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Zero-temperature dielectric response of the charged Bose gas in a uiiiform magnetic field
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A closed-form expression for the dielectric function of a zero-temperature charged Bose gas in a uniform

magnetic field is obtained in the random-phase approximation. This dielectric function is used to explore the

dispersion relation for the frequencies of longitudinal oscillation of the gas as well as the form of the
electrostatic potential about a test charge in the gas.

I. INTRODUCTION

In an earlier paper, ' hereafter known as I, we

studied the dielectric response of the charged
Bose gas (CBG) in the random-phase approxima-
tion (RPA). In that paper we obtained forms for
the dispersion relation for the frequencies of
allowed longitudinal vibrations of the gas, and

also for the long-ranged electrostatic potential
about a test charge in the gas. In I we stated that
an interesting extension of the work presented
there would be to study the CBG in an external
magnetic fiel.d.

This is what we have done in this paper. Taking
the case of a uniform magnetic field, we investi-
gate the dielectric response of the CBQ in the
RPA. As in I, we specifically study the disper-
sion relation for the frequencies of longitudinal
vibr ation of the gas, as well as the potential about
a test charge in the gas. We do this explicitly
at zero temperature only, but set up the machinery
enabling the study of the response of the gas to
be done at all other temperatures.

We note that analogous studies have been made
of the charged Fermi gas (CFG), specifically
an electron gas, in an external. magnetic field. '
The CFG in a magnetic field exhibits the interest-
ing de Haas —van Alphen effect at low tempe»-
tures, and is also important in the study of trans-
port phenomena in metals. Analogously, the
CBG is important because it exhibits the Meis-
sner-Ochsenfeld effect at Low temperatures. This
has been shown in the case of the ideal CBG by
Schafroth, ' and for the interacting CBG by Fetter. '
As was pointed out by Schafroth, the CBG is there-
fore of importance as a model for a supercon-
ductor.

Furthermore, as well as its intrinsic interest
as an unsolved many-body problem, the CBQ is
also important because of its applicability to the
phenomena of pion condensation in neutron stars. "
The studies referred to in Refs. 5 and 6 are al. l
zero-magnetic-field treatments, but it is believed
that magnetic fields of significant strength exist

in neutron stars. Hence this paper, which studies
the CBG in a magnetic field beyond the Meissner-
Dchsenfeld effect, that is, in a magnetic field
strong enough to penetrate the gas, is of physical
inter est.

The CBQ in a uniform magnetic field has never
been studied at zero temperature before, although
the high-temperature class ical-Boltzmann-r egion
behavior has been investigated. " Das' has made
an attempt to extend the study of the gas into the
quantum-mechanical region, but his treatment
suffers from the following limitations. Das studied
the electrostatic potential about a test charge,
but his work is based on a semiclassical theory,
and he eventually takes a high-temperature limit
to obtain an asymptotic expansion for the screen-
ing length. Therefore, all he is doing, in effect,
is obtaining quantum corrections to the classical
r'esult. Furthermore, Das has linearized his
equations to obtain a spherically symmetric form
of the electrostatic potential. about the test charge.
This cannot be correct because the introduction
of a magnetic field into the gas imposes a neces-
sary spatial anisotropy on the system. This is
clearl. y demonstrated in Sec. V of this paper.

In this paper we study the dielectric response
of the CBG in a uniform magnetic field when the
gas is in the total quantum region (zero tempera-
ture). This is the first time the quantum effects,
%'hich dominate at low temperatures, have been
studied for the CBQ in a magnetic field.

In Sec. II of the paper, we set up the form of
the dielectric tensor in the RPA for the gas, and
in Sec. III we explicitly give the zero-tempera-
ture dielectric function. In Sec. IV we investigate
the dispersion relation for the frequencies of
longitudinal oscillation of the gas, and in Sec. V
we l.ook at the electrostatic potential about a test
charge. In Sec. VI we discuss the results.

