
PHYSICAL REVIE% B VOLUME 14, NUMBER 5 1 SEPTEMBER 1976

Theoretical model of superconductivity and the martensitic transformation in A15 compounds*
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The effect of the martensitic transition on superconductivity in the A15 compounds is examined theoretically.
The BCS pairing potential is added to the Peierls potential in the Gorkov model of the martensitic transition.
%'e find that the t~o potentials compete to open an energy gap on the common portion of Fermi surface and
that one phase transition depresses the other, It is found that the T, = 17 K in V,Si includes a 0.3-K reduction
due to this competition and that superconductivity arrests the development of tetragonality below 17 K. It is
predicted that at high pressure (-25 kbar) the martensitic transition will be precluded.

I. INTRonUCTION

Intermetallic compounds of the 215 crystal
structure exhibit the highest known supercon-
ducting transition temperatures. ' Several of
these high-T, compounds undergo a structux al
"martensitic" transition at a higher temperature
T .' In this paper, we examine the effect of the
stxuctural transition on superconductivity.

At the martensitic transition, the cubic A, 15 unit
cell is distorted to a tetragonal cell with paired
transition-metal atoms in two of the three linear
chains. ' This observation led Gorkov' to suggest
that the martensitic transition is driven by a
Peierls instability in the linear chains. In the
cubic 215 structure the electronic energy bands
are doubly degenerate at the X point (the center
of the face of the simple-cubic Brillouin zone).
This X-point degeneracy is split by the Peierls-
llke encl gy gRp RrlsHlg from R tetrRgonRl dlstol'-
tion of the crystal. If the Fermi surface lies near
the X point, the electronic energy is reduced by
the Peierls gap and this energy, according to the
Goxkov model, drives the structural phase tx'an-
sition. A Landau theory based on Gorkov's pic-
ture is in good agreement with a number of ex-
periments on V,Si and Nb, Sn. ' The Gorkov model
for the martensitic transition in the A15 compounds
is closely related to the charge-density-wave
transitions observed in transition-metal dichal-
cogenides, ' and to the Peierls transition found in
tetrathtafulvalene-tetracyanoquinodimethane (TTF-
TCNQ). '

As discussed briefly in a previous paper, ' the
stx'uctural transition affects the superconducting
transition in two ways. The elevation of T, by
the softening of phonons has been understood
qua. litatively for a long time, though as yet there
is no quantitative estimate of its importance. In
an appreciable fraction of the Brillouin zone,
phonons soften as the structural transition is ap-
proached, and recover after passing into the tet-

ragonal phase. ' The energy of the long-wavelength
[110]phonon with transverse [110]polarization
almost vanishes at T . Since the coupling constant
for superconductivity is proportional to electronic
constants divided by the mean-square phonon en-
ergy, a any softening of the phonon syectrum en-
hances the coupling constant and raises T,. Sec-
ondly, in the tetragonal phase, T, is depressed
by the presence of the Peierls gap. This is a new
effect which follows from the Gorkov model. Near
the X point, the Peierls gap separates the energy
bands, depopulating that area of the Fermi. surface
and reducing the number of electrons available for
BCS pairing. A substantial fraction of the elec-
tronic density of states at E can be removed by
the Peierls gay, and this lowers T,.

In this payer we present a microscopic theox'et-
ical model in which the BCS gap and the Peierls
gap can coexist. The model is intended to be
realistic enough to describe the 415 compounds,
yet simple enough to allow easy solution. %e
argue that the details of the band structure are
unimportant for the energetics of the phase tran-
sitions, and that one need only know the densities
of states of the electrons participating in the
transitions and the relevant coupling constants.
These parameters can all be found from experi-
ment. %e then calculate the phase diagram of
the crystal and the temperature dependence of the
bvo gaps. %e find that the two energy gaps com-
pete for the same portion of the Fermi surface,
and that each inhibits the other. For parameters
appropriate to Vgsl (T~ = 21 K, T~ = 17 K), we fmd
that at the superconducting transition the devel-
oping tetragonality is arrested and is subsequently
depressed slightly. %e further find that if the
superconducting transition occurs in the cubic
crystal (as it should in V,Si at high pressure), the
martensitic transition is precluded and the crys-
tal always remains cubic.

