the densities of electrons with
spin parallel and antiparallel to the polarizing
field.

The basic theorem of the density-functional form-
alism was proven first for the paramagnetic case
by Hohenberg and Kohn® and has recently been ex-
tended to the spin-polarized case by von Barth and
Hedin® and Rajagopal and Callaway.® The theorem
states that the ground state energy of an electron
gas is, for a given external charge density p,,(?)
and polarizing field J(?), a functional of the spin
densities #n, (r) and n_(T) and that this functional
can be written in the form

1 , Len(®) +p ()] [en(r’) + p,(r")]
E—E fd3rd31’ Fo7]

- jdsr[m(?)—n-(?)]J(F)+G[n+,n_], (3.1)

where G is a universal functional of the spin den-
sities, The theorem further states that E is min-
imized by the correct spin densities.

The first term on the right-hand side of Eq. (3.1)
is the electrostatic energy of the external and elec-
tronic charge densities; the second term is the
magnetic energy associated with the polarizing
field; and the third term includes the kinetic,
exchange, and correlation energies of the electron
gas. If the functional G is known, then we can use
Eq. (3.1) to solve for the spin densities variation-
ally based on the stationarity of E. Taking the
variation of E with respect to the spin densities,
subject the condition that the number of electrons
N remain fixed, we obtain

8(E— N)/6n,=0, (3.2)

where N=[d% n(r). The Lagrange multiplier u
is the chemical potential.

While the density-functional formalism does not
give an explicit form for G, it does state that G is
a universal functional, the same for all electronic
systems. In Secs. IIIB and IIIC, we derive ap-
proximate forms for G which allow correspondingly
approximate solutions for the spin densities of
inhomogeneous systems.

B. Gradient expansion

Following Hohenberg and Kohn who considered
the paramagnetic case,® we define an energy-den-
sity functional g such that

Gln,,n_] =]d3rg{n+, n_] (3.3)

and proceed by assuming that g can be expanded in
terms of the gradients of »n, (r) and n_(T). Sym-
metry arguments based on the universality of G
can be used to reduce such an expansion to one of
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the form
gln,,n.
=go(n,,n_)+g3(n,,n_)|Vn, |?
+85(n, n ) Vn_ |2+ gy, n_ ), cVn_ 4o -,

(3.4)
Here the coefficients g, and g, are functions and
not functionals of n, and n_. An expansion of this
form is valid only if the spin densities vary slowly
with position.

In the uniform limit, g is equal to g, and is sim-
ply the kinetic, exchange, and correlation energy
per unit volume of the uniform electron gas. In
terms of the energies per particle we have

gozn(£k+€x+€c)s (3-5)

where €,, €, and €, are given by Egs. (2.3), (2.4),
and (2.8) written as functions of »n, and »n_ rather
than »; and ¢{. The coefficients g, of the second-
order gradient terms are determined by linear-
response theory. Using the RPA linear response
functions we obtain'’

go=m?/m)1/n,, g5 =0. (3.6)

These coefficients, accurate in the limit of high
densities, account only for kinetic contributions
to the gradient term. Exchange and correlation
corrections to g, are obtained in theories that go
beyond the RPA. These terms are difficult to
evaluate and are just beginning to be understood in
the paramagnetic limit.?°

Physically, the gradient expansion may be in-
terpreted as follows. In approximating g by g, one
assumes that at each point of the inhomogeneous
system the local momentum distribution and cor-
relation hole are the same as those of a uniform
electron gas with a density equal to the local den-
sity. The kinetic part of the gradient expansion
accounts for the fact that high-momentum compo-
nents are required to construct a rapidly changing
electron density. The exchange and correlation
gradient term accounts for distortions of the cor-
relation hole which result from nonuniformities in
the density.

C. Method of Kohn and Sham

Hohenberg and Kohn® have pointed out that the
gradient expansion does not properly account for
the discontinuity in occupation number at the Fermi
surface and consequently fails to reproduce the
q =2k, Friedel oscillations in the electron density.
The method of Kohn and Sham* overcomes this
problem by breaking G into a kinetic and an ex-
change-correlation part

Gln,,n)=T[n,,n_ ] +Esln,,n_] (3.7)

and treating the kinetic part exactly. T is defined
to be the kinetic energy of a noninteracting elec-
tron gas with spin densities », and n_ and E,. is
defined by Eq. (3.7).

