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An Ising model with an arbitrary distribution P(J) of exchange interactions J is solved exactly for the

annealed case in which the system is allowed to reach complete thermal equilibrium at each temperature. The

solution is expressed in terms of an Ising model on the same lattice with a single exchange parameter,

allowing an exact solution to be obtained in one and two dimensions. Some feeling for the effect of annealing

can be found by examining correlations between exchange interactions on neighboring bonds. Some special

distributions P(J) are examined in detail.

I. INTRODUCTION

In the past few years there has been consider-
able interest in the thermodynamics of phase tran-
sitions in random systems. As a contribution to
this work, we have considered an Ising model with
an arbitrary distribution P(J) of nearest-neighbor
exchange interactions. The model can be solved
exactly if the system is allowed to come into com-
plete thermal equilibrium (both spine and bonds)
at each temperature.

As first pointed out by Brout, ' random systems,
such as the one considered here, can have two
distinct kinds of thermodynamic behavior. In the
first (quenched) case, the randomness is frozen
in and does not change with temperature. In our
case, this corresponds to the exchange interac-
tions J on different bonds being chosen indepen-
dently according to a probability distribution P(J).
In the second (annealed) case, the system is al-
lowed to come into thermal equilibrium at each
temperature. In our case this can be visualized
as follows: Each bond has some exchange J as-
sociated with it, chosen so that the system as a
whole has a, temperature-independent distribution
P(J). However, un1ike the quenched case, the
system is allowed to lower its free energy by
choosing an optimal spatial arrangement of these
bonds. This introduces correlations between
neighboring bonds. We will show that these cor-
relations are greatest in the vicinity of the critical
point when the disorder is not too severe. The
correlations are such that there is a tendency for
like bonds to cluster together, and so in the crit-
ical region the system can be thought of as being
partially phase separated. While this changes the
nature of the pha. se transition, the overall thermo-
dynamic behavior is probably very similar to the
quenched case when the disorder is weak. ' How-
ever, when the disorder is strong and there is
competition between ferromagnetic and antiferro-
magnetic bonds, there are important differences

between the two cases. For example, when P(J)
=P( J), -a spin-glass phase may occur in the
quenched system' but does rgot occur in the an-
nealed system.

The annealed case is mathematically tractable
because it involves averaging the partition func-
tion rather than the free energy. In the quenched
case the free energy is proportional to (lnZ)„
where Z is the partition function and c denotes a
configuration average. In the annealed case the
free energy is proportional to ln(Z')„where the
prime on the partition function means that a chem-
ical potential has been incorporated into the sys-
tem in order to produce the required distribution
P(J). There is a quite different mathematical
structure in the quenched and annealed cases. For
example, Qriffiths~ has shown that the free energy
of a quenched dilute ferromagnet is a nonanalytic
function of magnetic field H at H =0 for all tem-
peratures below the transition temperature of the
undiluted system. On the other hand, the analytic
properties of the free energy of annealed systems
seem to be similar to those of nonrandom systems.

In Sec. II we give the general solution for an
arbitrary P(J) and derive general expressions for
the energy, entropy, and specific heat. In Sec. III
we discuss a number of special cases, the one-dimen-
sional chain and the Bethe lattice, the dilute ferro-
magnet and a ferromagnetic-antiferromagnetic alloy,
a rectangular distribution and a Gaussian distribution
for P(J) on a two-dimensional square lattice, the case
of a narrow distribution, the symmetric distribu-
tion P(J) = P(- J) and its relationship to the spin-
glass problem, and finally the inclusion of an ex-
ternal field and some general properties in one
dimension. In Sec. IV we discuss the correlations
that the annealing produces among the bonds and
show how these can be calculated.

II. GENERAL SOLUTION

The Hamiltonian for the system is written as a
summation over all of the bonds
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concentrate on a single bond, as in Eq. (2). Doing
the partial trace over f~ for this bond only, we get

where

H12 Q &~& 1 2

g exp(P J; o, o, + P $, ) =Ae '~'~,

The spin variables 0 = +1 and each bond has an ex-
change interaction J» associated with it, as shown
in Fig. 1. It is convenient to let J» take on a dis-

cretee

set of values and then go to the continuous
distribution at the end of the calculation. In Eq.
(2) we have summed over all possible J& and in-
cluded an indicator function f; that is 1 if the in-
teraction is J; and zero otherwise. We have the
operator identity

so that only a single exchange interaction is asso-
ciated with each bond. The chemical potential (»
couples to the f; in (2) and will be chosen so as to
make (f;) temperature independent This w. ill
mean that the chemical potentials g» will be tem-
perature dePendent. The angular brackets denote
thermal average in the usual way.