II. DIELECTRIC TENSOR

Consider a gas of N identical spinless bosons
with mass m and charge e in a, box of volume 0,
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together with a background of stationary particles
of opposite charge to preserve charge neutrality,
and assume the usual. periodic boundary conditions.
Consider the gas to be in a steady-state electro-
magnetic field specified by the potentials A, (x)
and $0(x), the vector and scalar potentials, re-
spectively. By considering small perturbations
on these potential. s, Harris' is able to use a
second quantized formalism in the RPA to obtain
an expression for the Fourier-transformed con-
ductivity tensor rr(q, q', ~) of the gas. We note,
as we did in I, that the RPA is valid in the high-
density limit. Defining 5(q, q', m) by the equation

(J,(q, ~)&=+&(q, q', ~) E,(q', ~),

where E, is the perturbation of the electric field
and ( J,) is the ensemble average of the current
density operator, he finds

ie' E,(b) —E,(b')
&(q~ q~~ ~) = ~ 2g k

x(6'(ve 'q "+e '~'"
I

(6[ eiq'' x) 6 )(q')'

+ (6[ v&$q'' x~ ka&

where [ 6& represents an eigenstate of a boson
in the unperturbed gas, E,(6) is the frequency
distribution of bosons in the eigenstate

~ 6&, and

&, is the energy eigenvalue of a boson in the
eigenstate ~ 6&. I is the second-order identity
tensor, u is the frequency of a small. oscillation
of the gas about equilibrium, q is a Fourier-
transform parameter which represents the wave
number of the frequency ~, and v = (I/m) [p
—(e/c) A, ] is the velocity operator.

We note that, as found in I, to eliminate singu-
larities in the conductivity tensor the Landau
prescriptionxx needs to be taken, and (d in the
denominator of Eq. (1) replaced by w +iy where
y-0+. However, we will eventually be working
only at zero temperature (T =0), and as the sing-
ul.arity does not occur at this temperature we will
work without introducing iy.

We are interested in the special case where
the gas is in a uniform magnetic field. Thus we
set $, =0, and choose A, (x) =(-By, 0, 0), which
means the gas is in a uniform magnetic field of
magnitude B and direction parallel to the z axis.
We note that this ehoiee of vector potential satis-
fies the Coulomb gauge condition, & A =0, which
is inherent in Harris's derivation.

The eigenfunetions and energy eigenvatues are
of course well known for this system, and we
have, "

( [bx&-=(x~ kn„k, ) =- }f„...,(x)

ei(~A„+gag) ex
~~&

y+ & B ~ & y+

= h'k 1
E~ =E„»» = ' +Ifu&s(n+»),

where es =
~ e( I3/mc is the cyclotron frequency, o's =e&/rnc =~s sgn(e), &, ts a Hermt«polynomial

kk„and Sk, are the eigenvalues of the operators P„, and P, and n =0, 1, 2, 3, . . . .
We can now evaluate the matrix elements appearing in Eq. (1}. This is done in Appendix A. It is clear

that when the results of Eqs. (A8)-(A10} are used in Eq. (1), we will obtain the following structure for
o(q, q', ~):

o(q, q, (u) = ~ ~ ~ G(n, n, k„, k„k, , k„qx, qyt q»l qx& qyi q» I 6» I»„+» 6», ,»'+»»„,k '+»», ,k'+»,' ~

n, n' k,k' kg, k'

We may use the properties of the Kronecker 6 function to rearrange thus,

&(&b q~
~ &) = Q G(n~ " i "x i kx —qx ~ k»~ k» —q» ~ qx ~ qx ~ q» ~ qx ~ q» ~ q» }6»,.»,' 6», .»,' ~

nsnr ~ g

H(n, n', k„,k„q„q„q,, q', )6, , 6,
n, nr

If the plasma is uniform in space, then Eo(n, k„, k, ) =ED(n, k, ), and since &„»» is also independent
of k„, it is clear that the only k„dependence in 8 is that occurring in the matrix elements, and by in-
spection of Eqs. (A8)-(A10) we can see that
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The sum on k„may now be done, and using the fact that k, is quantized by periodic boundary conditions,

together with the prescription valid in the limit 0-~~

it is a simple matter to show,

exp —a- ' (q'„—q) =
x 8

The obtaining of this final 6 function enables us to write,

o(q, q', ~) =o(q, ~)6-, ,-,

where, after collecting all the terms and making use of Eq. (A7) we have, expressing the result in matrix

fol m,

4sk~Q'~' 2m~ " ' ~ ~ h&u+gu& (n' —n)+(h'q /2m)(q —2k )
(4)