The basic theorem of the Kohn and Sham method
was originally proven for the paramagnetic gas
but it can easily be extended to the spin-polarized
case.>® The theorem states that the spin densities
of an interacting electron gas, defined by a given
external charge distribution and polarizing field,
are equal to the spin densities of a noninteracting
gas in the presence of an effective potential. That
is, if we solve the single-particle Schriédinger
equation

[= (22/2m)V2 + V& (F) ] hio(T) =hwioto(T) ,  (3.8)

and compute the spin densities assuming the states
of lowest energy are occupied,

no(®) = 2 19i0(®) ]2 (3.9)

then these will equal the spin densities of the inter-
acting problem, provided VZ; is given by

V &i(T) = ep(f)- 0J (T) +0E./0n, , (3.10)

where ¢ is the electrostatic potential. Since V&
depends on the spin densities themselves, we must
solve Eqgs. (3.8)-(3.10) self-consistently. The kin-
etic energy may be computed as the difference be-
tween the total energy and the potential energy of
the noninteracting system

T:Zh’wio -—2 fderfffno .
10 (o]

The method of Kohn and Sham becomes approxi-
mate when we use an approximate form for the
exchange and correlation part of the effective po-
tential 6E,./0n,. Such approximate forms can be
obtained directly from the gradient expansion by
omitting the kinetic part of G. If gradient terms
are neglected we obtain the local density approxi-
mation for the effective potential

(3.11)

Vear=€@—0d + 13, (3.12)
where
9
pie=——I[n(e, +€.)]. (3.13)

an,

A number of approximations for the local ex-~
change-correlation potential pgc can be obtained
depending on how we evaluate €., the correlation
energy per particle of the uniform gas. We will
consider three approximations, namely, those
which result from the HF, RPA, and SSTL ap-
proximations for €,. In the HF approximation,

€. is zero and the effective exchange and correla-
tion potential becomes
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W enr = —€2(6 /T3,

This result was first derived in the above fashion
by Kohn and Sham® and is now commonly used in
band calculations. The RPA result for i % is much
more complicated than p$cur but can be derived
directly from Eqs. (2.8) and (3.13).° It should be
noted that the extra complication of using u 3 rpa
instead of u{.ur is insignificant in terms of the
computer time required for a self-consistent cal-
culation. More important differences between the
HF and RPA effective exchange and correlation
potentials are shown in Fig. 4 where the potentials
are plotted as a function of relative magnetization
for a given density. The RPA potential is more
negative than the HF potential, reflecting the ener-
gy lowering due to Coulomb-derived correlations
in the RPA. One also notes that the potential for
minority-spin electrons goes to zero in the limit
of low minority-spin densities for the HF but not
for the RPA. This is accounted for by the fact
that spin-antiparallel electrons are correlated in
the RPA but not in the HF.

We also consider an essentially exact local ef-
fective potential for the paramagnetic case based
the SSTL approximation of Singwi et al.'®* Hedin

(3.14)

0.0 : ' , i
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FIG. 4. Effective exchange and correlation potential
in the HF and RPA as a function of relative magnetiza-
tion for 7, =3. The curves labeled + and —are the po-
tentials for majority- and minority-spin electrons, re-
spectively. Circles indicate the end points of the min-
ority-spin potentials at £ =1.

and Lundquist®! have shown that €, g1y is accu-
rately reproduced by the function €£(»,) [Eq. (2.8)],
with C,=0.0225 e%a, and =21 and they derive the
corresponding [Ly.sstL. This potential is used to
check the accuracy of our results, obtained using
the HF and RPA potentials, in the paramagnetic
limit,

IV. EQUATIONS FOR THE SPIN-POLARIZED SURFACE

In this section we specialize the results of Secs.
II and III to the surface of a spin-polarized gas.
Two model systems are considered. The first
system, which applies to a simple metal in a uni-
form magnetic field, is defined by the following
external charge density and polarizing field:

Pe(F) = —en,®(~x), (@.1)
J(F)=J,. (4.2)

Here 7, is the electron density in the bulk and p,
represents a neutralizing charge density which
ends abruptly at the x =0 plane. The polarizing
field J, represents a magnetic field B=J,/uyz. The
second model system applies to ferromagnetic
gadolinium and is defined by the same external
charge density as the first model but assumes a
polarizing field of the form

J(F) = J,0(=x), (4.3)

which simulates the disappearance of the 4f ex-
change field at the surface. The properties of
both models are a function of just two parameters
n, and J,. Both models also possess sufficient
symmetry that the resulting spin densities and
effective potentials depend only on x, a fact which
greatly simplifies the surface equations.

In obtaining solutions for these two models we
consider two different methods, a highly approxi-
mate parametrized-variational method and an ac-
curate self-consistent method. Before considering
the details of these methods we discuss the charge
neutrality condition, the surface magnetization,
the work function, and the surface energy.

