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Study of the vibronic effects from the Zeeman-field —induced Mossbauer spectra of Fe + ions in
octahedral symmetry. I. The effective Hamiltonian formalism
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The importance of the Zeeman-field-induced quadrupole and hyperfine interactions in Jahn-Teller active ions
is demonstrated with particular reference to Fe'+ in octahedral crystals such as CaO and KMgF3. An effective
electron nuclear Hamiltonian is derived from general symmetry principles, whose parameters are calculated by
perturbation procedure, incorporating the vibronic effects in terms of Ham reduction factors between spin-

orbit states. Relevant theoretical expressions for the Mossbauer transitions are given so that these parameters
can be determined experimentally from the analysis of the Mossbauer spectra.

I. INTRODUCTION

Accurate measurements of the nuclear hyper-
fine and quadrupole spectra at low temperatures
in paramagnetic impurities in insulating crystals
give useful information about the ground electronic
spin-orbit levels. ' In systems where there are
low-lying excited spin-orbit levels, one should be
able to vary the amount of mixing of these levels
with the ground one by suitable choice of the ex-
ternal magnetic field. Particularly for the case of
the magnetic impurities having strong Jahn-Teller
interactions with the lattice, the study of the hyper-
fine splitting with different orientations and magni-
tudes of the external field might enable one to make
inference about the Jahn- Teller coupling strengths
of the low-lying levels. With this idea we develop
the magnetic-field-dependent hyperf ine and quadru-
pole interaction Hamiltonians for the case of Fe"
ion in octahedral symmetry. The nuclear quadru-
pole interaction is zero for spin-orbit (s.o.) levels
in cubic crystalline fields unless any strain field'
or magnetic field, ' ' either applied externally or
present internally due to magnetic ordering, re-
moves the degeneracy of the s.o. levels. This
leads to a net quadrupole splitting due to the dif-
ference in the thermal population in these splitted-
up levels. Generally only the field-independent
part of this quadrupole interaction for a particular
s.o. level is considered and we shall call this part
the pure quadrupole interaction (pq) to distinguish
it from the part which is proportional to linear and

higher powers of the field, which we call the
magnetic-field-induced quadrupole interaction (iq).
Similarly for the hyperfine interactions, the part
due to the internal field at the nucleus and inde-
pendent of the external magnetic field is called the
pure hyperfine (phf) interaction and the part pro-
portional to the external magnetic field is call.ed

the induced hyperfine effects (ihf).
The importance of these induced effects in the

Mossbauer spectra was first pointed out by
Ghatikar' in the case of hexagonal rare-earth
trichlorides and by Ganiel and Shtrikman' in the
case of Fe" ion in cubic symmetry. Ghatikar
calculated the coefficient of the effective quadrupole
Hamiltonian linear in the Zeeman field P„viz.,
S,H, [1', ,'I(I+1) f—or—eachof the low-lying s.o.
levels of the rare-earth ions considering pertur-
bations on these s.o. levels (i) of the second order
due to the Zeeman and pure quadrupole interactions
and (ii) of the third order due to the Zeeman inter-
action and second order in hyperfine interaction
(BJ.f ). Then taking the thermal average of the
effective Hamiltonian over all the spin-orbit states,
the nuclear quadrupole splitting is obtained as a
function of temperature. Ganiel and Shtrikman, '
on the other hand, have derived expressions for
the temperature dependence of the field-induced
(either external or internal field) quadrupole and