The grand partition function " involves a trace
over both the spin variables and the f„

p, si; ~;}

eB Ct+ 8 J't e84 J-8Jg

(6)

(8)

This method utilizing partial traces has been
widely exploited by Syozi and co-workers' to dis-
cuss bond decorations in which extra spins are
placed on the bonds. The right-hand side of Eq.
{5)describes a, bond in a regular Ising model.
Doing the partial traces over the f; for al/
the bonds we may write

:"=A"' ~' Z(K),

where Z(K) is the partition function for a regular
Ising model with interaction parameter K, and
&Nz is the total number of bonds when each of the
N atoms has z neighbors. The bond occupation
factors (f;) are obtained from

with P= 1jksT, where }ts is Boltzmann's constant
and T is the temperature of the system. The method
of solution involves doing the partial trace over the
f; and expressing the result in terms of a regular
Ising model on the same lattice. ' Bather than
write out the complete expression for (4), let us

where e(K) is the two-spin-correlation function
of the regular Ising model [i.e. , e(K) =(&,o, &].
From (6} and (8) we obtain

e"

2(y, &

[1+e(K)]es~~+[1—e(K)]e'r s~& '

We can eliminate the unwanted chemical potentials
by multiplying both sides of this equation by e8~»

and summing over i to obtain

Noting that the operator equation (3} implies that

Q(fi& =1,

we can rewrite (9) as

(y;&
cot h(K —P J;) —e(K} (12)

FIG. i. Exchange interactions J» for each bond take on
series of values. The indicator function f» ensures that
only a single exchange interaction is associated vrith
each bond.

We now demand that the (f, & be temperature in-
dependent and go to a continuous distribution in-
volving an integral over P(J},
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[coth(K —»8 J) —e(K)] ' P(J) dJ = 0 . (13)

This result allows us to determine K(P) for any
distribution P(J), and so provides the link between
the random Ising model and the regular Ising rnod-
el. An exact solution can be found whenever e(K)
is known for the reference system, as it is in one'
and two' dimensions. In three dimensions good
numerical approximations for e(K) exist and we
use one in Sec. III E.

The energy per bond E can be found in a similar
way from

The entropy per bond S can be obtained from the
specific heat, but is most easily obtained from the
thermodynamic potential —kB T ln ". Thus

2 s(k»» T ln ")
Nz BT (21)

+ g (f, ) in[cosh(K —il J,) —e(K) sinh(K —PJ,)]

where the differentiation is done keeping the chem-
ical potentials $» constant. From (6), (7), and (21)
we get

+Ke(K) + PE
S S(K)
kB kB

pE = Q J; + e(K) Q J; (15)
(22)

With some manipulation of (6}, (9}, and (15}we
obtain the result

E= 1- e' K) coth K- P & K)

—e(K)]JP(J) dJ. (16)

Note again that the expression for E does not con-
tain the unwanted chemical potentials g~.

The specific heat per bond C is most easily ob-
tained by differentiating (16) with respect to the
temperature implicity. The result is expressed in
terms of the three integrals

I, = [coth(K —PJ) —e(K)] 2 P(J) dJ,

I2 = [coth(K —PJ) —e(K)] ' csch'(K —p J) JP(J) dJ,

I = cothK-P —e csch K-P J P dJ.

where S(K) is the entropy of the reference sys-
tem and the last temperature-independent term
—Q; (f;) ln(f;) goes to + ~ as we go to the con-
tinuous distribution P(J) This can. be interpreted
as an entropy of mixing. " It is only possible to
measure changes in the entropy so that the entropy
of mixing is not a measureable quantity, and we
shall neglect it. However, the remaining part of
the entropy can become negative in some cases at
low temperatures. There is no paradox, as the
total entropy in (22) is always positive. A further
discussion of this is given in Sec. IV. A similar
problem (negative entropy) was found by Sherring-
ton and Kirkpatrick in the spin-glass problem. "

The critical behavior of this model is closely tied
to that of the reference system. The critical ex-
ponents are renormalized because of a rescaling
of the temperature given by K(P} in the form of
Eq. (13). From Eq. (19) we can see that near the
critical point & e(K)/&K becomes large; then

P —P, = (I,/I, ) [e(K) —e(K,)], (23)

Differentiating (16) with respect to»8, we get

—=P' I~[1 —e(K)] —I, 1 —e'(K)—
B

Differentiating (13), we find

(18)

where I, and I, are evaluated at the critical point.
This relation is obtained if there is any disorder
so that I, 40. Equation (23) shows how the tem-
perature rescales between the disordered system
and the reference system close to the critical
point. If the specific heat in the reference system
diverges with an exponent n, " then

—= I, 1 —I, 1 —e(K)—
s e(K) (19) P —P, -(K-K,)' (24)

and thus obtain the result

—= P' ] I,[1—e'(K) ]

(20)

From (20) we see that the specific heat has a cusp
at the critical point. Near the critical point, the
specific heat is given approximately by

I2 I
B 1 1

where I
y

I2 and I, are evaluated at the critical
point. Using a subscript d for the disordered sys-
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tern, we have

a, = —a/(I —n) . (26)

critical parameters given by"

e(K, ) =tanhK, =(q —1) ',

Other exponents that involve a temperature deriva-
tive have a similar renormalization, but without
a minus sign in the numerator,

P. = P /(I —o'), ra = rl(1 —a), (27)

III. SOME SPECIAL CASES

In this section we will examine some applica-
tions of the general results obtained in Sec. II to
a number of different distributions in one, two,
and three dimensions.