A. Surface properties

The charge-neutrality condition results if we
require that the electric field be zero both in the
metal’s interior and in the vacuum. Applying this
restriction, we obtain the sum rule

[ axdn(x)-n0(=0)=0, 4.4)

which simply requires that the total charge of the
system be zero. (In a field emission experiment
the electric field is nonzero in the vacuum region
and a net charge is associated with the surface.)
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While the electronic charge density e(r, +n_)
satisfies a definite sum rule at the surface, there
is no corresponding sum rule for the magnetiza-
tion pg(n,. —n_). This leads us to define a quantity
M, called the surface magnetization:

©

My=ip [ asln, () =n_(x) = (t, =, )0 (=),
(4.5)

Here n,. and n,_ are the bulk spin densities. M,
is the excess magnetization associated with the
surface or, more precisely, the change in total
moment which results when a solid is cleaved
divided by the surface area formed by cleavage.

The work function ¢ is defined as the minimum
energy required to remove an electron from a
solid into the vacuum. Lang and Kohn? have shown
that the work function is obtained rigorously from
a naive interpretation of the effective-potential
picture. That is, the work function is simply the
difference in the effective single-particle energies
of an electron at rest in the vacuum and an electron
at the Fermi level in the bulk:

& =V (=) = [Vl ) +72°k5 o /2m] . (4.6)

In cases where J is nonzero in the vacuum, Eq.
(4.6) yields a different work function for spin +
and — electrons, as is physically correct. In
order to obtain a single value for the work func-
tion, we shall assume that the polarizing field
goes to zero far from the surface. In this case,
the work function is given by

@ =e[p (=) — p(=)] +0d = p%(nge, Ny ) =T 2K, /2m .

4.7

The surface energy of a solid is the energy re-
quired to cleave the solid per unit area of surface
formed. For the spin-polarized gas, it is useful
to break the total surface energy o into electro-
static, magnetic, kinetic, exchange, and corre-
lation parts

0=0,+0,+0,+0, +0,. 4.8)
Using the gradient expansion developed in Sec. III,

we can express the surface energy in terms of the
spin densities

O = % f_:dxhﬂ(x) - @(=9)]|n(x) - ﬂoe(—x)] ,
4.9)

o,,,:—g f:dx od (x)[n,(x) = 1,40 (=x)], (4.10)

353743 2 °
O I I CACR )
o -0

1 n2 ° 1 [dn)\?
R I e (dx) ;1)

0,== 55—3/%362 2 fm dx(ny/*(x) - g, *0(-x)],
(4.12)
0.= [ axin(xle fn.(x),m.(2))
- - noec(nouno-)e("x)], (413)

where the electrostatic potential ¢ is given by
X x’
@(x)=— 4me f dx’ f dx"'[n(x"") = n©(-x"")].
(4.14)

B. Parametrized variational solution

A variational solution for the spin densities at
a surface can be obtained by direct minimization
of the surface energy with respect to the spin
densities. Using the calculus of variations, we
can derive a set of differential equations for the
spin densities from the gradient expansion of the
surface-energy functional. Warner® has carried
out a numerical solution of these equations for
the paramagnetic case and obtains work functions
comparable to those of Lang and Kohn.? Smith?
introduced a less-rigorous but easily executed
method, which was recently applied to a spin-
polarized surface by Pant and Rajagopal?* In
this method one assumes that the spin densities
are of a simple parametrized form and then solves
for the spin densities by adjusting the parameters
to minimize the surface energy. We adopt the
following form for the spin densities:

no::r(l _ %eBo(x-xc))’ X <xa,

ny(x) = (4.15)

nggze Bot¥E) | x>x

This parametrized form was chosen to asymptot-
ically approach the bulk spin densities in the in-
terior and zero density in the vacuum. It is de-
fined by the four parameters B,, B_, x,, and x_.
However, the charge neutrality condition imposes
the restriction that x ny, +x_x,_=0; reducing the
number of adjustable parameters to three. Pant
and Rajagopal adopt a similar form for the spin
densities but assume that B,=B_and x,=x_=0
and thereby exclude the possibility of a net sur-
face magnetization.

With the exception of the correlation term, the
integrals involved in computing the surface energy
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can be evaluated in closed form for the spin den-
sities given by Eq. (4.15).}" Thus, if the correla-
tion energy is neglected, the surface energy can
be written as an explicit function of B,, B_, and
x,. By adjusting these three parameters to mini-
mize the surface energy, we obtain an approxi-
mate solution for a spin-polarized surface. This
method is applied to the Gd model in Sec. V.

