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Critical dynamics of inhomogeneous superconducting films*
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The Gaussian-random model for the critical dynamics in inhomogeneous superconducting films is augmented

by in~1. ding the quartic interaction term in the free-energy functional. Within the Hartree approximation a
self-consistent calculation of the order-parameter relaxation rate I is presented. The temperature dependence

of I exhibits a pronounced change for various values of the Ginzburg critical width. A comparison with an

experiment on Al-A1, 03-Pb junction is presented and the validity of the Gaussian-random model for this

specific experiment is demonstrated.

I. INTRODUCTION

In recent years inhomogeneous superconducting
films are becoming the subject of increasing in-
terest from both theoretical' ' and experimental' '
points of view.

A suitable starting point for studying the static
properties of an inhomogeneous superconducting
film is a generalization of the usual Ginzburg-
Landau free-energy functional which takes into ac-
count local fluctuations of the BCS coupling
strength due to the structural inhomogeneities of
the film:

F(g) =~ ~x'[A(x)I&I'+~aBI&l'+CIV&l'] (l.l)
where iIt(x} is the order parameter, d is the thick-
ness of the film, A(x) =A, +6A(x), 6A(x) being pro-
portional to the local fluctuations of T„A,=N, (T/
T„—1) = N, e, B = 0.106NQT,'„C=N, )(0)', where
$(0} is the temperature-independent correlation
length in a homogeneous film, a,nd N, is the bulk
density of states at the Fermi level.

Of particular interest, connected with the dynam-
ics of the order parameter, is the experiment of
Anderson et al. ,

' in which a nonlinear temperature
dependence of the relaxation rate 1" was found in
contradiction with what one expects from a theory
of classical slowing down. ' The first explanation
of such nonlinear temperature dependence was
given in Ref. 3, using a generalization of Eq. (1.1)
to a time-dependent order parameter in the Gaus-
sian approximation [quartic term in Eq. (1.1) ne-
glected] .

The purpose of the present payer is to investi-
gate the role of the quartic term on the critical
dynamics within the Hartree approximation with
the emphasis on detailed comparison with the
above-mentioned experiment. Moreover, our cal-
culations enable us to predict the degree of the
nonlinearity of I' as a function of the Ginzburg

critical width of the film. Such nonlinearities
could be verified by experiments on films with

proper mean-free path l and film thickness d.

II. HARTREE-RANDOM MODEL

Generalizing the phenomenological theory of
Shapero et al. ' to time-dependent susceptibility
)((x, x', t), we have, in the Hartree approximation

1= —Ty,6(x - x')5(t), (2.1)

G(x —x', f) =(X(x, x', t))„ (2.2)

which obeys the diagrammatic equation in Fig. 1. In
Fig. 1, the full thin lines represent the dynamic
susceptibility of a homogeneous superconductor,
which in the Gaussian model (B =0; A =A,) is given
by

Cd 2 Ao
T C yoC

(2.3}

The full dynamic susceptibility [Fourier trans-
form of Eq. (2.2)] is given by

G '(q, ~) =G. '(q, ~)+E(q, ~), (2.4)

where the self-energy Z(q, &u) is, according to Fig.
1,

Z(q, ~) = —BG(x=x', f =0)

2„,s(q - q')G(q', ~).d (2.5)

where y, = 8T,JN v

Solving Eq. (2.1) for lt(x, x', t), treating 5A(x) as
a small perturbation, and configurationally averag-
ing lt(x, x', t), we define an averaged translational
invariant G(x —x', t) as
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I IG. 1. Diagrammatic Dyson-type equation for the
configurational-averaged dynamic susceptibility G, in
Hartree-random model.

In Eq. (2.5), S(q) =S(q)v(q)', where S(q) is the
Fourier transform of the correlation function of
6A(x),

{6&(x)W(x')).=N,'({6T.')/T.'.) e~(-a'@-x'i'),

(2.6)

and v(q) represents the screening of 6A(x) fluctua-
tions due to the quartic term. In two dimensions,
the expression for v(q) is given by'

T u[ In(q/2«+ [1 + (q/2«) '] '~'}

T «'&(0)' (q /2«)[l +(q/2«)']'i'

(2. 1)

In Eq. (2.V), a[ =0.106/4«Iq, d[((0)]' T„ is related to
the Ginzburg critical width, 'and «(T) is the tem-
perature-dependent inverse correlation length de-
fined by

(2.8)

Approximating Z(q', ~) by Z(q =0, ~) in the expres-
sion of G(q', &u) inside the integral of Eq. (2.5), we
obtain the following self-consistent equation for
the zero-momentum self-energy:

Z(O ~) =(d/T)BG(x=- f=O) -—"Iq2
' ~'
Teo ~ 0 (Cd/T)(q' +'«f&u/y, c-) Z+(0, (u)

' (2.9)

Z(0, (o) =Z(0, (u) —Z(0, 0). (2.10) Pxj Q(1 +Q )