—(2k, —q, ) "E*„,

S(d ~ Pl +1 ~ g~ &u+(us(n' -n)+ —(q'+q', —2k, q, ) "P„,+sgn(e)

@(d~ '~'- n'+I &'„n'
(a+&us(n' —n)+ (q'+q', —2)t, q, ) "P„,+ j

I
2 l. ~+~s(n'-"))qs+

2 (/x+/y)(2&g —q, ) "+„
2ln

and 'Jl„., is defined by Eq. (A6) in Appendix A. M, is the transpose of M, .
Equation (4) is the result in the RPA for the conductivity tensor where all that remains to be determined

is the distribution function E,(n, 0, ). As was done in I, E,(n, )t, ) may be approximated by the distribution
function of an ideal gas of charged bosons in a magentic field. This procedure is consistent with the RPA
and we in fact make this substitution in Sec. III.

We note that in Eq. (4) we not only have obtained the conductivity tensor but also the dielectric tensor
e(qu), ,since e(q, &u) and o(q, e) are connected by the equation,

Z(q, ~) =f + (4vi/(u)o(q(u). ,

III. DIELECTRIC FUNCTION

As in the earlier paper we wish to l.ook at the longitudinal. properties of the Bose gas. Yo do this we
investigate the dielectric function &(q, ~) (also called the dielectric constant or dielectric-response func-
tion) which is given in terms of the dielectric tensor by

By contracting the tensor in this way, the complexity inherent in Eq. (4) is vastly reduced. Substituting
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Eqs. (4) and (5) into Eq. (6}, and making use of Eq. (A7) yields the following, fairly manageable result
for e(q, (d),

e( )=1+ 2me ~s
(

2 2) ~ k(q)22(n' n)+(k'q /2m)(q 2k )
k q'll' '~ 2m(2)s " ' ~, k&u+k(q)s(n' —n)+(kmq, /2m)(q, —2k, )

x[Fo(n', k, —q, ) —Fo(n, k, )]"F„,"Fq:,

Breaking the doubl. e sum on n and n' into three sums, namely n =n', n& n', and n& n' yields

2&le (d I' 2 2k
(2, )=I~, ,'„', -'$ I (2, 2™(

)(
'

)
Iz(, q. -q. )-z(, 2.)lf('„(*)1'

g

(I+ 1)k(de + (52q, /2m)(q, —2k, ) ml
~0 ~2= o k (d +(I + I) k(de +( II q, /2m) (q, —2k, ) (m + I + I) l

xx'"[Fo(m+ I+1, k, —q, ) —Fo(m, k, )] [L'„+'(x))z

—(I+ 1)g(2)s+ (I q, /2m)(q, —2k, ) m)
~0 )= () k(d —(I + l)a(2)s + (W q, /2m) (q, —2k, ) (m + I + 1)l

where
x x"'[Fo(m, k, —q, ) —Fo(m + I+ 1, k, )] [ I.'+'(x)]2 (8)

x= (q, +q'„).
B

As mentioned in Sec. II, we now take for F,(n, k, ) the distribution function of ideal gas of charged bosons
in a magnetic field. This means"

j g 2/2 — -1
F,(n, k, ) = z 'exp K(de(n+ z)+ ' —1

where z is the fugacity of the gas. As was done in I, e(q, (d} could be investigated at all temperatures,
using a knowledge of ~ at all temperatures. However, in this paper we wil. l. concern ourselves only with
the behavior of the gas at T=O. At T=O all the bosons in a gas of ideal bosons will be in the lowest energy
level. That is, at T=O,

Fo(n, k, ) = fq (2' /m(2)sQ'~')6„o|)),

where the factor 2'/m(dsII'(' arises from the degeneracy in k, of the energy levels of the gas. Sub-
stituting Eq. (9) into Eq. (8) yields

1 1
e(q, &u, T = 0) = 1—,~ e * — ' + I K (ds 2 2 +qq', —,I! 2m II lll ~2'q,')2 If —III —2'2,')2m)'

(9)

(10)

where &u,
' =4xe'N/mA istheplasma frequency of the gas. Equation (10) is a closed-form expression in the