A. One-dimensional and Bethe lattices

The regular Ising model is easy to solve in one
dimension' and the energy is given by

&(K) = tanhK.

Inserting this into Eq. (13), we find

(28)

(29}

which gives the K(P) relationship explicitly for
a given P(J). The energy [Eq. (16)] is given by

E= —
~ Jtanh(P J)P(J)dJ, (30)

and of course we have similar relations for the
primed indices where they are defined. Those
critical indices that do not involve a temperature
derivative such as &, are unchanged. " These
results are a special case of critical exponent
renormalization discussed by Fisher' for systems
with "hidden variables" subject to constraints.
For most of this paper we shall be concerned with
the two-dimensional Ising model, where the spe-
cific heat diverges logarithmically so that a =0
and the exponents in (27) are unaltered.

We note that Harris" has recently performed
a coherent-potential-approximation (CPA) type of
approximation on the quenched version of the mod-
el discussed in this paper. It is interesting that
he obtains our expression (13), which shows that
the annealed model with a distribution P(J) forms
an approximation to the quenched model with the
same P(J) This is di.scussed further in Sec. IV.

tanh(P, J )P(J ) dJ = (q —1) ', (32)

which agrees with the result of Matsubara" for
the quenched case if there are no antiferromag-
netic interactions present. "

We note that the mean-field result for the ref-
erence system (e, =K, =O) can be obtained from
the Bethe solution [Eq. (31)] as q-~. This is
a useful limit that we will use later.

B. Dilute Ising model

For the dilute Ising model we put

P(J }=p6(J —Jo)+(1 —p)5(J }

into Eq. (13) to obtain

2p+ [1 —e(K)] (e'» —1)
2P —[1+e(K}](1 —e '«) (34)

This result has previously been obtained by Rapa-
port. ' The transition temperature is reduced
by dilution and goes to zero at the critical con-
centration P, given by

p =2(I+e )(I —e '). (35)

The critical concentrations for the triangular
net, square net, and honeycomb lattices are
0.3522, 0.5000, and 0.6478, which are very close
to the bond percolation concentrations of 0.3473,
0.5000, and 0.6527, respectively. ' The bond
percolation concentration is where the transition
temperature of the quenched dilute bond Ising
model goes to zero. The Syozi model, " in which
a spin at the center of each bond can be either
present or absent, leads to the same value of
p, as (35). The phase diagram from (34} for the
two-dimensional square net (e, = I/W2, e'«~ =1
+v 2) is shown in Fig. 2. The energy can be found
from (16) and is given by'

where q is the number of bonds at each vertex
(q = 2 in one dimension). Inserting this result
into (13) we find, after some rearrangement, that
the transition temperature P, in the random model
is given by

where the Kdependence drops out. This is be-
cause annealing makes no difference, as all bond
arrangements have the same energy associated
with them. "

The Bethe lattice is a treelike structure that
contains no closed rings of bonds. " It is some-
tirnes called a pseudolattice. The regular Ising
model. has an exact solution for this lattice with

2 Joc
1 + ( [ 1 —e (K )] /[ 1 + e (K )]}e'» '

The specific heat can be obtained from (20). The
expression is complicated, but the height of the
cusp at the critical point of the two-dimensional
square net is given by the simple expression.
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we put P=P, D=l —P, and A =0, and Eq. (40)
results with E=P, D=o, and A=1-P. It is in-
teresting that only the quantities E, D, and A.

determine (41), so that it is irrelevant how strong
the bonds are —only their sign (+, —,or 0) is
important.

C. Rectangular distribution

0.4 0.6 0.8
FIG. 2. Phase diagram for a doute fexxomagnet and

a ferromagnetic-antiferromagnetic a/loy. The horizontal
axis gives the ferromagnetic concentration (p). The
temperature is normalized to 1'„ the transition tempera-
ture of the pure ferromagnet with P=1. The phase dia-
gram is for the two-dimensional square net (~, = 1/~2,
e2Kg 1 +~2)

C/u, =(P,Z,)'(p- —.')(2P+M2-1)(4P+W2 —3)/(1-P),
(3'f)

and we can see that the height of the cusp goes
to infinity as P-1 and to zero as P-&.

