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The density of liquid *He has been measured along the melting curve in the temperature range 0.1-0.82 K by
observing the change with temperature of the resonant frequency of a superconducting microwave cavity
immersed in the liquid. Relative changes in density as small as 4 X 10~° could be resolved. From the results
the entropy of solid *“He was obtained by using the Clausius-Clapeyron equation in conjunction with values for
the isobaric-thermal-expansion coefficient and entropy of the liquid calculated from other data. No evidence
for an anomalous linear temperature term in the entropy of the solid was found. The data are shown to be in
good agreement with published measurements of the Debye temperature of the solid by Gardner, Hoffer, and

Phillips.

I. INTRODUCTION

In this paper we report on an investigation of
the entropy of solid “He in the temperature range
0.1-0.82 K. Several studies of the entropy in this
temperature range have been made previously.!™
An important problem that has remained unre-
solved is the limiting form of the specific heat at
low temperatures. There have been a number of
reports®*® of an anomalous linear term in the
specific heat in addition to the expected T° con-
tribution from phonons. Heltemes and Swenson?
made measurements down to 0.3 K and obtained
results which were consistent with a linear term
of magnitude between 5 X 1072 and 10 X 10~% J mole™
K™ at low pressures. Franck’ carried out similar
experiments in the temperature range 1.3-4 K,
and found a linear term of the same order of mag-
nitude. However, he found that the size of the
linear term could be considerably reduced by an-
nealing. Thus this result suggested that the linear
term was related to defects. More recent mea-
surements have been made by Edwards and Pan-
dorf® down to 0.3 K, by Ahlers® to 1.4 K, by
Sample and Swenson® to 0.2 K, and by Gardner,
Hoffer, and Phillips® to 0.3 K. In these experi-
ments no linear term was observed, except by
Sample and Swenson who observed a very small
term that could possibly be attributed to an appa-
ratus effect. The most recent measurements are
by Castles and Adams.® They reported measure-
ments down to about 0.14 K and found a linear
term of the same order of magnitude as that found
by Franck. They discussed a number of possible
origins of this term, but also emphasized that
more accurate measurements were necessary to
prove that the linear term definitely existed.

The experiments we have carried out were de-
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signed to look for such a term. Traditional
specific-heat experiments have the disadvantage
that the calorimeter heat capacity C.,, must be
subtracted from the total measured heat capacity.
C.a; usually contains a large linear term, which
must therefore be known accurately so that a
spurious linear term does not appear in the final
result. To avoid this difficulty we have measured
instead the temperature dependence of the density
of the liquid along the melting curve. The Clau-
sius-Clapeyron equation is

dP, _ S, -S; @)
T~ V, -V’

where P, is the melting pressure, S; and Sg are
the entropy per mole of liquid and solid, and V
and Vg are the corresponding molar volumes. The
density of the liquid is a function of temperature
and pressure, so
1dp dpP

——"—(X+Kﬁ,

where a is the isobaric thermal expansion and k

is the isothermal compressibility of the liquid.
Thus the temperature dependence of the liquid den-
sity along the melting curve is given by

ldp _ S, =S

B d—T-— -a+ KV—L_—VSS— . (3)
At low temperatures where rotons are unimportant
one expects that, to lowest order in T, o and S,
will be proportional to 72, and that « and V - Vg
will be constants. Thus if there is a linear term
in the specific heat of the solid we have in the
limit of low temperature

1dp

pdTOCT’ (4)

1911



1912 HANSON, BERTHOLD, SEIDEL, AND MARIS 14

VALVE——>QL <—VALVE
SAMPLE yﬁ —
CHAMBER 4
LIQUID
Y ~
44 [T~caviTy
SOLID

FIG. 1. Experimental arrangement.

whereas if there is no such term,

1dp 3
1ap . rs 5
pdTocT (5)