hyperfine interactions for the particular case of
Fe" in an octahedral lattice treating two different
cases. In the first case, the Zeeman energy is
very small compared to the spin-orbit energy and
the thermal energy, which is physically realizable
for magnetically ordered crystals like KFeF, near
the transition temperature. In this case, Ganiel
and Shtrikman estimated the temperature-de-
pendent field gradient directly by expanding the
field-gradient tensor in powers of AH/KT and
calculating its thermal average over all spin-orbit
states. Evidently this approach is not applicable
to the case of Fe" impurities in diamagnetic
crystals at low temperatures. In such cases,
Qaniel and Shtrikman first calculated the first-
order effects of the Zeeman field on the spin-orbit
states and then derived the expression for the
field gradient between these perturbed states,
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taking account of the lowest spin-orbit triplet.
This latter approach is essentially the same as the
effective-Hamiltonian formalism used by Qhatikar.
The present work differs from these earlier works
in the fact that we have analyzed the magnetically
induced quadrupole interactions for the dynamical
case, whereas in these earlier works they are
considered in the static limit. The results of
Qaniel and Shtrikm» for Fe ion in octahedral
symmetry show that both the field-dependent and
the field-independent parts of the quadrupole split-
ting d Ez would be the same in magnitude but op-
posite in sign, as the external field is changed
from the [100]to the [111]direction. The same
conclusion had earlier been reached by Ham'—
also in static limit —for the field-independent or
the pure quadrupole interaction in the case of
MgQ:Fe". Subsequently, Ham, Schwarz, and
O' Brien' considered the dynamical ease for
MgQ: Fe which confirmed that EEo (pure) would
change in sign as the field direction is oriented
from the [100]to the [111)direction and whatever
diffexence in magnitude it might show could be
attributed to the different strengths of the coupling
of the impurity-ion orbital to the E and 7, modes
of vibration of the octahedral complex. The Leider
Pipkorn' Mossbauer study of MgO: Fe" with an
external field H 50 KOe shows that AEq changes
sign with the orientation of the field but the mag-
nitude remains the same. This result could be
interpreted in the background of the dynamical
theory of Ham, Sehwaxz, and O' Brien' as both
types of the Jahn-Teller coupling —one involving
the E mode and the other the T„mode —being of
more or less equal importance for the 'T, term
of Fe" in MgO. That the experimental and the
theoretical results tallied so mell, is owing to the
fact that MgO: Fe'+ is a case of comparatively
weak Jahn-Teller coupling so that the induced
quadrupole effects are negligible at field strengths
of the order of 50 kOe at mh1ch the experiments
were done. But the expression for hE given by
Ham, Schwarz, and O'Brien' might notbe true for
the cases of KMgF, :Fe"and CaO: Fe"w'here a sur-
vey of available experimental results indicates that
in these systems the spin-orbit coupling parameter

~
& ( undergoes a reduction much larger than that

in MgO. ' Since a Zeeman field of the order of
50 kQe would correspond to about 8 cm ' for the
Fe2' ion, the ihf and iq interactions might be as
important as the phf and pq interactions in these
systems. Hence only by extending the Ham eI, al.
theory to include such induced effects, could one
hope to correctly /educe the Ham reduction factors
from the Mossbauer studies in these systems.

In Sec. II me develop the effective HamGtonian
for the field-induced nuclear quadrupole and hyper-

fine interaction and calculate by perturbation
theory the parameters of this effective Hamiltonian
for the lowest spin-orbit triplet (8= 1) of Fe" in
octahedral symmetry. Terms linear in H have
only been calculated. The advantages of using the
effective-Hamiltonian formalism is that it can be
used for any relative values of the field and the
thermal energy and the vibroni. c coupling ean be
introduced without much complications. In Sec.
III we derive the explicit expressions for the qua-
drupole splitting and the hyperfine field that are
observed in the Mossbauer transitions of Fe" in
octahedral symmetry with the external magnetic
field parallel to the direction of propagation of the
y rays. It is shown hom from the study of these
spectra for different magnitudes and orientations
(with respect to the crystal axes) of the field, one
can deduce the field independent 4E+ and Hj,f, and
how from these values one ean derive useful in-
formation about the Ham reduction factors and the
nature of the vibronic coupling of the spin-orbit
states. In Sec. IV, me discuss the general impli-
cations of these theoretical results for different
Jahn- Teller systems.