Similar expressions can be derived for ferro-
magnetic-antiferromagnetic alloys, where

P(Z) =p5( J Jo)+ (1 —p)-5(Z+Zo),

and from Eq. (13) we obtain

e's o[ 1 —2P —e(K}]+ 2e' 0[sinh2K- &(K) cosh2K]

—[1—2p —e(K)] = 0. (39)

The phase boundary for this case is also shown
in Fig. 2. It can be seen that "wrong bonds" are
far more efficient in destroying the ordered state
than "missing bonds. " The critical concentration
from (39) ls given by

P.=k(1+&, ).

The results (35) and (40) can be generalized.
By examining Eq. (13), it can be shown that the
transition temperature goes to zero when

F/(1+ e, ) + D/[(1+ e, ) + (1 —e, )e2x~ ]= 2, (41)

We examine the rectangular distribution

if J'o —5&J&go+5
P J)=

0, otherwise.

This distribution is sketched in Fig. 3 for various
values of 5/Z, . We see that when 5&Z, there are
both ferromagnetic and antiferromagnetic bonds.
For this distribution, the integral in (13) can be
done explicitly to give

1+&(K) sinh{P5[l —e(K)]j
1-e(K) sinh{ P5[l+ e(K)]) '

allowing the temperature (1/Pj, ) in the random
system to be related to the temperature in the
regular system (1/K). This is plotted in Fig. 4
for several values of 5/J, . The horizontal line at
1/K = 2.269 represents the critical point'; below
this line the system is ferromagnetic, while above
it the system is paramagnetic. The phase boundary
as a function of 5/8, is shown in Fig. 5. We see
that as the width of the distribution 5/Jo increases
from zero, the transition temperature is only

slightly depressed for 5/8, & 1. When 5/Zo = 1

all of the bonds are still ferromagnetic, but for
5/4, & 1 there is a competition between the ferromag-
netic and antif erromagnetic bonds and the phase
transition rapidly disappears. However there is an
interesting region 1.4& 5/Jo& 1.V, where there are
two transition temperatures and the system is not

ordered at zero temperature. Of course, the total
order in the system (negative entropy) decreases
monotonically with temperature. At low tempera-
tures, in this regime, the order is predominantly
associated with the bond arrangements rather than
the spine. We note that for 0&5/J, &1, the system
is fully aligned at zero temperature (1/K =0).

w CO +Q

F = l P(J)dZ, D= P('J ) dZ,
-b

That is, E is the fraction of ferromagnetic bonds,
4 is the fraction of antiferromagnetic bonds, and
D is the fraction of missing bonds (as 5-0). We
see that E+ D+A = 1 and Eq. (35}results when

1.0—

-1.0

8/J = 0.5
g a/~. =i.o

j' 8/~, =2.o

1

3.0

FIG. 3. Rectangular distribution for I'(J) [Eq. (43)l
with 6/Jo ——0.5, 1.0, and 2.0.
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1.0—

C/k6

1.0 2.0

1.0 2.0 3.0 4.0

FIG. 4. Relationship between the temperature (i/pJp)
in the square lattice with a rectangular distribution and
the reference temperature (1/Is) in the regular lattice
for several values of 6/Jo.

However, this is not true for 6/J, &1, where K is
given by the solution to

e(K) =J,/6 . (46)

Thus as 6/J, becomes larger the system becomes
progressively more disordered at zero tempera-
ture, because of the competition between the
ferromagnetic and antiferromagnetic interactions.
The specific heat is plotted in Fig. 6 [from Eq.
(20)] and the magnetization is obtained from the
formula

FIG. 6. Specific heat t"/k z vs temperature (i/PJo) for
various values of 6/Jo for the rectangular distribution on
a square net. The arrow marks the position of the
second transition temperature for 5/Jo ——1.5, where the
cusp in the specific heat is too small to show up. For
6/Jp = 0.5 and 1 .0, the height of the cusps are off the
figure at i0.87 and 1.92, respectively.

F = P(J)dJ = 0

2

For the square net this point occurs at 6/J, = I/e,
= 1.414, as can be seen in Fig. 5. Note that the

(47)

It can be seen that as 6/J, increases, the magneti-
zation becomes unsaturated at zero temperature,
and then a second critical point develops at low
temperatures. Finally, these two critical points
come together and there is no phase transition.