G(x=x' f=0) = G(q o)
2m

=(T/4vCd) ln(l+q'/«'), (2.11)

where q n is a Debye-like cutoff v/a, with a equal
to the forces range ((0). Letting + =0 in Eq. (2.9),
and again using Eq. (2.8), we obtain the self-con-
sistent equation for the dimensionless quantity
x =«(T)g(0),"

X' = e + T/T„a In(I+q', [t{0)]'/X']

-(r,jr, ) [e"E,(Y) -f.(Y)], (2.12)

Using Eqs. (2.4) and (2.8), we calculate the quan-

tity G(x =x', f =0) as follows:

Xo' =e —(re,)eroE, (Yo); Yo =Xg/r, . (2.16)

During the numerical process of solving the self-
consistent equation (2.12) for X, we perform a
numerical calculation of the integral f,(Y), which
represents the screening correction due to the
quartic term.

m. ORDER-PARAMETER RELAXATiON RATE

s = (z/4Y)'~'. (2.15)

Equations (2.12)-(2.15) define the self-consistent
Hartree-random(HR) model.

The Gaussian-random(GR) model approximation
follows from Eqs. (2.12), (2.14), and (2.15), by
putting sv = 0. The resulting self-consistent equa-
tion for X in GR model takes the form

where the parameters t', and r, are defined as fol-

lowss:

The HH-model expression for the relaxation
time v is calculated using the formula"

r, =4+'[~(0)]'

r, =(6T,')/T,', .

(2.13)

G(0, (o) —G(0, 0)
I(uG(0, 0)

This expression, after some rearrangements,
takes the form

The expression for the quantity 1,(Y) is given by
the i.ntegral GO 0 1- . ' . (3.2

"e'ds 1

z ~ F [1 II,(*, P)] ') '

where Y=X'/r, and'

(2.14)
The first factor on the right-hand side of the Eq.
(3.2) represents the conventional slowing down

7~„, and is proportional via G(0, 0) [see Eq. (2.4)]
to X '=[«(T)$(0)] '. With the remark that aZ(0, [L[)/
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S((I =SZ(0, ((I)/8((I, we perfol'lll tile del'lvRtlve of bo'th

sides of the self-consistent equation (2.9) for
Z(0, (d). Taking the limit ((I-O, we obtain, after
a slight reaxrangement, the following expression
for the relaxation rate I'=7' ':

where the expression for EI((Y) is given by

(3.4)

8oiving Eq. (2.12) numerically for X, and per-
fox'ming once RgRln R numericRl calculation of the
integral III(Y), we obtain the full relaxation rate
which describes the critical slowing down of the
order parameter.

Before going to the numerical results, we would
like to exhibit the different limits of the expression
(3.3).

(l) puttUlg I'2 =0 Rlld %=0 ill Eq. (2.13), we obtain
the Gaussian result for a homogeneous supercon-
duc'tox'

(3.5)

(ii) Using the self-consistent equation for Xo in

GR model [Eq. (2.16)j, we derive the following ana-
lytical expression for the GR-model relaxation
rate.'

(3.6)

whexe the factor in front of the large square brack-
ets represents the conventional slowing down of the
GR model. ' Since we intend to use this model as a
starting one for the HR model, we briefly discuss
its important features. Being interested in the
very vicinity of T,(es5XIO '}, where X'«I, we
approximate in Eq. (2.16) 6"E,(Y) by ln(1/Yj -y
+0(Yln(1/Yj), where y is Euler's constant. " pre
defllle R llew VRliRMe Zo =X~(r /r2}, which Obeys
the equRtion

A finite solution at T = T, for Zo (=1) determines a
finite conventional slowing-down rate (8/II)re�„
and within the logarithmic approximation it is easy
to show that I'& approaches zero at this tempera-
ture. Moreovex, taking the derive, tive of the Eq.
(3.V) with respect to T, and using the fact that at
T = T„Zo = 1, we can see that the slope of Xo' (-ZG}
is infinite at this temperature with a critical ex-
ponent &." The nuxnerical results described in the
following chapter confirm all of those features.

IV. NUMERICAL RESULTS AND COMPARISON WITH THE
EXPERIMENT

Choosing x'easonable values for the parameters
r, and r„we calculate first the GR-mode1. result
for I'e/T, o. Using (x)(0) =0.943 (r, =3.63)"and r,
=(6T,'j/T,'0=2.25X10 ' the expression (3.8) gives
the shift of T,o due to the inhomogeneity of the film.
The value e, =4.3 x10 ' obtained using the formula
(3.8) agrees very well with the exact numerical
calculation of the relaxation rate in GH, model ex-
hibited by curve (R) 111 Flg. 2. The slope of Ig (6)
at e =e, is indeed infinite.