C. Self-consistent solution

In the method of Kohn and Sham we obtain the
spin densities for a system of interacting electrons
in the presence of an external charge density and
polarizing field by solving for the spin densities
of a system of noninteracting electrons in the pre-
sence of an effective potential. We first apply this
method to the bulk spin-polarized gas. In the
bulk, the effective potential is a constant for each
spin

V(=») =e@(~=) - oJ, + pl(ny,, 1) (4.16)

and the solutions of the resulting Schrodinger
equation are plane waves with energies given by
Hwgy= V(=) + 72K /2m. (4.17)

Given V% (-=), the ground state can be constructed
by filling the plane-wave states in order of in-
creasing energy until the total density of electrons
is n,. This determines the bulk spin densities
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FIG. 5. Spin-dependent effective potentials (a) for the
surface model J(T)=J, and (b) for the surface model
J(F)=d (~%).

n,, and n,.. However, because Vz(-=) is itself
dependent on #,, and »,_, the problem must be
solved self-consistently to obtain the correct spin
densities. If pf. is approximated by pj .- then
this procedure obtains the same result for the
bulk magnetization as obtained in Sec. II from the
HF approximation (except where ¢ jumps suddenly
to 1). Similarly, using p, gp, leads to the RPA
result of Sec. II. Thus, the method of Kohn and
Sham reproduces that solution of the uniform gas
from which the effective exchange and correlation
potential was derived.

Spin-dependent effective potentials for the two
surface models are sketched in Fig. 5. In the
bulk, the Fermi level lies at an energy 72F2,/2m
above Vi . (—«) and 7%k _/2m above V;(~=). The
effective spin splitting of the conduction band
Veir = Vigr 18 2+ Ui, ,70) = phc(ng, , 7,.) in the
bulk for both models. For the model corresponding
to a simple metal in a magnetic field the effective
splitting in the vacuum is 2J, or just that due to
the magnetic field. For the gadolinium model the
splitting is zero in the vacuum since the polarizing
field drops to zero at the surface.

To calculate the spin densities at the surface for
a given effective potential, we must solve the
single-particle Schrodinger equation

(4.18)

(— E}i’-; V2 + Vi (x)) Ve (F) = g g, (F).

Because the solutions of this equation are plane
waves in the bulk, it is convenient to label the
eigenstates by their bulk momentum k. The single-
particle energies are given by Eq. (4.17). To take
advantage of the one-dimensional structure of the
problem we write

o) = o) AR

and require that zpkxl, approach a sine wave of unit a
amplitude in the interior:

(4.19)

Vo) —=sinflx —v,(k,)] . (4.20)

om0
The asymptotic phase y,(k,) is defined unambig-

uously be taking y,(0) =0 and requiring that y, be
a continuous function of %,. The one-dimensional
Schrédinger equation for ¥, , which results from
Egs. (4.18) and (4.19) is

7”& ks
(‘ o a2+ Vers @) = V‘e’u(-‘”)> Uneol¥)= g o

(4.21)

After solving Eq. (4.21) for values of k, between
0 and %, we calculate the spin density using the
formula

n,,(x)=—21?- f kF"dk, (kro ~ED | o) % (4.22)
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Equation (4.21) and (4.22) allow us to compute
the spin densities for a given effective potential.
Equation (3.12) relates the effective potential to
the spin densities. The surface problem is solved
when the spin densities which result from solving
the Schrédinger equation are the same as those
which determine the effective potential and sim-
ultaneously satisfy the charge neutrality condition,
Eq. (4.4). The method used to obtain self-con-
sistency is discussed in the Appendix.

By definition, the kinetic term of the energy func-
tional is the kinetic energy of a noninteracting gas
with the same densities as the interacting gas. In
the method of Kohn and Sham the kinetic term is
easily computed by taking the difference between
the total energy and the effective potential energy
of the noninteracting system. The resulting kinetic
surface energy is

1 7 kFo
0’*:? oy ;L dk, k,(ki-,, —ki)[%'" —'}’q(k,,)]

- [ den V) - V()] (4.29)

The first term on the right-hand side of this equa-
tion is the total surface energy of the noninterac-
ting system as derived by Huntington.?® The total
surface energy in the method of Lang and Kohn is
obtained from the gradient expansion Equation
(4.9)—(4.13) with the kinetic term replaced by Eq.
(4.23).

D. Sum rules

Two sum rules check the accuracy of the self-
consistent solutions presented in the next section.
The sum rules for the spin-polarized case repre-
sent simple extensions of existing paramagnetic
sum rules and are stated here without proof.

A sum rule for the asymptotic phase y was first
demonstrated by Sugiyama.®® The rule states that
a weighted average of the asymptotic phase equals
i7. In the spin-polarized case, this becomes

R
;2—2—2— > f O dby by (k) =t (4.24)
P+t kF- [ [
This sum rule is derived directly from the charge
neutrality condition and is quite generally valid.?’
A sum rule on the difference in electrostatic
potential between the bulk and the surface plane
has been derived by Vannimenus and Budd?®® for a
surface with the external charge density given in
Eq. (4.1). In the presence of a polarizing field this

rule is
n,(0) =n_(0)
L)

el@(0) = p(= )] -

x [7(0+) —J(O-—)J=n0%€: . (4.25)

where € is the energy per particle of the uniform
gas. This sum rule, based on the density-func-
tional formalism, will be satisfied by any calcu-
lation which accurately minimizes the total energy,
provided € is chosen to correspond with the as-
sumed energy functional. Note that the second
term on the left-hand side of Eq. (4.25) is non-
zero only when there is a discontinuity in the
polarizing field at the surface.