II. EFFECTIVE ELECTRON NUCLEAR HAMILTONIAN IN

THE PRESENCE OF THE ZEEMAN FIELD FOR Fe2 '
ION IN

OCTAHEDRAL SYMMETRY

In an octahedral crystal field the ground term
'D of the Fe2' ion splits into an orbital triplet
'T~ and an orbital doublet 'E, lying at about
10100 cm ' above the ground triplet' (Fig. 1).
The spin-orbit interaction splits the ground
orbital tr1plet 1nto a ground spin-orbit tr1plet I„
with a doublet I'~ and a triplet I4~ lying at an
energy -2~ above it. Higher above, at -5X, lie a
singlet I; and tmo tr iplets I" and I' . In the
presence of the vibronic coupling betmeen the tri-
plet 'T,~ and the E~ and T,~ modes of vibration of
the molecular complex formed by the impurity
ion and the surrounding ligand ions, these spin-
orbit-level splittings would, in general, be more
complicated. The exact nature of the vibronic
spin-orbit levels can be knomn only by solving the
total matrix (~X~b+XL0.] ) within the orbital 'T~
manifold. In the particular eases treated here,
the s„o. splittings are much smaller than the
effective frequency of vibration of the molecular
complex which is usually of the order of the opti-
cal phonon frequency of the host crystal, ' so that
it might be argued that the ground and the excited
vibronic s.o. levels mould still be of I;~, and I~
and I«characters respectively —these latter
nom being the s.o. orbit states coupled to phonon
states. Higher excited levels are not considered
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because for the external magnetic-field strength
under consideration, they are expected to have
negligible mixing with the ground triplet I;~. To

study the hyperfine and quadrupole splittings of
the Fe"Mdssbauer spectra, we have to consider
the following basic interactions [Eqs. (1)-(5)]:

(orbi&) (diPOlar) (~fit~~)

a g & '&„(&& T& —sag&a-', &«r &s&r &I &r,'&-&& &r &s&r && &r,'&}Sr'&-as &).
i

In the second form, the nuclear and the electron
operators are separated and this form would be used
in our perturbation calculations later. p.~, p,„,and

g~ are the Bohr magneton, nuclear magneton, and
the nuclear Land6 factor, respectively. l =1 is
the effective orbital quantum number describing
the orbital triplet T~ whose real L is 2.
for Fe" ion and k is the strength of the contact
interaction, l,(r') and (I, S },(r') are the second
rank tensor operators transforming as the ith
component of the I' representation as has been
defined in Ref. 10.

XZssmsa& = &&&SH ( 1 +2S) s (4)

(5)

The first- and all higher-order effects of these
basic interactions on the ground triplet I;, can be
equivalently treated by describing an effective
electron nuclear Hamiltonian for this level. The ef-
fective-Hamiltonian formalism is very suitable for
spectroscopic analysis as is well known in the case
4f the spin Hamiltonian" for EPR studies. For any
general value of X, the effective quantum number
describing the ground spin-orbit level and I, the
nuclear spin the effective electron nuclear
Hamiltonian in the presence of an external magnetic
field 8 can be written in the following general
form".

eff
n„ f;n2, S;

n3 ~ 7

const (n„n; n„P; n„y)
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FIG. 1. Schematic diagram of the splitting of the ~D

term of Fe2+ in octahedral symmetry in a dynamic cry-
stal-field model.

xg const (i, j, a)

The primary requisite that the Hamiltonian of any
impurity ion is invariant with respect to all opera-
tions of the point-group symmetry of the host
matrix as well as with respect to time reversal,
has been used to decompose the electron nuclear
Hamiltonian as above, in terms of the basic
operators J, I, and H. J„,, I„,, and H„denote
tensor operators built of J, I, and H of ranks n„
n„and n„respectively.