The point where the phase boundary crosses zero
temperature can be obtained using the discussion
of Sec. III B and Eqs. (41) and (42) and is given by

M=[1- sinh '(2K)] ' ' (46)

and is shown in Fig. 7 for various values of Ci/J, .
1.0

0

I

2.0—

1.0—

0.5 1.0 15 S/) 20

I

N

~ 0.5—z0

0
1.0
1.2
1.4
1.5

I

I

I

I

I

I

I

I

I

FIG. 5. Phase diagram for the rectangular distribu-
tion [Eq. (43)] and the Gaussian distribution [Eq. (48) j
in a square lattice (e =1/v 2, e & =1+~2. Al.so
shown as a dashed line is the transition temperature
corrected by the second moment [Eq. (49) j.

1.0
FIG. 7. Spontaneous magnetization vs temperature

(1/p Jp) on the hol'izontal axis fol various values of 6/ Jp
for the rectangular distribution on a square net.
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mean-field result (e, =K, =0) would give a horizon-
tal line for the phase boundary in Fig. 5. In this
approximation there would be a phase transition
as long as there is a nonzero average of J.

D. Gaussian distribution and weak disorder

In order to see how important the shape of the
distribution P(J) is, we have also calculated the
phase boundary for the Gaussian distribution

P(J) =(3/2v52)' ' exp[- 3(J—J,)'/25'], (48)

which has the same second moment about its cen-
ter —,'5' as the rectangular distribution [Eq. (43)].
This phase boundary is also shown in Fig. 5. The
overall shape is very similar to that obtained from
the rectangular distribution with the boundary
crossing the zero temperature axis, as given by
Eq. (47), at 5/J, =M/erf '(e}=1.647. It is striking
that the two distributions lead to indistinguishable
phase boundaries for 0 & 5/J, & 1. By examining
Eq. (13) for narrow distributions P(J), it is easy
to show that

T, = T, [1 —e, K, (M~/M, —1). ~ ], (49)

+, — 1 —«'(K—

(50)

It can be seen that the specific heat is unaffected
by the disorder unless

K25' 5 e(K}
3J aK

(51)

where the transition temperature in the disordered
system T, is shown by a dashed line in Fig. 5. The
nth moment of the distribution P(J) about J=0 is
denoted by M„, so that M, /M', —1 =—', (5/J, )' is a mea-
sure of the width of the distribution. It can be
seen that Eq. (49) works extremely well for
0 & 5/J, & 1, but breaks down rapidly as 5/Jo& 1 and
competition develops between the ferromagnetic
and antiferromagnetic bonds. The result (49) has
also been obtained by Harris" by an approximate
calculation in the quenched case. There is
probably very little difference between the an-
nealed and quenched cases for distributions where
all the interactions have the same sign. However,
we expect substantial differences when both ferro-
magnetic and antiferromagnetic interactions are
present.

The specific heat [Eq. (20)] takes a particularly
simple form in the case of weak disorder
l(5/J. )' « 1],

C =K' 1 —«2(K)
k~

which occurs only in the critical region. Thus for
weak disorder there is a crossover type of be-
havior and the randomness is manifested only in
a small region around the critical point. Indeed it
is easy to show from Eqs. (23) and (51)that if o. is posi-
tive, the randomness is important only in the region

(0 P.)—/P. ~ (5/J.)"'-", (52)

which can be made arbitrarily small by choosing
5/J, to be small (note that a& 1, as the specific
heat must be integrable). In two dimensions we
have the special case of a=0 corresponding to a
logarithmic divergence in the specific heat, and
the region defined by Eq. (52) becomes exponentia-
lly small.

P(J) =P(- J).
Equation (13) can be rewritten

(53)

p K J P J dJ= 0, (54)

where the kernel v(J) is positive definite. There
are therefore no nontrivial solutions, and we have
K =0 for all P. There is no phase transition and
the energy is given by the same expression as for
the one-dimensional chain [Eq. (30)], and the
susceptibility is Curie-like at all temperatures.

In order to understand the situation a little better
we have computed the phase boundary for a fcc
lattice (e, = 0.2474, e' ' = 1.227based on good num-
erical approximations"). This is shown in the
upper part of Fig. 8. Also shown in the figure as
a dashed line is the mean-field result corres-
ponding to «, =K, =0 in the reference system. When
J,/5 is large the two results are similar, although
the mean-field transition temperature is always
higher by a factor of 1.225. This phase diagram is
qualitatively the same for all lattices, although
deviations from the mean-field result are smallest
for the fcc lattice bacause of the large number (12)
of nearest neighbors. Nevertheless, we see that
these deviations are important, particularly when
J,/5 is small. In the lower half of the figure we
show the phase diagram for the same Hamiltonian
in the quenched case and in the mean-field limit