For the self-consistent calculations presented
here, the above sum rules were generally satisfied
towithin 0.2%. Our calculation was also checked
by repeating the calculation of Lang and Kohn'
using their interpolation formula for €,. Agree-
ment was better than one percent for all calculated
quantities for a bulk density of »,=3.

V. RESULTS

A. Paramagnetic limit

In the J,=0 limit, both of the spin-polarized sur-
face models we consider reduce to the paramag-
netic model of Lang and Kohn.! We have repeated
the self-consistent calculation of Lang and Kohn
using the RPA effective exchange and correlation

DENSITY

(HARTREE)

ENERGY

-8 -6 -4 -2 0 2 4 6
DISTANCE  (k})

FIG. 6. Electron density, electrostatic potential, and
effective potential at the surface of a paramagnetic elec-
tron gas for 7;=3. Results are for a self-consistent
calculation using the RPA energy functional. The dis-
tance scale is in units of 1/k;=0.0827 nm.,
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potential. In obtaining this solution we purposely
chose trial spin densities with a net surface mag-
netization. The self-consistent solutions never-
theless obtained spin + and — densities which were
identical to within calculational accuracy. This
confirms the implicit assumption of Lang and Kohn
that the surface of a paramagnetic gas is also
paramagnetic.

The electron density, electrostatic potential,
and effective potential which result for the sur-
face of a paramagnetic gas of density » =3 are
shown in Fig. 6. The oscillations in electron den-
sity are the anticipated Friedel oscillations of
wave number 2k.

B. Susceptibility of the paramagnetic surface

The system defined by Egs. (4.1) and (4.2)
models the surface of a simple metal in a uniform
magnetic field. Using the RPA exchange and cor-
relation potential, we have obtained for this model
the self-consistent spin densities for several
values of electron density and magnetic field.
When the magnetic field B=J,/u, is sufficiently
small, we find that the magnetization M(x)
= pgln, (x) =n_(x)] is proportional to the field.
Thus, we define a position-dependent susceptibility

x(x)=gimm, (5.1)

which specifies the magnetic response of the gas
to a uniform magnetic field.

In the bulk, y(x) reduces to the susceptibility of
the uniform electron gas y,. The values of y,
calculated using the RPA energy functional, orig-
inally obtained by von Barth and Hedin,® are listed
in Table I. The average measured susceptibility
of sodium (7= 3.99) is®® 115x107°u;/nm*G in
good agreement with our value for » ,=4. The
position-dependent susceptibility x(x) was calcula-
ted by solving for the magnetization resulting from
a weak magnetic field. Our results for several
values of bulk electron density are shown in Fig.
7. The oscillations in the magnetization are of
wave number 2k.

While it would be difficult to measure the de-

TABLE I. Bulk susceptibility x, and surface suscepti-
bility x, as a function of »¢ obtained using the RPA en-
ergy functional. ¥, is in units of 10 °u5/nm’G and x; is
in units of 10y, /nm’G.
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FIG. 7. Position-dependent susceptibility at the sur-
face of an electron gas for several values of 7;. The
distance scale is in units of @ ;=0.0529 nm.

tailed spatial dependence of the magnetization
shown in Fig. 7, it might be possible to measure
an average magnetic surface response. The aver-
age surface response is characterized by the sur-
face susceptibility x, defined by

M
Xs= im =, (5.2)

where M, is the surface magnetization [Eq. (4.5)].
Values of x, are listed in Table I for several
values of »,. To get a feeling for the magnitude
of the surface susceptibility, we consider the
(110) surface of sodium. If we associate the in-
duced surface magnetization entirely with atoms
of the first surface layer then the surface suscep-
tibility is 8.05x107°y /G per atom, assuming
r¢=4. This is to be compared with a bulk suscep-
tibility of 4.22x107%u,/G per atom. Thus, the
surface susceptibility corresponds to a 19% in-
crease in susceptibility for atoms of the surface
layer of sodium. For lithium and potassium the
corresponding figures are 24% and 15%.

C. Surface of a model itinerate ferromagnet

The system defined by Eqs. (4.1) and (4.3) rep-
resents a simple model for an itinerant ferro-
magnet which derives from ferromagnetic gado-
linium. Solutions for this model have been ob-
tained using three different methods: (i) the
parametrized-variational (PV) method discussed
in Sec. IV B using the HF energy functional,

(ii) the self-consistent (SC) method discussed in
Sec. IV C using the HF energy functional, and
(iii) the SC method using the RPA energy func-
tional. Each of these methods was used to calcu-
late the surface properties of an electron gas of
density » =3 as a function of the bulk magnetiza-
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tion ¢. The major results are presented in Table
1I.