II. EXPERIMENTAL

The density of the liquid helium was measured
using the same superconducting microwave cavity
as described in the preceding paper® hereafter
referred to as I. The experimental arrangement
was as shown schematically in Fig. 1. The sample
chamber was completely filled with liquid helium
at about 1.4 K, and was pressurized to 25 atm.
Both of the superfluid-tight low-temperature
valves at the top of the sample chamber were then
closed. The sample was cooled and at about 1.3 K
solid began to form. Because the density of the
liquid at the temperature at which solid first be-
gan to form was greater than at any lower tem-
perature, the sample always remained on the
melting curve as it was cooled. At the lowest
temperature (100 mK) it was calculated that about
3%, or 3 cm?3, of the sample chamber volume was
occupied by solid.

At each temperature the density of the liquid
in the cavity was determined by the measurement
of the resonant frequency of the cavity using the
Clausius-Mossotti relation as discussed in I. The
temperature determination was also the same as
in L.

The results were consistent with the assumption
that no solid formed inside the cavity. Had an
appreciable amount of solid formed within the
cavity, it would have caused a large shift in res-
onant frequency since the density of ‘He increases
by nearly 10% upon solidification. Further evi-
dence for the absence of solid formation in the
cavity was obtained by warming until the entire
sample melted and then recooling to the lowest
temperature. The temperature dependence of the
data obtained in this way was reproducible to with-
in the accuracy of the measurement of the cavity

resonant frequency (about 1 Hz in 10'° Hz). This
reproducibility persisted even if after melting the
entire sample, the pressure was increased by a
small amount so that on subsequent cooling the
first solid was formed at a slightly higher tem-
perature. Had there been solid formation in the
cavity, not only would the same amount of solid
have had to form, but it would have had to form in
the same place so as to affect the frequency change
upon cooling in the same way each time. This is
very unlikely.

The final data were taken by cooling the sample
to near 0.1 K and then warming it by applying heat
to the mixing chamber of the dilution refrigerator.
As the temperature drifted up slowly the frequency
and temperature of the cavity were monitored.
The frequency shift Ay was then related to a den-
sity change Ap using the formula (see I)

Av/v=~[(e - 1)(e+2)/6€]2p/p, (6)

where € is the dielectric constant of liquid helium
on the melting curve at T=0 K. Using the value
of € found by I gives

Ap/p=-(30.550+0.001)Av /v. (7)

The uncertainty in Ap/p due to the uncertainty in
€ is thus negligible compared to the other errors.
There is also a small correction to Ap/p which
occurs because as the pressure changes along the
melting curve the size of the cavity varies. This
gives a frequency shift relative to zero tempera-
ture of

Av/v = 5AP(T)Kyy,

where «, is the compressibility of niobium. The
correction to the density change from this effect

is very small compared to the uncertainty arising
from the thermometer calibration, and thus may
be neglected at all temperatures except near the
density minimum. At this temperature the correc-
tion is equivalent to a density change of 0.03 ppm.
This was calculated using the method discussed in
Sec. III of I.

III. RESULTS AND DISCUSSION
A. Density measurements below 0.5 K

Figure 2 shows results for the quantity

(P7 = 0o)/PoT?

plotted versus T2. The uncertainty in the data is
too small to show on the figure. Below 200 mK the
principal error comes from the 1-Hz uncertainty
in the measurement of the resonant frequency of
the cavity. This gave a resolution of +4 x 10™° for
changes in fractional density. Above about 250 mK
the density change was large enough so that the
uncertainty in resonant frequency was no longer
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FIG. 2. Temperature dependence of the density of
liquid ‘He at the melting curve for 7<0.47 K. The solid
straight line passing through the origin has a slope
1.77x1074 K™4. The dashed line has the same slope, but
has the intercept that would be expected if the entropy of
the solid contained a linear term of the magnitude found
in Ref. 6.

important. From this temperature upwards the
principal uncertainty was from the thermometry
errors. As discussed inI these were +0.2%.