In order to see the influence of the quartic term
(with the screening) we have to chose relative
small values for $(0) and d, in order to obtain a
large Ginzbux"g critical width . From the explicit
form of the expression for 11,(z, Y) [Eq. (2.15)], we
can see that at u =0, 11,(0, Y) reaches the maximum
value which is equal to su/X'. Larger values of u(

lead to larger values of Ho and consequently to
larger values of the integral I,(Y). Then, through
Eq. (2.12), this will result in a smaller value of X
for a given c. Hence, thex'e is a positive-feedback
mechanism which is responsible for a shift of I'(6)

0.08—
O

~ oo6—

I@a }

Zg = ln(ZO) +, 6 +111 2 +y '

~ (3.V}

The condition for the existence of a positive solu-
tloll Z(; of Eq. (3.V) thol(e SOIlle telllpel'Rilll'6 T(( ls
that at this temperature (T= T,), the term inside
the large square brackets of the right-hand side of
Eq. (3.7) will be equal to 1; i.e. , at T=T„
(Zo), = 1, and the shift of the bare transition tem-
perature T,o is given by

0.00
-2.0 —t.o O.O l.o Z.Q 5,0 PQ 50 go 70

(0 q

FIG. 2. Order parameter relaxation xate 1; as a func-
tion of the reduced temperature e =T/T~o —1. The curve
a $0) represents the Gaussian result for an inhoxno-
geneous {homogeneous) Mm. The curves 5, c {bo,e&) axe
the Hartree results fox an inhomogeneous {homogeneous)
Mm. The paraxneters &&, &2 and se, and $(0) are de-
Qned in the text.
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curve towards lower temperatures, thus cancelling
partly the shift in the opposite direction due to the
inhomogeneity. Moreover, the slope at the actual

T, is decxeasing, and the characteristic knee of
the GR model progl esslvely dlsappeax's. This
could be understood intuitively by looking at the
homogeneous Hartree results (curves bo and co in

Fig. 2, which show the well-known leveling off
charactexistic to the Hartree approximation with-
out randomness.

The importance of the quartic term decreases
with decreasing values of m. Films with large de-
gree of disorder (small values of the mean-free
path I} will have larger values of a' and will allow
for a large effect of the quartic term. At the same
time, the ratio between the correlation length of
the frozen disorder (o ') and $(0)- I'~' will in-
crease, and by inspection of the Ecis. (2.11) and

(3.6) we can see that the GR-model features will
tend to persist; i.e., bigger shift of T,o accompa-
nied by a stronger bending of the I'(e) curve. In
the discussion above, we have assumed a fixed
value of {6T,')/T,', . However, from the experi-
mental point of view it should be mentioned that the
parameters I, (5T,'), and the ratio n '

/(( )0are not
independent, since they are all x'elated to the struc-
ture of the disordered films.

Of particular interest is the experiment of Ander-
son et al. ' on Al —Al, O, —Pb junctions, where the
relaxation rate of the superconducting order pa-
rameter was obtained by measuring the excess
fluctuation conductivity using the I- V curves. %6
would like to compare our results w'ith the data of
the junction Al —6 of Ref. 4 which is characterized
by I = 20 A (which gives $(0) = 500 A), and thickness
d =1300 A. With the latter values and %0=2&10"
cm ' K ', and taking T, = 1.VO 'K, w e have to

=8.63&10 '. With such small value of the Qinzburg
critical width a negligible correction to the curve
(a) in Fig. 2 is expected.

We exhibit the expeximental results of the Al —6
junction in the Fig. 3. %6 can see that using the
GR model [Eqs. (2.11}and (2.12)], we get a very
good fit to the experimental data. It is also seen
that the HR-model and the QR-model results are
almost the same for this particular set of data
(w- 10 '). In the insert of the Fig. 3, we show the
curves of ~1 (T) calculated from those two models
in the very vicinity of T, (1.7732 K) on an enlarged
scale.

Therefox'e, we conclude that the GR model can be
used as a satisfactory explanation for this particu-
lar experiment" and all other possible experi-
mental situations with such small values of m.
However, measurements on films with larger val-
ues of m should, according to Fig. 2, exhibit a
gradual changeover from the GR regime (curves

t 1 j

la I—

I.76 I.77 l.78 l.79 I.80 I.8I I.82 l.83 I.84 I.85
T( K)

FIG. 3. Relaxation rate as a function of the absolute
temperature T. The full (interrupted) line represents
the critical (conventional) slowing-down calculated in
GH model. Insert The HR- and GB-model results in
an expanded scale. The experimental data are for the
Al-6 junction of the Ref. 4.

with a pronounced knee) towards a regime with
rather different nonlinear shape.

Finally, we would like to point out that the yxes-
ent ayproach is not restricted to supex'conductors.
It can be applied to random magnets' where the
critical dynaxnlcs can be investigated using neu-
tron-diffraction methods. An important implica-
tion of our present work is a prediction of a nar-
row central peak in the dynamic form factor owing
to the presence of two different time constants in
the relaxation function. This is demonstrated in
Pig. 3 by the curve I;, which represents the con-
ventional slowing down, which vexy near T, is
much larger than the values corresponding to the
critical slowing down. This feature suggests that
the present calculation should be extended to thxee
dimensions, in order to describe the dynamics of
a magnetic glass. Such a calculation is presently
underway, and wiB be published in a forthcoming
payer.

%6 thank P. Walker and J. C. Hayward for valu-
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