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Tricritical relaxation in an Ising-Glanber model with competing interactions*
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The tricritical relaxation in a three-dimensional kinetic Ising-Glauber model has been studied using a Monte
Carlo method. For T & T, all relaxation functions ~I)„~ decay as exp( —tie») with a single relaxation time
7'~z ——r —(T, —T) ~r and h, =y, =1 in agreement with the conventional theory of slowing down.

The static properties of magnetic models that
exhibit tricritical points are well understood, "
however, nothing is known about the dynamics of
these systems near T, either experimentally or
theoretically. Although the dynamics of several
other models have been studied' the reliability
of the results has not yet been ascertained. In
fact, experimental data' from light scattering by
'He-'He mixtuxes seem to disagree with the mode-
coupling theory. "All of these investigations of
tricritical dynamics' ' are concerned with systems
with certain conservation laws for energy, mass,
or momentum. The kinetic Ising-Glauber model
(which is appropriate for tricritical magnetic sys-
tems) possesses no conserved quantities and
therefore belongs to a different dynamic class.
No tricritical theory or experiment in the sense
of, e.g. , Refs. 3, 4, and 6 are available, more-
over, previous studies "of critical dynamics
have shown that conventional theories of critical
slowing down fail for a kinetic Ising model.

We have therefore carried out a Monte Carlo
simulation of a kinetic Ising-Glauber model (with
competing interactions) which is known' to possess
a tricritical point
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where J &0 and the spins 0„0&,0~=+1 are arrayed
on a 20 x20 @20 simple cubic lattice with periodic
boundary conditions. Previous Monte Carlo studies
of the static properties of this model have shown
that a tricritical point occurs for kT,/7= 6.10+0.05
and pH, /kT, = 0.90+ 0.01. These data also show
that for e, = l1 —T/T, l~ 10 ' no effects of finite size
are observable for a system of this size. In con-
trast to the studies of two-dimensional critical
dynamics, ' "'3 this investigation will produce re-
sults which can be compared with an &-expansion
renormalization-group treatment.
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where e, = !1—T/T, l. From conventional theory""
we would expect all the relaxation exponents 4„'~
to be identical s ' and equal to the static suscep-
tibility exponent y, . Near a simple critical point
in three dimensions the latter condition is not
valid 8Hlc e +~ &p.

A Markov chain of states was generated using
the usual Monte Carlo (MC) procedure. ""The
initial 3000 MC steps/spin were dropped in order
that quasiequilibrium be achieved. Averages over
the next 5000 to 10000 MC steps/spin were then
taken for determining the relaxation functions.
The error analysis was made according to the
prescription described by Ref. 16, replacing ex-
pectation values & A& by time averages &A&„. If
this is done in a straightforward manner, however,
the relaxation functions [Eq. (2)] will turn out to
be systematically smaller than the true relaxation
function P»(t). In fact, the estimate for P» ac-
tually becomes negative (in the case of a simple
exponential relaxation) at a time

t*= ~„,[ln(t, /~„, ) -ln2], (4)

where t* is smaller than the time interval t, used
for the averaging.

This problem will occur in all numerical calcu-
lations (e.g. , Monte Carlo, molecular dynamics)

We have investigated the kinetics of this model
by analyzing the equilibrium relaxation functions
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where A and 8 stand for staggered magnetization
m (order parameter), magnetization M, and en-
ergy E, respectively. Approaching the tricritical
point for T (T, along the path h = iJH/PT = 0.9 (which
Iles wholly within the tricritical region), we ex-
pect a divergence in the relaxation time v~
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of time-dependent quantities. We have attempted
to eliminate this error by using (A(t)B(t+ t,))„
instead of (A)„(B)„where t, »r» .This proce-
dure leads to increased error bars in the esti-
mates but eliminates the systematic error.