1. Linear term in specific heat of solid

It is clear from Fig. 2 that to a very good ap-
proximation the density change is proportional to
T*. Thus the thermal expansion coefficient is
proportional to 73, and so by the argument given
in the Introduction the linear term in the specific
heat must be very small. To obtain a better idea
of the limits imposed on the linear term by our
results we have made a least-squares fit of

(o1 = Po)/Po

to the function AT?+ BT*. The result was
A=-6.3%x10" K2, (8)
B=1.7T7Tx10" K™. (9)

We can now use Eq. (3) to calculate the size of the
linear term A’T in the specific heat of the solid.
To do this we calculate the compressibility « of the
liquid from the sound-velocity measurements of
Abraham et ql.1° (c=3.663 % 10 cm/sec) and the

density measurements of Grilly* (p=0.1729 g/cm?).

The molar volume change on melting!! is 2.165
cm®/mole. Equation (3) then gives a linear term
in the specific heat

A'T=6.3x10"°T Jmole™ K™, (10)

The uncertainty in the coefficient A’ is +6.3 X107
Jmole™ K™ at the 70% confidence level and is

+16.2x 10" Jmole™ K2 at the 99% confidence level.
Thus the results give no clear indication of a
linear term in the specific heat, and show that any
such term must have a coefficient no larger than
about 10™° Jmole™ K2,

For a 20.59 cm?®/mole™ sample Castles and
Adams® found a linear term with coefficient A’
~2.4%X 107 Jmole™ K2, The density change ex-
pected if the solid specific heat contained a linear
term of this magnitude is shown by the dashed line
in Fig. 2. This is clearly inconsistent with our
data.

2. Possible contribution from 3 He impurities

The actual *He concentration in the *He sample
was not measured. However, a typical *He con-
centration for “He which has been extracted from
natural gas wells is 1077, At temperatures in the
range of interest here a concentration of *He atoms
of this order of magnitude will obey classical
statistics. Also the *He concentration in the solid
can be neglected. Under these conditions the con-
tribution of *He to the temperature dependence of
the melting pressure is'?

dP Rx
<217)3'VL -V’ (1)
where R is the gas constant and x is mole fraction

%He. The *He contribution to the thermal-expan-
sion coefficient is!?

a3=xn4kBK(l+%{3 *), (12)

where n, is the “He number density, kg is Boltz-
mann’s constant, and

3 lnm*
3 Inp,

B¥=-— (13)
m* is the effective mass of a *He quasiparticle in
a dilute solution with *He density p,. It is known
that B *= -1, and using Eq. (3) we obtain

(pr = Po)/Po= - 0.1TxT. (14)

Thus at 0.1 K the fractional change in density is
1.7X107°, This is slightly less than our sensitiv-
ity.

3. Calculation of the entropy of solid 4 He

The data can be used to calculate the entropy of
solid “He on the melting curve if the isobaric
thermal expansion and the entropy of the liquid
are known. The isobaric thermal expansion & is
given by

a = (2r2k% /157%0c%) (u + 3)T°, (15)

where ¢ is the sound velocity at 7=0 K and « is
the Griineisen constant
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FIG. 3. Temperature dependence of the density of liq-

uid “He at the melting curve for temperatures up to 0.82 K.
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Equation (16) assumes that the temperature is

sufficiently low that only long-wavelength phonons
need be considered. Using'® u=2.21 we obtain

a=9.09 x 10573 K, 17)

u (16)

If we use this value for « in Eq. (2) together with
our experimental result for the 73 term in 8p/3T
[see Eq. (9)], we find

dP _ 3

a7 -0.14173% atm/K . (18)
In the same low-temperature approximation the
molar entropy of the liquid is

Sy = (2n2k4V, /457%c®)T3= 6.40 X 107*T° Jmole™ K.
(19)

Use of Eqgs. (1) and (19) then gives (neglecting the
possibility of a linear term in the entropy)

Sg=3.74x 107272 Jmole™ K™. (20)
Hence the specific heat of the solid is
C=0.112T73 Jmole™ K™, (21)