RPA, for the T =0 dielectric function of the CBG in an external magnetic field B. To the best of the au-
thors's knowledge, this is anew result that has not before been displayed. Equation (10) is to be compared
with Eq. (7) of I, which gives the result for e(q, (d, T =0) for B=0. Namely,

&(q, &u, T = 0, B = 0) = 1—

It is not at all clear that Eq. (10) will reduce to Eq. (11}in the limit B=0. In fact, Eq. (10) gives
&(q, ~, T = 0) in a form which is not at all suitable for looking at the case of weak B, in which we are in-
terested. In Appendix B we develop an expansion which enables us to recast Eq. (10) into a more useful
form. Using the results of Eqs. (B2) and (83) in Eq. (10}yields

2 00 p

(d' 5'q'/4m—2 kq' ~-o 2m * ' Q„= ( ok(q2)/2m~- n~g ((d —kq2/2m) +'

(-1)"' ( 1))I+2

g~-0 ((2) +kq 2/2m + n(de) ((2) +kq~/2m) ",'
(12)
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Equation (12) is our final result for the dielec-
tric function at T=O. e(q, &u, T=O) is now in a
form which is useful for looking at both the small
B and small q limits. From Eq. (12) we can see
that in the limit B-0 (&ue -0) the dielectric func-
tion reduces to the required form for B=O, as
given in Eq. (11).

IV. DISPERSION RELATION

The dielectric function can be used to give the
dispersion relation for the frequencies co of lon-
gitudinal density fluctuations in the gas. The
dispersion relation at T=O is given by the so-
lution to the equation,

e(q, &u, T=0) =0.

As noted in I, this equation can be solved exactly
for B=0 to give the Foldy" result,

(iv) — (q!+q', )
1 k , (d 1 kq'

cop 2m ' '' +p (dp 2m

g'2 4

(d = (d + + (18)

Equations (15) and (18) show, as expected, that
in the limit of very weak magnetic fields the two
leading order terms in the T =0 dispersion re-
lation for the frequency ~ are the same as the
B=0 result for the dispersion relations, namely
Eq. (14). Eqs. (16) and (17) show how the disper-
sion relation is modified as the magnetic field
becomes stronger.

V. ELECTROSTATIC POTENTIAL ABOUT A TEST CHARGE

As was done in I, the electrostatic potential
V(r) about a test charge Q immersed in the gas
may be investigated by making use of the zero-
frequency dielectric function (ZFDF). That is,

u)' = (u,'+ h 'q '/4m'. (14) V(r) = ~ d'qe'~ ' '
V(q) (19)

52
~2 ~2+ (~2+~2)2+ (15)

(!i)— « — (q2 + q2 )« ~« ]1 kq', 1
(dp 2m (dp 2m " '

(dp

For B& 0 the situation is, of course, more
complicated but we can obtain asymptotic solu-
tions for (d as was done in I. Thatis, weloo»t
the long-wavelength q-0 limit. In the earlier
paper, the gas was isotropic and there was no
need to consider the relative sizes of the com-
ponents of q when taking the q- 0 limit. However,
in this paper, the presence of the magnetic field
necessarily demands an anisotropy in the gas, and

this means our sot.ution for w will not only depend
on the relative size of the wave number q
(inkq /2m) compared to that of B (in &us), but
also on the relative size of the component of q
parallel to the magnetic field compared to the
component perpendicular to the magnetic field.
All of this is clear when one looks at the form of
Eq. (12).

With the various orderings of the three small
parameters &us, hq', /2m, (h/2m)(q„'+q', ), we are
able to obtain the following asymptotic solution
for cv,

1kq, +1k
(i) — ', —'« — (e.'+q', )«1:2m' ep up 2m

where

V(q) =4vQ/q2e(q, &u =0).

From Eq. (10) the T =0 ZFDF is given by,

(20)

e(q, u = 0, T = 0)

2m(u2
" &' 1=1+,' e " (21)Bq', =, l! 8'q', /2m+ fh &u s

Unfortunately, when Eqs. (20) and (21) are sub-
stituted into Eq. (19), the inherent asymmetry of
our gas induced, of course, by the presence of
the B field means that the integral obtained which
determines V(r) is extremely complex, and the
authors have not been able to solve it in the gen-
eral. anisotropic three-dimensional case.