Individually, J„, I„, and II„, can belong to the
I', I'&, and I'& representations, respectively, of
the point group —more precisely, corresponding
to the ith, j th and kth components of these re-
spective representations, such that the product
I' & I'&~ x I'& is always the identity representa-
tion I;. The ranks of the tensors n„n„and n,
are limited and determined by two factors: (i) n,
and n, are limited to the maximum values of 2J
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and 2I, respectively, because for operators of
orders higher than these, the matrix elements
would be zero. n„on the other hand, is limited
from the consideration of the particular problem
being studied, which in our case is either 0 or 1
as we are here interested in the field-independent

and the linearly field-dependent hyperf inc inter-
actions. (ii) The invariance of the total Hamiltonian
with respect to time reversal imposes the addi-
tional condition that n, +n, +n, always be even.
For cubic symmetry this general expression of
3Ceff can be reduced to the following form:

3C ff —p. g J H+B J I+ P J I ' I (I'' +P J (I" I (I'

+ R J, H I' I I'+R J, H I', I I'
5

+ r, ~, a, r, +r, r, a, r,' J, r,'+r, r, e, r,' J, r,' -]„gra,
+Z ++ HF ++ PQ ++ IQ N 2 + IHF ++ iV Z

The first two terms are~ respectively, the electron-
ic Zeeman (3C~) and the hyperfine interaction (3C„'v)

terms where the constants are written in the con-
ventional form. ' The first term on the right-hand
side in large parentheses represents the pure
quadrupole interaction (3C~), whereas the next
one is the Zeeman-field-induced quadrupole
interaction (3C jo). In the third term in large
parentheses the first term associated with T, is
of the form of the direct nuclear Zeeman inter-
action (3C„'~) given by the last term. This is, in
effect, a second-order contribution (3C'„z) to the
nuclear Zeeman interaction due to the real
electron Zeeman (3C~) and hyperfine interactions
(3C„,) and this would be shown to have an impor-
tant isotropic contribution to the hyperfine splitting
of the Mossbauer transitions. On the contrary, no
such second-order term in the electron Zeeman
interaction has been taken into account because
though such a term could arise owing to the
second-order perturbation of the nuclear Zeeman
(3C») and hyperfine interactions (3C„,} its magni-
tude would be comparatively negligible. The two
terms associated with T, and T, in the third ex-
pression in large parentheses obviously give the

field-induced hyperfine interactions (3C,„„)and
this would give rise to an anisotropic contribution
to the hyperf inc splitting.

We shall now evaluate the constants of this ef-
fective Hamiltonian X,ff in terms of the parameters
of the true electron and nuclear interactions de-
fined in Eqs. (1)-(5). For this, we shall consider
higher-order mixing of the excited vibronic s.o.
levels T~ and T with the ground one (r~) due to
these true interactions. We first define all possi-
ble reduction factors' of different electronic
operators between the vibronic s.o. levels of Fe"
involved in these calculations. These reduction
factors indicate the degree of quenching of the
different electronic operators in the spin-orbit
states owing to the dynamic Jahn- Teller effect.
Such calculations were first done by Ham" in an
orbital triplet state which were extended by Ham,
Schwarz, and O' Brien' to the case of the ground
spin-orbit states of Fe". Further extension has
been done in the present work where the perturba-
tion calculations involve excited spin-orbit states—
thus making it necessary to define the quenching
or the reduction factors in both the ground and the
excited spin-orbit states.

The reduction factors within the ground vibronic s.o. triplet I',~:

K (5, 5) = i &$(r ) 1
t

l
y(r', )&, K, (s, 5}= i & y(rl) I @y( r l)&,

K,(s, s)= —P-, &y(r', )lt, (r,')lg(r,')&, K, (s, s)= —z2 &y(r,')lt, (r,')l(t(r', )&,

K„(s, s) = i M & y( r,') l [ t, (r, ) s (r,)],(r,') l y(r ', )&,

K, (s, s) = i& q(r,') l [t,(r, ) s (r,)],(r ', ) l y(r,')&.

The reduction factors between the ground 1~ and the excited I'3g.

K (5, 3)=i&/(r', )ll lp(r, )), K~(5, 3)=i &/(r,')ls, lq(r', )&,

K (5, 3}=0, K (5, 3) =- M2&P(r', )lt, (r,') ly(r,')&,

K„(5, 3) = i M ( y(r ', ) l [t,(r, ) s (r,)],(r ', ) l gr ,')) .
K, (s, 3) = i & y(r', ) l [t,(r, ) s (r,)],(r ', ) l

y(r', )&.