The PV method represents a simple but approxi-
mate approach to the surface problem. The ac-
curacy of the PV method is largely dependent on
the parametrized form assumed for the spin den-
sities. Although the variational freedom of the
parametrized form we have chosen [Eq. (4.15)] is
quite limited, there is general agreement between
the PV solution and the more accurate SC solution.
Comparing the PV and SC solutions based on the
HF energy functional (Tables IIA and II B), one
notes agreement, number for number, in the
paramagnetic case and similar trends as the mag-
netization increases from ¢=0.0 to 0.8.

Differences between these two solutions result
both from the limited variational freedom of the
PV solution and the different kinetic energy func-
tionals of PV and SC methods. If complete vari-
ational freedom were allowed, the PV solution
would satisfy the potential sum rule exactly. The
sum-rule potential obtained by the present PV
solution is too large by a factor of about 1.3. This
suggests that a less-restrictive parametrization
would improve the accuracy. However, the ap-
proximate nature of the PV kinetic energy func-

tional precludes the possibility of obtaining the
Friedel oscillations of the SC solution.

The SC solutions presented in Tables II B and
IIC are both numerically accurate. They differ
only in that they assume respectively the HF and
RPA approximations for the local exchange and
correlation potential. A comparison of these two
potentials is of some interest because the HF po-
tential, while commonly used in band calculations,
is in principle less accurate than the RPA poten-
tial. In the paramagnetic limit the HF and RPA
results are in substantial agreement but the HF
solution underestimates both the surface energy
and the work function. These underestimates are
a direct reflection of the fact that the HF approxi-
mation neglects Coulomb derived correlations.
With increasing bulk magnetization, the trends in
most quantities are similar for the HF and RPA
solutions but there is a general decline in agree-
ment on a number for number basis. One notes
in particular the discrepancies in the surface
magnetization and surface energy at large polar-
izations. The fact that the HF solution overesti-
mates M by a factor of about 4 is explained by
the fact that the HF approximation neglects cor-
relation between electrons of parallel spin and

TABLE II. Polarizing field J;, work function &, electrostatic dipole potential eAg = e[@(»)
— @(—)], surface magnetization Mg, and surface energies as a function of ¢ for the model
J(F)=dy©(-x) with »,=3.0. Jy, &, and eAg are in eV; M, is in pp/nm?; and surface energies

2

are in erg/cm?®. Results are given for several methods of solution in order of decreasing ap-

proximation.
¢ Jy L] eAp M, g [ Om O [ O,
A. Parametrized variational method—HF energy functional
0.0 0.0 2.24 2.27 0.0 57 124 0 —685 617 0
0.2 0.37 2.23 2.26 0.09 60 124 i2 —691 616 0
0.4 0.74 2.20 2.23 0.21 68 121 45 -706 609 0
0.6 i.10 2.15 2.19 0.41 79 118 93 -716 585 (]
0.8 1.42 2.10 2.147 0.63 85 120 148 —-718 535 0
B. Self-consistent method—HF energy functional
0.0 0.0 2.54 2.56 0.0 127 190 0 =772 709 0
0.2 0.37 2.51 2.53 0.27 96 187 6 -794 697 0
0.4 0.74 2.45 2.48 0.64 -20 182 13 —864 648 0
0.6 i.10 2.39 2.43 i.16 —285 175 -1 -990 531 0
0.8 1.42 2.34 2.42 1.96 ~855 172 -104 —1150 226 0
C. Self-consistent method—RPA energy functional
0.0 0.0 3.77 2.15 0.0 247 159 0 —691 662 117
0.2 0.52 3.76 2.13 0.066 247 156 16 701 659 117
0.4 1.04 3.72 2.06 0.17 238 148 61 734 645 118
0.6 1.57 3.67 1.94 0.33 198 134 123 —-794 611 124
0.8 211 3.60 1.79 0.41 160 117 232 —894 576 129
D. Self-consistent method—SSTL energy functional
0.0 0.0 3.45 2.21 0.0 228 163 0 —-702 668 99
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thus overestimates the reduction in potential
energy gained by polarization. One concludes that
the HF exchange and correlation potential can lead
to substantial errors in the spin-polarized surface
problem, particularly in the limit of large polar-
izations.

Because the RPA is known to overestimate the
correlation energy of an electron gas, we have re-
peated the paramagnetic surface calculation using
the essentially exact SSTL local exchange and cor-
relation potential. The results, given in Table
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FIG. 8. Spin densities, total density, magnetization,
electrostatic potential, and effective potentials at the
surface of a spin-polarized gas with £ =0.4 and 7, =3.
Results are for a self-consistent calculation using the
RPA energy functional. The distance scale is in units
of 1/k z=0.0827 nm.