Although we cannot obtain forms for the el.ec-
trostatic potential about a test charge in a three-
dimensional CBG at T = 0 in a magnetic field be-
cause of the anisotropy of such a system, we may,
however, exploit this anisotropy and obtain exact
results in two extreme anisotropic cases. Case
A. looks at the gas when its response is primarily
perpendicular to the magnetic field, which is a
two-dimensional situation. Case B deals with
the gas when its response is primarily parallel
to the magnetic field, which is a one-dimensional
situation. Case A is characterized by the ordering
of the small parameters,

Cd =(d +(d + '
p B

1 5 ~ 1 hq2 co
(& u) — (q 2 + q

2
)« — *« a « ] .

(dp 2m " '
(dp 2m

k'q 4 q'+ q'
CU = (d +p 4 2 B q2+ (d -- +''''

(16)

(17)

1 kq2 (d 1', ~« —(q2+q'„)«1,
(dp 2m (dp (dp,

associated with Eq. (15). This ordering leads
to the dispersion relation

S2
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which looks like a bvo-dimensional version of
Eq. (14), which is the three-dimensional B=0
result. Similarly, case B is characterized by
the ordering,

e(q, ~ =0, T=0) =1+4m'&v~2/h'q',

and then substituting this into Eqs. (19) and (20).
The integrals in Egs. (22), (24}, and (26) may

be done and %'e find
j. 5 2 2 hald

(qR+qm } 8 (( q2 ((1

associated with Eq. (18). This ordering leads
to the dispersion x elation

V (r) = —cos

() wag (A )
. {A)

(28)

vrhich looks like a one-dimensional version of
Eq. (14).

Thus for case A it seems reasonable to in-
vestigate the two-dimensional version of Eq. (19),

(30}

where A =(4m'a&~2/if')'~' and ker(x) is a Thomson
function.

%e norv take the smal. l.- and lax'ge-r limits of
Egs. (28}-(30)and we find

e(q, ro =0, T=0) =1+4m'(up'/g'q', q=(q,'+q'„)'~'

lim V,(r}=Q/&,
»~0

lim V~(r) = —2Q ln(Ar),

lim V, (r) =const —2rgr,

(31)

(32)

which is what we find when we solve Eq. (21) in
the limit,

ar e-" ~~2
l.im V,(r) =gens ~W2 r (34)

(q'+q')«11 kg 4P

2PPl Ap 2'
to low'est order in an expansion in terms of these
parameters .

Similarly, for case B me write down the one-
dimens ional integral

e(j, &u =0, T=o) =1+4m'&u~2/g'q', q=q, (25)

which is what Ec[. (21) yields in the limit

to lowest ox'der in a.n expansion in terms of these
parameters.

For comparison with Egs. (22) and (24) we write
down»

] q. , 4m@

(2w)' q'(1+4m'(up/q }'

@which is the equation in the RPA at T =0 for the
potential about a test charge Q in a three-dimen-
sional 8 =0 CBG. It is obtained by putting e =0
in Eq. (11) to obtain

2m '~' Wr e ""~~
lim V, (r) =Q

& cos
~2 +~, , (35)

lim V, (r) =Q cos -singo~2 A.r, Ar
y~ eo

(36}

Vie nova note the following interesting results.
Equations (31}-(33)give exactly the forms of the
potential about a free charge in space of the ap-
propriate dimension. That is, if Gauss's law is
used to obtain the fox'm of the electric field about
a free charge in thxee, two, and one dimensions,
this electric field mill. yield the potentials of Eqs.
(31)-(33). This is just what we would expect if
the V~(r} were in fact the potentials about a charge
Q 1Q a d-dlmenslonal + = 0 CBG. That 1s» 1Q the
r-0 limit the scx"eening due to the Bose gas will
have no effect on the potential, about the test chax'ge
and the charge thus behaves as a bare charge.