E. Spin glass

There has been a considerable amount of theo-
retical work and speculation recently on the possi-
bility of forming a spin-glass state' ""in which
the spins are frozen into random positions. While
it is clear that quenching is necessary to form
such a phase, it is nevertheless interesting to ask
what would happen in the corresponding annealed
case. We therefore consider the case of a distri-
bution that is symmetric about the origin,
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1.0 — PARAMAGNET
r

r
rr

I r
r

r

0.5

PARAMAGNET

1.0

1.0 1.5

The fx'88 energy I' of a x'egular Ising model in
one dimension with interaction parameter K and
with an external field term —H~~, a& added to the
Hamiltonian is given by"

—PF K+1n[coshPH+(sinh'PH+e ~)' ']. (55)

From this it is easy to obtain the magnetizationM,

M=(c) =[1+(e' sinhPH) '] (56)

and the susceptibility y(H) =sM/sH,

g(H) =Pe ' (coshPH/sinh'PH)[1+(e' sinhPH) '] '~'.

(5'1 )
It is now possible to calculate magnetic-field-de-
pendent quantities in the disordered system. The
susceptibility in the disordered system y, (H) is
obtained from Eqs. (29) and (5V) and is conven-
iently written

y (H)/g (0)=cosh(PH}[1+[g (0) sinh(PH)/P]'] ' ',

(58}

where

( ) f P(Z) dl P(J}AT

] + ~284' (59)

0.5 1.0
/N Jo/8

1.5

FIG. 8. Phase diagram for a Gaussian distribution of
exchange interactions IEq. {48)j. The width of the dis-
tribution is 6' = 6/W3. The upper figure is the annealed
calculation described in the text. The dashed line is
mean-field theory and the solid line is for the fcc lattice.
The lower figure is adapted from Pig. 1 of H, ef. ii. The
axis labels include a factor A that is 42 for the fcc lat-
tice in the upper figure and tends to infinity for the
mean-field results in the lower figure.

when all bonds (not just nearest neighbors) are
equivalent. " The new feature is the appearance of
the spin-glass phase.

It can be seen that corrections to mean-field
theory destabilize the ferromagnetic state at small
J,/5. This may also be true in quenched cases,
so that the spin-glass phase may cover a largex'
area in the phase diagram when corrections to
mean-field behavior are taken into account.

F. Inclusion of a magnetic Geld in one dimension

As noted in the general discussion of Sec. II, the
inclusion of a magnetic field does not present any
difficulties, as the f& operators are not involved.
Unfortunately, no exact results for regular Ising
models in a magnetic field H are available outside
one dimension.

and we have the interesting result that the disorder
only enters into the magnetic-field-dependent sus-
ceptibility through y (0). This is also true for the
magnetization M in the disordered system,

M =(1+[r (0) sinh(JBH)/P] '} '~'. (60)

A knowledge of y (0) is therefore sufficient to
determine all of the magnetic-field-dependent
quantities in one dimension. This is of course not
true in higher dimensions.

For the dilute ferromagnet [Eq. (33)], the sus-
ceptibility [Eq. (59)] becomes

y (0) =P(1+P tanhPH)/(1 —PtanhPH),

a result previously obtained by Mortis and by
Cabib and Mahanti. " For the symmetric case
P(Z) = P(-Z) we have K = 0 for all P, so that the
magnetization and susceptibility are as for free
spins. This situation has recently been studied
in a computer calculation" for the quenched case.
The x'esults show that the largest differences be-
tween the annealed and quenched cases occux at
low temperatures —a conclusion that is consistent
with the discussion in Sec. IV.

lV. CORRELATIONS AMONG THE BONDS

%8 have obtained a number of results for an-
neal. ed systems, and it is important to understand
more about the annealing process itself in which
both the spins and the exchange intexactions 4
are al. lowed to come into equilibrium at each tem-
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perature. %'e included a chemical potential. , so
that the probability of a single bond being J& is
determined by the temperature-independent dis-
tribution P(J&}. However, if we ask for the joint
probability distribution P(J, , J, ) that different
bonds have exchange interactions J; and J, , it
is not P(J, )P(J, ). That is, the system can lower
its free energy by choosing a nonrandom arxange-
ment of bonds. It is again convenient to work
out these correlations for a discrete distribution
of the J; and then go to the continuous distribution.

The expectation value of any product of operators
including an f, may be written

&f " &=[»(f " )e '"]/[»e '"] (62)

where the trace is over both the spin operators
(o) and the indicator functions (f; ) for each bond.
The f; operator in the numerator of Eq. (62) in-
troduces an extra factor

g, and f, to a bond with associated spins o„and
o„„. Using the operator equivalent from Eq. (64)
we find that

&f;f, & =&f;& &f,)(I+«),
where c is a measure of the correlation between
the bonds and is given by

&o.o.o.o,"& -
& o.o.& & o,o,"&

[ coth(K- PJ, ) —«(K)] [ coth(E- PJ, ) —«(ff)]