(10)
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Similarly between the ground T~ and the excited T4~, these are:

K, (5, 4)=f&y(r,')If, ly(r,')&, K, (5, 4)=f&y(r,')Is, l{{(r:)&,

K,(5, 4)=- M&y(r', )(I,(r,') l{{(rl)&, K,(»4) =-~2&0(rl)II.(rl)le«'}&
K (5 4) = 2 W& fp(r ) ([I (r, ) s (r, )],(r,') I y(r,')&, K, (5, 4) = f & y(r,') I [lz(r, ) s (r, )),(r,') I y(r,')&.

y(r,') = ——,'(I it& —
( i —I)),

0 (r', ) = (I/~2)((11) +
I
1 —I&},

%(rl) =
I »&.

(13)

On the right-hand side of Eqs. (13) the matrix
elements of the true Hamiltonian are always with
respect to the true vibronic s.o. states. Using
this equivalence and the above definitions of the
matrix elements we get the following relations
for the effective Hamiltonian parameters:

gz = —Kz, (5, 5) + 2Kz (5, 5),

2pepzgjv &r &3z

x [K~(5, 5) —
kKz (5, 5)+,K„(5, 5) —g'Ke(5, 5)],

I', = ——,
' e Q&r '&~zKe(5, 5),

In the effective Hamiltonian Xeff [Eq. (8)], the
electron Zeeman (Xz), the hyperfine (X„'„)and the
pure quadrupole (X pc) interactions are all first-
order terms and for these within the ground mani-
fold we have the following equivalent relationship:

&y, (r,)lx'(4, (r, )&-=&{{,(r, )lx(y, (r, )&. (12)

where X is the corresponding true interaction
term defined in Eqs. (1}-(5). It should be noted
that on the left-hand side of Eq. 12 the matrix
elements of the effective Hamiltonian are to be
evaluated between the states P's characterized by
the effective quantum number J which in our case
is 1. These are given by

X,'~=a, Z, e, r,' 1,(r,'

+R, Z, II, r,' I, r,' .
i

When the field is along the [001] direction, this
simplifies in to

(15)

Xro =Ra v ', JzKzI2(rs)-
+II, M [Z„K,I,(r,') +Z,K,I,(r ',)),

so that within the ground triplet J =1, we have

& y(r,') Ix I, I y(r', )&
= -MII, I K, I,(r,'),

&0 (r,')(xio lk(r', )&
= ~z I~SIKzI2(F5}

(16)

(17)

To evaluate R, and R, we have to use the following
equivalence with the second-order energies owing
to the real interactions Xz and Xpq.'

&e(r,')(xylol@(r:)&=-g, &y(r.')Ix, le. &

x& y„ I xp, I p(F 5z)&, (18)

where 4„ is the energy separation between the
ground and the excited levels. Now the right-hand
side is

I, =-,'e'Q&r-')„K, (5, 5) .
The evaluation of the constants of the effective
Hamiltonians K,'&, X„'z and X,'~, on the other hand,
involve second-order perturbation calculations
due to the mixing of the excited I'I and I~ levels
with the ground I;~ by the external magnetic field.
For example, let us take the case of the induced
quadrupole Hamiltonian which is given by

—(I/~, ) [& t{(r,') (x,(r,') ( g(r,')& & y(r,') (xh, (r,') ({{(r',)&+( {({r,'}(x~,(r,'}(y(r,')& & y(r,') Ix,(r,') (y(r', )&]

=(2v2/7M3)(i/6, )peKze'Q&r ')3zKz(5, 4)[Kz(5, 4) —2Kz(5, 4)] I (I ) . (19)

Equating this with Eq. (17), we have

.(, )[- .(, )+,(, )].
1

(2O)

Similarly

.= l(PBe'Q&r '&z)[(n, ) 'Kr (5, 4) [-K, (5, 4) +2K/(5, 4))+(6,,) 'K, (5, 3)[-K,(5, 3)+2Kz(5, 3))}.
(»)
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Similarly for the effective Hamiltonians X~[~ and X~f, we derive:

To = z (4ps'„g„(r '),z)((b, ,) '[- K~ ( 5, 4) + 2Kz(5, 4}]{K~(5, 4}—kKz (5, 4)+,~ [K„(5,4) —Kz (5, 4)]}
+ 2(6,) ' [-Kz(5, 3)+2Kz (5, 3)]{K~(5,3) —kKz(5, 3)+,~ [K„(5,3}—Ks(5, 3)]}),

(22)

T =gu P~g (~ ') ((c ) '[-K (5, 4)+2K (5, 4)]{K (5,4)-kK (5, 4)+ —,', [K„(5,4)-K (5, 4)]}

—(&,) '[-K (5, 3}+2K,(5, 3)]{K,(5, 3)-kK, (5, 3)+ —,', [K„(5,3}-K,(5, 3)]}), (23)

T5=-2i Bl zgz(& '&%(2(~,) '[-K, (5, 4)+2K, (5, 4)] {K,(5, 4)- kK, (5, 4)+ —,', [K„(5,4)-K, (5, 4)]}

—(&2) '[-K~(5, 3)+2Kz(5, 3)]{Kz(5,3) —kKz(5, 3) + —,4 [K„(5,3}-Kz(5, 3)]}).

The next logical step would be to evaluate the re-
duction factors, i.e. , the matrix elements of the
different electronic operators within the real vi-
bronic s.o. states. This is, in general, a very
complex problem for any arbitrary strength of
X„~ and X„.%e shall discuss this in the follow-
ing paper" in the background of the analysis of
experimental results.

III. THEORETICAL EXPRESSIONS FOR THE MOSSBAUER

TRANSITIONS IN Fe~ '
IN OCTAHEDRAL SYMMETRY

The effective Hamiltonian for the $ = 1 ground
level of the Fe" ion given by Eq. (7) is described
in the crystal axis system. To study the Moss-
bauer spectra with different orientations of the
Zeeman field, it is convenient to transform this

Hamiltonian to a coordinate axis system whose
Z axis is given by the Zeeman-field direction.
Using the rotation-group matrix elements D, '

between the two sets of axes we can write

j,(r') = P D"~ ~jz

I,(r .') = g D' &'Iz', etc. ,

where the left-hand side operators are in the
crystal axis system and those on the right-hand
side are in the field axis system. As the Zeeman
field quantizes 4 along the field direction, we
shall have p. = p. '=0. Thus in the field axis system
the effective Hamiltonian of Eq. (7) would be
transformed as follows:

~ tz, a)p,'(z, g D,'& 'D,"i'+R, pa."''a, ''}
(25)

In terms of the direction cosines l, m, and n of the field 8 with respect to the crystal axes, we have

Also we have

j20=(1/46)[3jz- j(j+1)], etc.
So that, putting &=3(l'm'+m'n'+n'f'), we get

X (f = peg' jzH+Bq jzIz+ 8 (3 jz —2)[3Iz I(I+1}][P~(1 5}+P~5]

+ q(jzH}[3Izz —I (I+ 1)][R,(1 —5)+R,6]+TOIzH+ q(3jz —2}IzH[TB(1 —5)+ T,5] —yzg„I zH ~ (29)
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kg = P-sgHo i1zgg(H1f+H)Is

+ [3I', -I(I+1)][P,(1 —5)+P,5]

+ —,
' [3I', -I (I+1)][H,(i —5)+Z,5]H,

mhere

H„, =b - t H--, [f,(1-5)+t,5]H.

Denoting the four nuclear tx'aQsltions

(33)

FIG. 2. Scbem8tlc d18gx'Rm of tbe Mossb8Qex" tx'Rnsl-

tions 8.ssoci8ted v6tb the Jg -—-1 level of the lowest
vibronic s.o. level, cf the Fe2+ ion in oct8hedx8, 1 symme-
txy.