Also interesting is the fact that in the large
r bmit the functions V~(r) are damped as
e "~ ~/ri ~~~~. This is the Grnstein-Eernicke
fox'm of the pair correlation function in the lax'ge-
r l.imit. In the HPA, the a,symptotic form of the
potential in d-dimensions in proportional to the
pair correlation function, vrhich has just this
form. Therefore, if V~(r} were the true potentials
in d dimensions, then in Eqs. (34)-(36) we have
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obtained the expected asymptotic form of the
potential together mith oscillatory factors char-
acteristic of the Bose condensate at T =0.

To understand exactly what we have done in

obtaining Eels. (22)-(25), and to know just what

these equations mean, we note the following. If
one takes 4vQ/q' as the Fourier transform of
the "Coulomb" potential in both two and one di-
mensions, and then uses this in a Harris" RPA
treatment (refer I) of the B=0 CBG, one would
obtain for the T=0 ZFDF exactly

&(q, ~ =0, T =0) =1+A'/q'

where A is some constant. [Compare this result
with Ecl. (2'7) which is the corresponding result
for three dimensions. ] Using the 4vQ/q2 propa-
gator implies

V~(g) = 4vQ/q2e(q, a=0, T=0), (38)

where

V, (r)=, d'qe'"' '
V, {g)

2w

is the potential about a test charge Q in the gas
and d=2, 1.

Equations {37)-(39)are exactly Eqs. (22)-(25).
This is just what we would expect because, first,
Eqs. (23) and (25) are obtained from a ZFDF
[Eq. (21)] derived from a RPA treatment in con-
junction with a 4vQ/q2 propagator. {That is, in

Sec. II we have a three-dimensional HPA treat-
ment in which has been used 4vQ/q' which is the
Fourier transform of the three-dimensional Q/&
Coulomb potential. ) This ZFDF of Eq. (21) has
then been solved in the two extreme anisotropic
cases where Eqs. (23) and (25) give the appropri-
ate asymptotic expansions for each of these two
cases with +s/&u~ correction terms and either
q,'/(q,'+q', ) or (q„'+q', )/q', correction terms
dropped off. Therefore, Eqs. (23) and (25) are
the same as the B=0 reduced-dimension results
of Eq. (37). Secondly, in Eqs. (22) and (24) we
have again used a 4vQ/q' propagator just as we
did in Eg. (38).

So, in effect, Egs. (22)-(25) are the equations
for the potential about a test charge Q in a two-
and one-dimensional J3=0 CBG where we assume
a 4vQ/q' propagator in an RPA treatment.

However, this is unfortunately not the correct
way to tackle the exact two- and one-dimensional
CBG problems. To do these correctly one must
use the correct Fourier transform of the potentials
in Eqs. (32) and (33), which are the "Coulomb*'
potentials in two and one dimensions, respectively.
These Fourier transforms are not 4vQ/q2 be-
cause although the transforms are each dimen-

sionally of the form Q/q2, the coefficient is di-
vergent in each case. This means that 4vQ/
q'e(q, ~ =0) is not the correct form of V2,,(q)
and that also e(q, ~ = 0, T = 0) = 1+A'/q' is not the
correct exact expression for the Z FDF of such
a gas.

Therefore, if the two- and one-dimensional
8 =0 charged Bose gases were solved exactly,
we would not expect Eqs. (29) and (30) to be the

expressions obtained for the potential about a test
charge in each of the gases. However, as noted

before, the r-~ limits of these two equations
give the expected Ornstein-Zernicke damping
form together with a characteristic oscillatory
factor and it therefore seems reasonable to think
that Eqs. (35) and (36) may be the correct form
of the large-r limits of the true potential about
a test charge in each of the gases. That is, me

might expect that in the q-0 limit (which cor-
responds to large &) the q's in the correct ex-
pression for V, ,(q) will conspire to be of the
same form as that given by 4vQ/q'(I+A'/q') in

the small-q limit. The solutions to the purely
two- and one-dimensional Bose gases remain
unspecified. It is hoped that the above discussion
sheds some light on these problems.

Thus, while we have not been able to produce
the general anisotropic screening potential for
the three-dimensional CBG in an external mag-
netic field, certain extreme anisotropic limits
of this system have given detailed insight into
some effective lower-dimensional. charged Bose
gases. These gases are, as seen above, natural
consequences of the extreme anisotropy in the
three-dimensional magnetic CBG system.