%ith this model we can study only the effect of
the Pelerls gap on supex conductivity. Slee the
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BCS interaction is taken as a phenomenologieal
parameter, we can learn nothing about the effect
of soft phonons.

II. MODEL HAMILTONIAN

%e treat a model of electrons in Bloeh states
in the presence of a static lattice distortion and

interacting via a BCS pairing interaction. ' The
Hamiltonian is the sum of several terms

where 3C describes the conduction band in the
norDlal cubic phase:

where c~~„, and c~„create and annihilate electrons
in Bloeh states with crystal momentum k, band
index g, and spin g. 3C~ is the electron-phonon
coupling which precipitates the Peierls transition

p ~ '" &nw' c&nocIpn'o &

where 5"~„„ is a matrix element proportional to
the lattice dls'tol'tio11 (acoustic plus optical pl1011011).

3C~ is important only near the X point, where it
breaks the degeneracy between bands (labeled+
and —). Here we can approximate W„=W, , = W

independent of k. W will be referred to as the
Peierls gap, though the actual separation between
bands at the X point is 2 W (in the normal phase).
The crystal opposes the distortion with an elastic
energy proportional to the square of the distor-
tion, or to W . This energy is contained in

where N is the total number of atoms in the crys-
tal and V~ is proportional to the relevant electron-
phonon matrix element squared, divided by the
relevant elastic constant. Finally, X, is the fam-
iliar phonon-mediated electron-electron inter-
action responsible for supel conductivity:

Tr 1'
Cs ~ "ok'nn' cIf, 'n') c-a'n'k c-4n$ cAn t

AA'ffn'

%e use the BCS model interaction which approxi-
mates V», , as a constant, V,c, /N, for e» and
e~.„.within some h&0 of the Fermi energy, and
as zeroy otherwise.

The band structure along the I'-X line near the
(100)X point is

happ
= + Rvp ) x ' k —s/a ( t

where a i8 the cubic lattice constant and the X-
point energy is taken to be the zero of energy.

Equation (6) ts a consequence of crystal sym-
metry and is an exact limit. The Peierls gap af-
fects electrons within kT of the Fermi energy and
only in a small sector of momentum space near
the X point. This region we name region 1, the
rest of the Fermi surface is contained in region 2.
As a simplification we assume that Eq. (6) obtains
in region 1, and that in region 2 the energy bands
are independently linear in k. We also assume
that in region 2 the TV matrix vanishes. Finally,
we assume that the Fermi energy coincides with
the X-point energy so that the model has electron-
hole symmetry. This last approximation forces
the martensitic transition to be second order in-
stead of weakly first order, ' and the other approxi-
mations probably intr oduee further small errors
into the temperature dependence of the energy
gays. %e believe that, except for minor details,
the theory realistically models both phase tran-
s1t1ons in t e A.15 compounds.

III. TRANSFORMATION TO QUASIPARTICJ. E
COORDINATES

In region 2 of momentum space, where the
Pei.eris gap is unimportant, electrons of momen-
tum p and spin up are mixed with holes of mo-
mentum -p and spin down by the BCS pairing terra
in the Hamiltonian. The Hamiltonian is brought
into diagonal form by the Bogoliubov transforma-
tloIl to quaslpartlcle coo1 dlnates.