The Monte Carlo data were taken at several
temperatures near T, (0.013 &

I
1 —T/T, I

& 0.1);
0T, /J = 6.12 + 0.02. In the antiferromagnetic re-
gion P „„is obtained with better precision than the
other relaxation functions since (M) is small com-
pared to (m) and (E). For all temperatures Qa„
is well described by a simple exponential decay
with time. A log-log plot of the relaxation time
v» describing this decay is shown versus relative
temperature distance &, = I1 —T /T, I in Fig. 1. For
comparison an average relaxation time 7», as
determined from all other relaxation functions, is
shown along with (m)'/a&. The exponent &~„[see
Eq. (3)] for the magnetization-magnetization relax-
ation is found to be &„'„=0.98+0.10. In Fig. 2 we
show the temperature variation of the character-
istic relaxation times associated with the other re-
laxation functions. (Error bars are shown only
for ~; however, errors for the other v» are
comparable. ) The scatter in these data is con-
siderably larger than for v» owing to the neces-
sary subtractions in Eq. (2). Nonetheless, the
data are all consistent with a single exponent hav-
ing the classical value &» =4=1. Since y, =1,
this agrees with the results of conventional theory
of slowing down" which predicts that &=y. (This
result also is identical to the behavior predicted
by mean-field theory. ")

In addition to having the same relaxation expo-
nents, the self- and cross-correlations all appear
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FIG. 2. Inverse relaxation times ~~~ of auto- and
cross-correlations of the order parameter, energy,
and magnetization. All data are plotted on the same
scale. Solid line corresponds to conventional relaxa-
tion behavior t see Eq. (3)] with all C~~ and 7» identi-
cal and 4=—Agg=yg =1.
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FIG. 1. Inverse relaxation time T~~~ of the magne-
tization autooorrelation ve e, =

I 1 T/T, I
. Solid line-

corresponds to conventional relaxation behavior with

4 =&c ~

FIG. 3. Magnetization relaxation function vs scaled
time (using 4~zz ——1.0). Solid line has slope =1.5 cor-
responding to C =1.55 as deter~i~ed from Fig. 2 t see
Eq. (6)l.
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to have the same amplitudes C~ [see Eq. (3)], in
contrast to the differences found near an ordinary
critical point (see Ref. 11 and references contained
therein). The latter property can be understood if
one writes the relaxation function for ordinary
critical behavior as a sum of the exponentials"

(j) -kent4»=Z &»e

where the eigenvalues X,. are independent of the
particular type of correlation function (AB), while
the coefficients cy„"~ are not. Integration accord-
ing to Eq. (3}, in general, therefore gives differ-
ent amplitudes C» = ~» l e I for different correla-
tions. In the case of a simple exponential decay
the relaxation time is simply the inverse of the
eigenvalue 7'=A. ', independent of the choice of A
and B. This is in agreement with our MC calcu-
lations giving good evidence for the consistency
of our results (Figs. 1 and 2}. (Even though the
error bars are relatively large, there is no ob-
vious systematic deviation seen in the data points. )

The existence of a single classical relaxation be-
havior

(6)

is also clearly indicated by the simple logarithmic
plot of Q vs (t/r, )& shown in Fig. 3. (7'o is a scale
factor establishing 1 MC step/spin in actual time
units. ) We first note that all the points fall essen-
tially on a single curve. This curve is well-rep-
resented by a straight line thus confirming simple
exponential relaxation. We cannot, of course, ex-

elude the possibility that for &t &0.01 a different
relaxation with 4&y dominates the decay for large
t. As P»(t} changes by one order of magnitude,
however, there is no indication of any deviation
from the ~=y behavior over the times studied
(even at e, = 0.01). We therefore used a simple
exponential fit to the data evaluating ~», rather
than using some phenomenological extrapolation"
for carrying out the integration indicated in Eq.
(3).

In conclusion, we note that the passing from d
=4 (four dimensions) to d= 3 seems to have a
similar effect on both the dynamic as well as static
behavior' in that in both cases the properties
change over from nonclassical to classical (mean-
field-like). Logarithmic corrections have been
predicted" in the static critical properties in d =4
and tricritical properties in d =3. A renormaliza-
tion-group study" of critical dynamics in d =4 re-
vealed logarithmic corrections, and by analogy to
the static case we would expect similar correc-
tions in the d =3 tricritical dynamics. No such
corrections were observed (even for P») indi-
cating that if they exist the amplitudes must be
reasonably small. The limited accuracy available
even for relatively large values of t, makes the
observation of such corrections extremely difficult.
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