VI. MSCUSSION

In this paper we have obtained a result [ Eq.
(4)] in the RPA for the conductivity tensor of a
CBG in a magnetic field. This tensor can be used
as a means to study both the longitudinal and
transverse responses of the gas at all tempera-
tures. In particular, in this paper we have ad-
dressed ourselves to the problem of the zero-
temperature longitudinal response of the gas and
have used the conductivity tensor of Eq. (4) to
obtain a closed-form expression, Eq. (10), for the
T =0 dielectric function of the gas. This is a new

result and has not been given before. We note
that, as expected, our dielectric function reduces
in the B=0 limit to the form given in I where the
authors studied, also in the RPA, the field-free
CBG.

The dielectric function has then been used to
obtain, in the case of a weak magnetic field, the
dispersion relation for the gas in various l.imits.
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These limits concern the relative size of the
component, of the wave vector q parallel. to the
magnetic field to that component perpendicular,
and the fact that we are forced to obtain solutions
in this way is indicative of the inherent anisot-
ropy of the gas.

This anisotropy is furthex' in evidence in Sec. V
of the paper where we obtain the form of the elec-
trostatic potential. about a test charge in the gas.
Whil. e we have not been able to obtain a form fox
this potential for the general, three-dimensional.
gas, we have been able to obtain insight into the
forms of the screened potentials in certain ex-
treme anisotropic limits. In these limits, the
three-dimensional. system behaves as effective
lower-dimensional charged Bose gases.

Finally, we remark that the CBG in a magnetic
field has been studied ln the ideal Bose gas case
by 8chafroth, 3 and in the interacting Bose gas
case by Fetter. ~ Both these authors used linear-
response theory to show the existence of a Meis-
sner-Ochsenfeld effect at zero temperature and
slightly above zero. Because the Meissner-
Ochsenfeld effect has been exhibited for both in-
teracting and ideal. charged Bose gases, in this
papex the authoxs have not concerned themselves
with this issue but deal. with the situation where
the appl. ied magnetic field H is strong enough to
penetx'ate the gas and set up a uniform magnetic
fieM 8 inside the gas. This situation has not been
investigated before for the CBG, although such

studies have been caxried out for the electron
gas, as mentioned in Sec. I. %e have worked
exclusively at T =0 where the analysis simplifies
somewhat because of the complete Bose conden-
sate. However, as was done in I for the B=o
CBG, the work may be extended to T & 0 and as
mentioned above, in this papex we have set out
the machinery to enable this to be done. The
discussion of this problem is left for future study.
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APPENDIX A

!vve need 1o evaluate matrix elements of the
form ( 5[ e" ' "i b'). We do this as follows,

( bi&i&I' x
if t} (n l y i

ie'qxi ni

(Al)

p Q1/3/2

I d 8 i(k' -k„+q„}x
X

Q1/3/2
d e j(k+-kz+e }c

7

Because we have imposed pex iodic boundary conditions, I„and I, can be simply evaluated to yield,

Ix ~ ~k ik'+q& s

~kg, kg+a g v

1/3

where & 8 is the Kronecker delta function. %e may use these resul. ts to replace 0„' by &„-q„ in Eq.
(A2). Thus,

(A3)

(A4)
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where we have allowed 0-~ in the limits of integration.
If we now make the change of variable,

a ~/2 I-
y = f — [k, —~q, —i~ q„sgn(e)],

8 B

we obtain,
1/2

()/ «««~« '( ),
««« — [-'(«.* ~ «l) ~ ((«.. «. --*'«. «, )«««( )))

1/2
x

~

u -"H„~+-.' [ q„sgn(e)+iq, ] H„ f- [q, sgn{e) —iq, ]
PPl (dg 2 m~,

The integrai in Eq. (A2) may be done" to give the following result for I, :

&„= „„,"«'„,«««[!(«*,+«!)«(«,«. -l«. «„)«««( )I),PPl SPY

(A5)

2)) s) )l I /2 @ ()«)) )/2
"z„,= „" [«.««(«) ~ «.I" " &."" «(«"«l)) "«'-"