In region 1 the situation is complicated by the
additional presence of the Peierls gap. The eom-
mutators are

[X,cp t] = —ep cp 1+ Wcp+1+n pc

[X c p 1] =6p .c p 1
—Wc p+1+kpcp1

[R~cp+t] p-cp+1+Wcp-(+Ape-p+1

[R,c p, &] =-ep c p, &

—Wc p &+npcp &,

which shows that four excitations are mixed by the
Hamiltonian: electrons at P with spin up in the +

and —bands' and holes at -P and w1th syln down
in the + and —bands. The BCS interaction mixes
electrons and holes, and the Peierls term mixes
the + and —bands. The normal modes are ob-
tained from a generalized Bogoliubov transforma-
tion. We define quasiparticle operators A&, B&,
C~, and D~ by the relations

c-u+&
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The coefficients ax'e taken real and they satisfy

ensuring that the quasipax'ticle operators obey
fermion anticornmutation rules. The matrix is
orthogonal, so its inverse is its transpose. The
condition that the quasiparticles be noninteracting
excltatloIls is

[x,w, ]+f1,~, =o;

the analogous equations for 8&, C~, or D~ are
equivalent to this and they are all satisfied pro-
vided

fV. THERMODYNAMK PROPERTIES

Once the transformation to independent quasi-
particles is accomplished, it is a simple matter
to ferrite down the free energy and calculate the
thermodynamic properties. Both the Peierls gap
8' and the BCS gap 6 are found by minimizing the
free energy. Since the model has electron-hole
symmetry, the Fermi energy (or chemical poten-
ilRl) ls fixed Rt zero. Thell the numher of 2 Iluasl-
particles of momentum P (region 1) is

(X,'W, ) =f (fl, ) =1/(e "~~'+ 1), (16)

vrith identical results for B, C, and D quasiparti-
cles. We calculate the free energy

F(r, n. , w) =(Z) TS, -
vrhere for region 1

The condition for a solution is that the determi-
nant vanish and that fixes the eigenvalue

1 2TQp

NR'
+

2Qp

and the entropy is

The x'emaining twofold degeneracy permits the ad-
ditional constraint v~ /II~ =g~ /f~ and we find

uI =2 [(1-IIp) (1-Pp)]'~',

~, =-.'[(1+II, ) (1 P, )]'~', -
(13)

fI =a[(1-III)(1+PI,)1' ',
gp=- [(21+ p)o(1 Pp+)1",

The momentum suxns are taken over momentum
space near the Fermi surface of region l. Equa-
tions (18) and (19) reduce to the BCS expressions
fox' 8' 0 and in that form mould apply to x'egion 2.
The present model includes both regions, and so
must the sums. The momentum sums are replaced
by energy integrals in the usual way:

P~=6~ /(6~2 +W')'~'. NN (0) f de,

(2o)

Each operators&, B&, C&, and D& destroys one
quasiparticle of energy Q~=(6~2 +I1~2+W')'h, so
the Hamiltonian is diagonal in these quasiparticle
coordinates. Note that the energy gap in the ex-
cltRtloll spectrum ls (AI, + W ) 111 I'egloll 1 and KI,
in region 2.

We have used the usual HCS mean-field appx'oxi-
mation to define 6&

The assumed form of V», & implies that A~ is a
constant (isotropic) within h&do of the Fermi energy.

wllel'6 Nl(0) ls the electl'ollic density pel' spin per
region 1, and N, (0) describes region 2

similarly. The total-free-energy per atom is
then

(T,n, W)—
~ N, (0)b, '(6) Q, (e)

cosh [QI (6)/2T]—2T cR N) 0 ln

N, (0) n(6) fl, (&) ~

tanh
&

21
201 6
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where

I el&a~
&(e) =

0,

Q (e) =[e +n2(e)+W ]

02(e) = [6' +6 (e)]
20—

E&=100 meV

3~=45 meV

N(0) VBcs .283

N((0 ) /N~(0 ) I/9

Tm

and the c integration is from -EB to EB, the elec-
tron bandwidth. The constant F(T, 0, 0} has been
removed from (21).