IID, are in close agreement with the RPA.
Figures 8 and 9 graph the spin-polarized sur-
face solutions obtained using the RPA potential
for an electron density of »,=3.0 and bulk magne-
tizations of £=0.4 and 0.8. The spin densities
show Friedel oscillations of wave number 2k,
and 2k, for the spin + and - densities, respec-
tively. In comparing the total density curves of
Figs. 6, 8, and 9, the shape changes surprisingly
little as a function of bulk magnetization. A simi-
lar conclusion can be drawn for the work function,
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FIG. 9. Spin densities, total density, magnetization,
electrostatic potential, and effective potentials at the
surface of a spin-polarized gas with £ =0.8 and 7, =3.
Results are for a self-consistent calculation using the
RPA energy functional. The distance scale is in units
of 1/k p=0.0827 nm.
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which appears graphically as the difference be-
tween the vacuum level and the Fermi level and
is tabulated in Table IIC. In going from ¢=0 to
¢=0.8 the effective splitting of the spin + and —
bands goes from 0.0 to 6.3 eV while the work
function decreases from 3.77 to 3.60 eV, a change
of only 0.17 eV. Furthermore, the electrostatic
potential and surface energy change relatively
little with bulk magnetization. Thus, we reach
the conclusion that the nonmagnetic surface prop-
erties of the model ferromagnet considered here
are nearly independent of the bulk magnetization.

D. Application to gadolinium

We discuss the magnetization of the spin-polar-
ized surface by applying our model to the conduc-
tion electrons of Gd. The model applies most
clearly to the paramagnetic and saturated ferro-
magnetic states of Gd. In the paramagnetic state
4f spins are randomly oriented and the average
exchange field is zero. In the ferromagnetic state
the 4f spins are aligned, producing an exchange
field which polarizes the conduction electrons.
One might question whether the magnetization of
4f spins is the same at the surface as in the bulk,
as the model assumes. To answer this question
we note that the 4f spins are well represented by
a Heisenberg model. While the Curie temperature
of a Heisenberg thin film is generally lower than
that of a solid Heisenberg ferromagnet, the satur-
ation magnetization of even a single atomic layer
is the same as for the bulk.’® Thus, although the
4f spins of the gadolinium surface layer may not
align as quickly with decreasing temperature as
those of the bulk, they probably achieve the same
magnetization at absolute zero.

The density of conduction electrons of Gd cor-
responds to »,=2.6. The saturation moment is
7.63u, per atom,* of which 7.0y, is due to the
seven 4f electrons and 0.63.., results from polar-
ization of the conduction band. Since there are
three conduction electrons per atom, the relative
magnetization of the conduction band is £=0.63/
3=0.21. Rounding off the density to »,=3 and the
saturation moment to £=0.2, we assume that the
first and second rows of Table IIC correspond to
the paramagnetic and saturated ferromagnetic
states of Gd.

The one calculated quantity which has been mea-
sured for Gd is the work function of the paramag-
netic state. The calculated and measured values,
3.77 and 3.1 eV,%® are in rough agreement. While
no one has measured the work function of the
ferromagnetic state, our calculation predicts that
the result will be very nearly the same as for the
paramagnetic state.

We have argued that the 4f spins of the saturated

ferromagnet have the same magnetization at the
surface as in the bulk. Thus, the only contribution
to the surface magnetization M is the 0.066y,/
nm? associated with the conduction electrons. If
we associate the entire surface magnetization with
the first atomic layer of a (001) surface, it
amounts to only 0.0062u., per atom. Thus, the
total moment of a surface atom is less than a
tenth of one percent larger than the total moment
of a bulk atom. One concludes that, aside from
the Friedel oscillations, the magnetization at the
surface differs little from the bulk magnetization.
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APPENDIX

We outline here the numerical methods used to
obtain a self-consistent solution for the spin-
polarized surface problem. In general, the pro-
cedures we describe parallel those developed by
Lang and Kohn' for the paramagnetic surface.

To calculate the spin densities for a given ef-
fective potential we solve the Schrddinger equa-
tion [Eq. (4.21)] for a number of &, values between
0 and kg,. If the wave functions are normalized
such that they approach a sine wave of unit ampli-
tude in the bulk [Eq. (4.20)] then the spin densities
can be calculated from Eq. (4.22). Integration of
the Schrodinger equation for given k, and ¢ is be-
gun far in the vacuum where the solution is known
to be a decaying exponential and proceeds into the
bulk. Initially, the normalization constant is
chosen arbitrarily. If integration continued far
enough, the solution would become a pure sine
wave from which the normalization constant and
asymptotic phase could be easily determined.