PFL

~ ~
2' +~ g/g g (n'-n) /2

[ —«. ««(«)+(«]"' '«.".
"' «(«!+«!))B PPg

snd L;8 (x) is a Laguerre polynomial.
%'e note at this stage that a very useful recurrence relation,

+I + j 1/2 pg([' Lf 2 pn /
[q, sgn(e)+iq„) "E„.~+ — [q, sgn(e) —iq, ] "F„., =

g (n —s')&«&s — (q, +qa) "E„.
(A7)

may be derived from the two recurrent relations for the Lsguerre polynomials, "namely; xL„"(x)
=(n+a 1)+L,„( )-x(n+ l)L„„(x)and "L„'( )x= f, „(x)—f "„,{x).

Substituting Eqs. (A3), (A4), and (A6) into Eq. (Al) gives the required matrix element:

& hI e' " "I h'
&

=
& n, )t. , &. (

e" ' "
I
n', &.', 4&

(A8)= "E„exp — & q„'+q', +i q„k„—&q„q, sgn e 5& ~.„5~ ~ +, .

We also need to evaluate matrix elements of the form & b( e'q' "
v~ f&'&. We do this by breaking up v into

its components. Now,

(«I«'"'"«I«'&=&«I«'"'" —(«. —,A)I«')—
X e . +gQg

kk„'
Jf d xg+(, (x)e' " yo(s + g[, «(x).

By using the same change of variable as for ( f)( e'~ '
"~ 5'& together with the recurrence relation for Her-

mite polynomials, "xH„(x) = —,H„„(x)+nH„,(x), the above integral can be evaluated to give,

( h) e""v„)h'& =
& n, u„, u. )

e" ' "~, [ s', /,', a',
&

exp — 4 q~+qq +& qy~„- ~q„q~ sgn e 5g @+~ 5~ ~i+q

d3~~ x gf q ~ x
~ ~

l fPl 8'$
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This integral can be done as for (b[ e'q '
"~ b') with the aid of another recurrence relation for Hermite

polynomials, "namely, dH„/dx = 2nH„, (x). We obtain

&bJe""v„[b'&=&n, b„b, [e'&'"u, [n', b,', b'.
&

X exp g Q'»+ tjf y +g gy Q» gtf» gy sgn 8 5p pv+q 5g

kg'
d xg x 8 /~~X

= —(}.', —q, &" F„,exy — [-,(0', +q'„&+}(q„}t,——,q, q, }s}}n(e&[)}&~~„5. ..,.
We write the result for (b(e'q "v[ b'& in matrix form,

& n, )t, , )t, i
e" ' "v i n', b,', )t', ) =

h—(b, —q, ) "E„

xexp g g»+Q~ +$ gyg» —gg~g» sgn 8 5g ~~~q [5~

The final type of matrix element we require is of the form & bl «'q ' "I b'&. Using the pro duct rule for
derivatives @re readily obtain,

&b(ve" "[b'&= q&b[e""[b'&+{b[e[q'"vjb'&

Noir„

(10) we have forms like

x'

,-0 l t a+bi '

8
x' 1 - x'

(tI+bl )t dg... ll a+el, , lt

a&0, 6&0

~0

i=o &l &+&~ & ~0

B(p+ I, .a/b),bpo Pl

where B(x, y) is the beta function. " Using II(x, y)
= I'(x)I'(y)/I'(x+y) where I'(x) is the gamma func-
tion, "and also 1 (x+1)=xI'(x) we find

8 —8 N
0 0 l 0ll

e "exp(xe ")dk.

Making the change of variable s= j.-e ~' yields

" x' 1
" (-bx)'

, 1! a+bi =, g'„=, (&+nb)

The right-hand side of Eq. (Bl) is in qut«a
useful form but ere vrill find it useful to add and
subtract a term to give,
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x'

, 0 &t ~+~~

(S2)
This result has been derived for a&O, b&0 but

we may analytically continue into the region of
convergence of the right hand side of Eq. (B2),

which is all a and all b. So Eg. (B2) is valid for
al. l. a and b.

ln Eq. (10) we also have forms like

x~

a+6) '

It is a simple matter to show,

x' 1 1 a „ " x'e-"g — =---e-"P— — . (Bs)
, OHa+bl 6 h, oil a+bL'
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