The Debye temperature calculated from this speci-
fic heat is 25.9 K with an estimated error from all
sources of +0.3%. Gardner, Hoffer, and Phillips®
have measured the specific heat of hep *He at sev-
eral molar volumes from 20.456 to 20.960 cm3/
mole! obtaining values of the Debye temperature
O, ranging from 27.921 to 26.074 K. They fit

their data by

eb = 234ov-S0. 81143'0'0969VS. (22)

This gives a Debye temperature of 25.92 K at
melting, in excellent agreement with our value.
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B. Density measurements above 0.5 K

The fractional density change of liquid *He at
melting for temperatures up to 0.82 K is shown in
Fig. 3. A minimum of depth 26.77 +0.01 ppm
occurs at 0.697 K+0.35%. Grilly!! has also ob-
served a maximum in the molar volume of liquid
“He near 0.7 K, but was not able to obtain an ac-
curate numerical value for the magnitude. From
an analysis of heat-capacity measurements of the
liquid and solid phases in the vicinity of the tran-
sition Hoffer et ql.'* calculated that the molar vol-
ume of the liquid at freezing reaches a maximum
at 0.701 K in good agreement with the results of
these measurements. Furthermore, as seen in
Eq. (2) if dp/dT =0 then a=«dP/dT. From the
data of Grilly,'* Abraham et ql.,'° and Straty and
Adams?® the temperature of the density maximum
is calculated in this manner to be 0.700 K.

The minimum in density occurs because above about
0.6 K the entropy of the liquid increases rapidly
due to the excitation of rotons. If it is assumed
that the dispersion relation for rotons is given by
the Landau approximation

€=A+(p —po)/2u, (23)

and if it is assumed that phonons have a linear
dispersion relation, it is straightforward to cal-
culate the temperature dependence of the liquid
density along the melting curve. The expres-
sion for the liquid density involves the molar vol-
umes of the solid and liquid, the roton parameters
A, p,, K, and their derivatives with respect to
density. Despite the good accuracy of the data it

TABLE I. Temperature dependence of the density of
liquid “He at the melting curve for temperatures between
0.458 and 0.821 K. The uncertainties in these data are
discussed in the text.

Po—Pr Po—Pr
T P T Po

(K) (ppm) (K) (ppm)
0.458 +7.77 0.683 26.58
0.471 8.70 0.687 26.67
0.487 9.90 0.691 26.72
0.504 11.27 0.695 26.75
0.523 12,94 0.697 26.77
0.544 14.91 0.699 26.73
0.574 17.82 0.716 26.23
0.616 22,02 0.732 24.98
0.628 23.14 0.749 22.71
0.639 24,10 0.764 19.64
0.656 25.38 0.775 16.75
0.664 25.80 0.786 13.24
0.671 26.17 0.797 8.74
0.676 26.38 0.809 +3.07
0.681 26.52 0.821 -3.61
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was not possible to make a definite determination
of any of the roton parameters in this way. The
problem was that the data could be fitted by a
rather wide range of choices of the roton param-
eters. However, when accurate specific-heat
measurements in the liquid become available it
should be possible to combine these with the pres-
ent data to give very accurate values of the roton
parameters. For this reason we include in Table
I values for p, - p;. The uncertainty in these re-
sults arises almost entirely from errors in tem-
perature which are estimated to be +0.2% up to
0.6 K, +0.35% at 0.7 K, and 0.4% at 0.8 K. This

error is of course in addition to possible errors
associated with the 3He vapor-pressure scale it-
self.

IV. SUMMARY

We have made precise measurements of the den-
sity change in liquid “He along the melting curve.
From these and other data it is possible to deter-
mine the entropy of the solid phase. No evidence
is found for an anomalous linear term in the en-
tropy of the solid. The Debye temperature obtained
for the solid is in excellent agreement with the
earlier result of Gardner et al.’
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