The physical values of 6 and W minimize the
free energy and are given by the two gap equations

N» W &,(e)
W = V~N, (0) de tanh, (23)

-EB
2(I, e

tt QJp 0, (e)6 = V,c, QN, (0) de
( )

tanh
j ~help

I
—„

E

l8—
Normal
Cubic

Tc

Supercof)ducting
Cubic

I

.220
I

.230
Ni(0) Vp

I

.240

Superconducting
Te t ragona I

N, (0) V), N(0) VNcs
(25)

where N(0) =N, (0) +N, (0), there are two phase tran-
sitions. The martensitic transition occurs first at

T =1.134EN exp[-1/N, (0)V~], (26)

and the superconducting transition follows at a
lower temperature given by

TN2(0)l» (0)
TNz

(0)l» (0) I 134@+ exp [ I /N(0) V ]

(24)

We obtain the following results analytically using
the weak-coupling approximation (kT «EN, kT,
«kuo). If

FIG. 1. Theoretical phase diagram obtained by varying
the Peierls coupling constant with other parameters fix-
ed as shown.

)r&u, and Ee. The results of this fit (to T = 21 K
and T, =17 K) are N, (0)V~ =0.242 and N(0) VNc,
= 0.283. We can map out a phase diagram by cal-
culating T„and T, vs N, (0)V~, keeping the other
parameters fixed. This is shown in Fig. 1. The
phase boundaries are approximately linear in this
range of N, (0) V~ with

Vp dT 1

T~ dV~ N, (0)V~'

and in the tetragonal phase

The superconducting transition temperature is
reduced by the tetragonality. If, however,

(27)
(K)
22—

2I—
Normal
Cubic

Ni(0) Vp N(0) Vacs g(do

the superconducting transition occurs at

T, = 1.134)f~o exp [-1/N(0) V~cs ],

(28}
20—

I— I9-
EI-

~ ~

Tm

Normal
Tetragonal

but Eq. (23) cannot be satisfied with W&0, that is,
the martensitic transition does not occur.

The following results are obtained by numeri-
cally minimizing (21) for parameters appropriate
to V,Si. The susceptibility versus temperature
for" Nb, Sn indicates that about 10% of the density
of states is removed by the Peierls transition. We
assume this number is also appropriate for V,Si
and take N~(0)/N(0) = 0.1. From the observed max-
imum phonon frequency we take I&p =45 meV and
choose arbitrarily EB = 100 meV. Since we fit ac-
tual transition temperatures, our results are quite
insensitive to the choice of the cutoff parameters

I8—

l7—

16—

Tc
~ ~ ~

~ ~ 4
Superconducting

Tetragonal

I

I2
I

l6

P

I I

20 24 (kbar )

FIG. 2. Experimental phase diagram (Ref. 13) T-P for
VSSi.
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(K)

~ 20
0

lO

EB = 100 meV

e~,=45 meV

N(0)VBcs .285

Ni(0) Vp =.242

N (0)/N~(0)=l/9

each gap on the other.
The competition of the two gaps on the Fermi

surface is clearly shown in the plot of 4 and W
versus temperature (Fig. 3), again with param-
eters appropriate to V,Si. At the superconducting
transition temperature, the growth of the Peierls
gap is halted and even slightly reversed as
the BCSgap opens up. Since the Peierls gap is direct-
ly proportional to the tetragonal distortion, we can
compare the measured tetragonality" (scaled at low
temperature to W) directly with the computed Peierls
gap (Fig. 3). Clearly the low-temperature plateau of
the distortion is explained by the present model.

V. CONCLUSIONS

20
I

22 (K)

FIG. 3. Calculated pl.ot of A(T), 8'(T) with parameters
appropriate to V&Si. W continues on dotted path if super-
conducting transition is prevented. Experimental (Ref.
14) values of (c/a-1), scaled to ~' below T, , are given
by crosses.

Vp dT, 1

T, de N2(0)Vq
' (31)

These results indicate that T, =17 K includes a
0.3 K reduction by the open Peierls gap; this
effect would be larger if the Peierls gap affected
a larger fraction of the Fermi surface. If N, (0)
=0, the slope of T, is initially infinite but flattens
out at higher V~. It is appropriate to compare this
theoretical phase diagram with a plot of transition
temperatures versus pressure or versus concen-
tration (in a pseudobinary alloy series). The pres-
sure dependence" of T and T, are shown in Fig.
2; it is clearly of great interest to have measure-
ments on V,Si above 2 5 kbar. Note that we have held
N(0) VBc, constant in the theoretical phase diagram;
this means that we have omitted the effects of pres-
sure and of soft phonons on N(0)VBcs. The theo-
retical phase diagram illustrates only the effect of