%e see that the bond correlations in the disordered
system are proportional. to the four spin-cor-
relation functions of the regular Ising model.
These functions ~(r) have been calculated for the
two-d1. mensional Ising model by Stephenson 8 for
spins on the same rom, and are shown in Fig. 9,
where

exp(P(,. +PJ, o,o, )/Ae '~'2 (63) ~(r) =&o,o,a„o„„&-(o,o, & & o,o„,&. (69)

when the partial trace over the f, is done. Using
Eqs, (6) and (9), we arrive at the operator equi-
valence

f; —& f,&[coth(E- PJ, ) —cr,o,]/
[coth(Z - PJ, ) —«(Z)], (64)

where f; is an operator in the disordered system,
and on the right-hand side of the equation we have

o,o„which is an operator in the reference system.
Of course the operator f, refers to the bond with

spins o, and o, at either end, but we have sup-
pressed the bond labels for clarity. The inter-
pretation of Eq. (64) is that the operator f, in

the disordered system has an OPeratox equivalent
which is a function of o,cd in the reference system
(the regular Ising model). If we take expectation
values of both sides of Eq. (64) we get the neces-
sary result &f;& =&f, &. The energy can be found
from the operator f; a,o„which, using Eq. (64),
becomes

z I

(I)- "

O.t5-(2)= = =
(

LL (
Z (

0.10

OC

I

I

I

f

I

For the nearest neighbors [(1) and (2) in Fig. 9]
this reduces to a two-spin-correlation function
and may be obtained from Kaufman and Onsager. "
%e see that these correlations are greatest in
the vicinity of the critical. point. If we sum the
correlations over all Chstinct pairs of bonds we
get

g u(r) = —1+«'(K),8 «(E)
8E

—
&f,&[a,o, coth(K- PJ; }—1]/

[coth(E- PJ, ) —«(K)],

&f~o o.& =&I;&[«(f~)coth(&-PJ;) —I]/
[coth(IC- PJ, ) —«(K)];

using Eq. (14) we get the result for the energy
[Eq. (16)] as we go to the continuous distribution.

We want the expectation value of f,f, , where

f; refers to a bond with associated spins o, and

FIG. 9. Four-spin —correlation function oJ(r) fEq. (69)|
for the reference system [square lattice (Befs. 28 and
29)]. The sites involved are indicated in the upper left-
hand par t of the figure. The dashed line is the sum of
these correlations over all pairs of sites [Eq. (70)J on a
vertical scale increased by a factor of 50.
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which is essentially the specific heat of the ref-
erence system and is also shown in Fig. 9.

The information in Fig. 9 is the input informa-
tion necessary to determine bond correlations
in the disordered system. In Fig. 10 we show
the correlation c between adjacent bonds in the
dilute ferromagnet. It can be seen that this cor-
relation is never very large, but is greatest in
the critical region. It is negligible at high tem-
peratures but not always negligible at l.ow tem-
peratures. It is also positive, which means that
like bonds tend to cluster. This can be regarded
as a tendency to partially phase separate. Indeed
from Eq. (68) with J, =8, we can see that c is
always positive for like bonds as the four-spin-
correlation function in the numerator is positive. '
This tendency for like bonds to cluster that is most
pronounced in the critical region may be regarded
as a tendency for the system to phase separate.

0.04—

For a continuous distribution, the result (67)
must be rewritten in terms of the joint probability
distribution P(Z, , Z, ),

P(J;,4, ) =P(J, )P(J, )(I+c),

with the same expression (68) for c. In Fig. ll
we show the probability distribution on a bond

when its neighbor has a particular J associated
with it. The tendency for l.ike bonds to attract
can again be cl.early seen. Final. ly, in Fig. 12
we show how these correlations behave as func-
tions of temperature. Notice that the correlations
are negative, because the two bonds are at the
extreme ends of the rectangular distribution and
so tend to avoid each other.

Although these correlations give some idea of
the effect of anneal. ing, they do not tell. the whole
story. Even if there was no correlation between
pairs of bonds, this would not imply that there
was no difference between the annealed and quench-
ed cases. The converse is true. In the one-di-
mensional chain, discussed in Sec. IIIA, the four-
spin-correlation function factorizes so that
~(r) =c =0. In the case of a symmetric distribution

= 0.5
.51

0.03— 0.50

gg 0.02-

~ 0.02-
CL.

.Ol— .01—

1.0
J/J~

2.0

I/P J~
FIG. 10. Bond-bond correlation [c from Kq. (67) } for

neighboring bonds [marked (2) in Fig. 9) for the dilute
ferrornagnet at concentrations of 0.5, 0.75, and 0.90
(see Fig. 2). The transition temperatures are shown by
arrows.