Unfortunately, the accumulated error of numeri-
cal integration becomes large long before the
asymptotic sinusoidal wave function is obtained.
This obstacle is overcome by taking into account
corrections to the sinusoidal form. To do this we
note that for the sinusoidal wave function of Eq.
(4.20), the asymptotic form of the spin density is

3 cos[2kpx— 2y (kr,)]
(szqu)z £ > (A1)

n4(x) nw(l +
X~ =0

to order 1/x2. Using these spin densities, we
obtain for the effective potential
V(%) =Vigy(==)

+(1/x2)(CY sin2kp,x + CS cos2kp,x

+CIsin2k, x +CJcos2kpx). (A2)
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The constants C{-CJ are determined by fitting
Eq. (A2) to the given potential. By treating the
1/x2% term of Eq. (A2) in perturbation theory
we obtain a correction to the wave function.
When the numerical wave function is fit to this
corrected form, we obtain the required normal-
ization constant and asymptotic phase.

In obtaining the corrected form for the wave
function, Lang and Kohn treat the problem in
first-order perturbation theory and retain the
1/x? contribution to the wave function. However,
this form includes singularities in &, at &, and
kg. which cannot be ignored in a spin-polarized
problem. In our calculation we retain the entire
first-order correction to the wave function. Our
correction form, containing sine and cosine inte-
gral functions, remains finite at 2, =%, ,kz_. Fur-
ther discussion of the analytic properties of the
asymptotic wave function has been given by Feibel-
man.*

We now discuss the problem of obtaining a self-
consistent solution. For this purpose it is useful
to consider a solution in terms of the sum and
difference of the spin densities, n=n,+%_and
m =n,-n_, rather than the spin densities them-
selves. Given an arbitary density and magnetiza-
tion (n,,m,), Egs. (3.12), (4.21), and (4.22) allow
us to compute the effective potential, wave func-
tions, and finally a second density and magnetiza-
tion (n,,m,). These equations thus define two
functionals A and B such that

n,(x) =Aln,, m;x], (A3)
m,(x)=B[n,,m,;x]. (A4)

The self-consistent solution (z, ) is obtained
when (r,,m,) = (n,,m,) = (n, m) subject to the con-
straint that » satisfy the charge neutrality con-
dition, Eq. (4.4).

Since direct iteration fails to produce a self-
consistent solution to the surface problem, we
adopt an extension of the linear response method
of Lang and Kohn. In the first step of this proce-
dure we obtain an approximate self-consistent
solution by trial and error. To do this, we first
construct a trial density and magnetization (n,,
m,), requiring that n, satisfy the charge neutrality
condition. In practice, the trial spin densities
were often taken to be of the simple form given
by Eq. (4.15). We then compute (r,,m,) from (x,,
mo). Since there is no assurance that »n, will sat-
isfy the charge neutrality condition, it is necessary

to add or subtract a small density in the surface
region to obtain charge neutrality. We then com-
pute (n,,m,) from (r,,m,). Finally, we adjust
(124, m,) until (n,,m,) and (n,,m,) are in close
agreement.

Having obtained two approximately self-consistent
solutions, (n,,m,) and (n,,m,), the linear response
method can be used to obtain an accurate solution
(n,m). We assume that the difference between
(n,,m,) and (rn,m) can be represented by a linear
combination of a limited number of appropriately
chosen functions. More specifically, we assume
that

n(x) =n,(x) + dn(x) =n,(x) + EaiU,.(x), (A5)

N
m(x) =m, (%) +Bm(x) =m,(x)+ DbV, (x), (A6)

where the V; are harmonic oscillator functions and
the U; are the derivatives of these functions. The
width and center of the harmonic oscillator func-
tions are chosen to localize them in the surface
region. The derivative functions are added to the
density since they preserve charge neutrality
while the harmonic oscillator functions themselves
are added to the magnetization to allow adjustment
of the surface magnetization. The self-consistency
condition now takes the form

n, (%) + ﬁ a;U,;(x)

=n2(x)+ fdx éAgr;;,(;nl), ]U(x')
bif ix 'GA%’(Z;’ Ly ), @
m, (%) + i b;Vi(x)

R Lo e Eg e

b f dx’ 536[72,(7’;'1; ]V(x') (A8)

By projecting these equations onto the first N
harmonic oscillator functions, we obtain a set

of 2N equations which may be solved for the ex-
pansion coefficients a; and b;. Knowing a; and b;,
we may now compute a very nearly self-consistent
result from Eqgs. (A5) and (A6).
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FIG. 1. Magnetic phase diagram for a HF gas. For
each r, <5.45 there is a critical field at which the rela-
tive magnetization jumps from some { <1to {=1. For
7, > 5.45 the HF gas is fully magnetized even in the ab-
sence of a polarizing field. A polarizing field of 0.01
Hartree or 0.27 eV corresponds to a magnetic field of
47 million G.
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FIG. 3. Magnetic phase diagram of the RPA gas. As
in the HF approximation, there is a critical field at
which the relative magnetization jumps from some { <1
toz =1,