We have developed a model for superconduc-
tivity and tetragonality in the A15 compounds. We
have adopted Gorkov's mechanism for the struc-
tural or martensitic transition in which a Peierls
gap opens up in the one-electron band structure
near the X point, and we have included the BCS
pair interaction which induces superconductivity.
We then solved for the BCS gap and the Peierls
gap self-consistently by minimizing the free en-
ergy. The interesting new physics that comes
out of the model follows from the competition of
the two gaps for a common portion of the Fermi
surface. The model shows that the Peierls gap
(and the tetragonality) is arrested at the super-
conducting transition (in agreement with experi-
ment) because when both gape are open n and
(b, '+ W')'~' increase essentially identically with
falling temperature. The model predicts that the
martensitic transition cannot occur at tempera-
tures lower than the superconducting tzansition
temperature. We conclude that where the Peierls
gap affects only a small fraction of the Fermi
surface, its effect on the superconducting transi-
tion is small (0.3 K in V,Si). Perhaps the most
interesting question remaining is the quantitative
effect of the soft phonons associated with the mar-
tensitic transition on the superconducting tran-
sition temperature.

*Research supported in part by NSF contract No. DMR
75-20376.

~ Supported by a National. Science Foundation fellowship.
G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. Hull,
Jr. , H. L. Luo, B. T. Matthias, and W. H. Zachariasen,
Proc. Natl. Acad. Sci. USA 61, 621 (1968).

(a) M. Weger and I. B. Goldberg, in Solid State Physics,
edited by H. Ehrenreich, F. Seitz, and D. Turnbull.
(Academic, New York, 1973), Vol. 28, p. 1; (b) L. R.
Testardi, in Physical Acoustics, edited by W. P. Ma-
son and R. ¹ Thurston (Academic, New York, 1973),

Vol. X, p. 193; (c) Yu. A. Izyumov and Z. Z. Kurmaev,
Usp. Fiz. Nauk 113, 193 (1974) tSov. Phys. -Usp. 17,
356 (1974)]; (d) L. R. Testardi, Rev. Mod. Phys. 47,
637 (1975).

G. Shirane and J. D. Axe, Phys. Rev. B 4, 2957 (1971).
4(a) L. P. Gorkov, Zh. Eksp. Teor. Fiz. Pis'ma Red. 17,

525 (1973) tJETP Lett. 17, 379 (1973)]; L. P. Gorkov
and O. N. Dorokhov, ihd. 21, 656 (1975) [ibid. 21, 310
(1975)] . (b) L. P. Gorkov and O. N. Dorokhov, J. Low
Temp. Phys. 22, 1 (1976); Zh. Eksp. Teor. Fiz. 65,
1658 (1973) tSov. Phys. -JETP 38, 830 (1974)] .



1892 GRIFF BILBRO AND W. L. McMILLAN 14

R. N. Bhatt and W. L. McMi11an, Phys. Rev. B 14, 1007
(1976).

6J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv. Phys.
24, 117 (1975).
F. Denoyer, R. Combs, A. F. Garito, and A. J. Heeger,
Phys. Rev. Lett. 35, 445 (1975).

W. L. McMillan, Phys. Rev. 167, 331 (1968).
Z. R. Schrieffer, Theory of Superconductivity (Benjamin,

10
Reading, Mass. , 1964).
N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958).

W. Reywald, M. Rayl, R. W. Cohen, and G. P. Cody,
Phys. Rev. B 6, 363 (1972).
P. Schweiss, in Progress Report of the Teilinstitut
Nukleare Festokorperphysik, edited by W. Schomers
(Gesellechaft fur Kernforschung M.B.H. , Karlsruhe,
1974), Sec. 1.2.2.

' C. W. Chu and L. R. Testardi, Phys. Rev, Lett. 32,
766 (1974).

~4B. W. Batterman and C. S. Barrett, Phys. Rev. 145,
296 (1966)~