FIG. i i. Probability distribution of exchange inter-
actions on a two-dimensional square net for a pair of
neighboring bonds [marked (2) in Fig. 9t when one of
the bonds has J/J0=0. 0 (solid line), J/Jo=i. 0 (long
dashed line), and J/J'o = 2.0 (short dashed line) for the
case 6/Z, =1.0. All three cases are at the transition
temperature. Using Eq. (13), (67), and (68), it can
easily be shown that there is unit area under each of the
three curves.
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the reference system at K=O [as P-O, we always
have A-0 for any P(&)j. At very low temper-
atures (again neglecting the entropy of mixing}
we have (P ~)

S/}t, =S(h)/}t, +-.'[1+e(A. )] in-.'[1+e(ff)]

+-,'[1 —e(A )j ln-.'[1—e(Z)], (76)
~ -0.2
OC
Od

-0.1

.0

where we have to compute the value of K for P =~
appropriate to a given P{J ). This entropy can
become negative. For example, in the dilute
ferromagnet at the critical. concentration for the
square net (P, = 2) the entropy at zero temperature
can be obtained from the critical. values for the
regular Ising model (S,/ks = 0.1532, e, = I/W2) 7

thus for p-~

I/P Jo

I

2.0

Flo. 42. Correlation fe in Eq. (Vi)) between the ex-
change interactions on neighboring bonds as a function
of temperature (1/PJp) for various values of 6/Jo when
one bond has an exchange Jo+ 6 and the other Jo —5.
The transition temperatures are marked by arrows.
The dashed line refers to bonds marked (1) and the solid
line to bonds marked (2) in Fig. 9. The correlation for
5/J0=0. 5 (not shown) has a maximum magnitude of
0.0076.

P(Z) = P{-J), we have %=0 for all p and the op-
erator equivalence [Eq. (64)] becomes

f,—&f,.)(1—. g,g2tanhPJ;). (72)

x(1 —tanhP J, tanhPJ, tanhP J, ), (73)

~here i, j, and 0 refer to the three bonds with
exchange interactions 4, , 4;, and 4~. One might
imagine that higher-order correlations such as
(73) are of little consequence —in fact, they are
responsible for the nonoccurrence of the spin-
glass phase.

It is instructive to examine the expression for
the entropy per bond [Eq. (22)] at zero and in-
finite temperature. If we neglect the entropy of
mixing terms, at very high temperatures (P-0)
we have

S/ks = (2/z) ln2,

where (2/z) in2 is just the entropy per bond of

(74}

Products of f, operators factorize unless they
go around a closed l.oop, so that the spin operators
in (72) can be paired off. In the fcc lattice, there
are triangles of bonds; thus

&f f f.&l=&fi)&f'&&fa&

S/}is = —0.2633,

which we see is negative. This apparent paradox
disappears if we add the entropy of mixing In(2)
=0.6931 to both (74) and (76).

~. COXCLUS&Ox

%e have discussed the thermodynamics of an
Ising model with a distribution P(J) of exchange
interactions in the annealed limit in which the
complete system (spine and bonds) is allowed
to come into thermal equilibrium. Although the
system is well defined thermodynamically, actual
physical situations are difficult, although not
impossible, to imagine. For example, if the ex-
change goes through a ligand it might be possible
to put the l.igand into an excited state optically and
get a different exchange which might be mobile
via exciton hopping. "

Annealed-bond systems also approximate quench-
ed-bond systems which are more easily realized
(e.g. , an alloy with one kind of magnetic ion but
two kinds of ligands}. Available evidence"'""
(see also Sec. IV) suggests that the annealed- and
quenched-bond problems have similar thermody-
namic behavior when the disorder is not too strong,
except in the critical region.

Kasai and Syozis~ have used similar reasoning
to obtain Eqs. (13) and (16) and have discussed
phase diagrams for a number of distributions.
Also, Falk" has rederived Eq. (10) in a slightly
more general form using a very elegant technique
that util. izes probability distribution functions
xather than chemical potentials. His technique
provides some useful insights into the relation-
ship between the quenched and annealed models.¹teadded in proof. Recently H. Au-Yang, M. E.
Fisher, and A. E. Ferdinand [Phys. Hev. 8 13,
1238 (1976)] llave studied 'tile pl'opertles of 'two-
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dimensional Ising models with a superlattice of
point defects. For the case when P(x) = (1 —c)
x 5(J —x) + cd(cf' —x) we find from Eq. (13) that the

transition temperature is reduced by a factor 1
+ (c/K, }[s,—coth(K, —p,J')] ' for small c which

agrees with the result of Au-Yang et al. [see Eqs.

(4.13) and (4.1'l)] if the appropriate parameters
for the square net are used (e, = 1/v 2, e' ~=1+v 2}.
It is probably generally true that the leading cor-
rection to the transition temperature is the same
for quenched and annealed systems.
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