The Zeeman field splits the J =1 tx'iplet into three
sillglets of w111ch cTg = 1 is the gl'Guild oils (F1g. 2}
and at temperatures -4.2 'K, only this 1evel mould

be populated. The effective nuclear Hamiltonian

mithin this Jz = -1 level can be mritten domn from
the above equation as

X„=—PsIIH —BIx+ [3I~~ —I(I+1)][P,(l —5)+P,5]

——,'H[3I', -I (I+1)][a,(1 —5) +Z,5]

+TOIsH+ 3 IgH[T3(l —5)+T~5]- i1~ggIrH .
(30)

In this equation B, To, Ts, and T, are px'oportional

to )1„g„asgiven by Eq. (14) and (22)-(24). Thus

dfi ' gth gn t' f ld tth 1

and putting

(32)

that mould be observed in a M5ssbauer spectro-
scopic se'tup with the external magnetic field
aligned in the dixection of propagation of the y rays
by E„E„E„andE4, x"espectively; the quadru-

pole splitting mill be given by

I1EO= (E~+E~) —(E2+E~)

= 2[P,(1-5}+P,5] -4[It,(1-5) +Z,5]H.

The hypex'fine field which has been defined by

Kq. (34) will be given by

HM =(E4 E,)/I «(-3gk -gN}-H (35)

where g„' and g„correspond to the excited (I = $)
and the ground (I= —,') nuclear levels.

In Table I, me give the expressions of AE and

H&& for tmo orientations of the magnetic field H,
one along the [100]and the other along the [ill]
crystal axes. The main points to be noted are'.

(i) The Ez vs H graphs for the two different
orientabons of the field mould be bnear below a
cex'tain value of the fieM which mould depend on

the strength of the Jahn-Tellex' coupling within the

system being studied. The extrapolated value of

~+ at H-0 mould give the pure quadrupole split-
ting expected mithin the J'~ = -1 state of the unmixed
1"~ triplet of Fe". For 8 ll [100]and 8 ll [ill]
these values are given by 2P, and 2P„respective-
ly. The gx'adients of the linear paxts of the AF. &

vs H graphs are given by 4A, and 4R„respective-
ly, fox' the two orientations of H.

Using Eqs. (14), (20), and (23), the ratio of
I1E+lf,~ ~ and bEol i1»1 for any value of H can be
written down as

nEOI t,~ g -If,(5, 5} (4/I, )i1,HIf, (5„4)[ If, (5, 4) +21fg (5, 4)]
&,,(5, 5) —(4/n, )p~ff, ,(5, 4)[-If (5, 4)+2If, (5, 4}]'

mhex'e assumptions have been made that the I"«
and F3~ levels are degenerate, i.e., h, =4, and
the reduction factors between the I'„and I;,
levels [Eq. (10)]are equal to these calculated be-

tween the F, ~ and I'« levels [Eq. (11)]. The above

ratio tends to the expression given by Ham,
Schwartz, and O'Brien' for MgO:Fe" where the

field-dependent part is not impox'tant.
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TABLE I. Theoretical expressions for the quadrupole splitting and hyperfine field for differ-
ent orientations of the Zeeman field.

Magnetic field
H oriented along

[100] axis

[111]axis

Quadrupole
splitting b,8

2P3-4R30

2P5-4Rsff

Hyperfine field H hf
isotropic part anlsotroplc part

& -toH

5 -toH

(ii) Similarly from the Hhf vs H graphs, if one
remains in the linearly field-dependent region, one
can get the extrapolated value of H„, at 8-0
which would give the value of the hyperfine coupling
constant b. From the gradients of the tmo curves
we would get an estimate of (to+ —,'t, ) and (to+ ~t,),
respectively. Any significant anisotropy in H„,
can be attributed to the difference in t, and t, .

Thus from a study of the Mossbauer spectra
with different magnitudes and orientations of the
Zeeman field, precise determinations of the pa-
rameters of P„P„R„R„etc., are possible.
From P3 and P, we mould obtain the Ham reduc-
tion factors Ks(5, 5) and Kr, (5, 5). From R„A„
to, t„and t, me should be able to get an idea of
the relative values of the Ham reduction factors
between the I „and F„and I'4, states. This
will be discussed in more details in the following
paper in connection with the analysis of the ex-
perimental results.

IV. DISCUSSION

The quadrupole splitting in the limit H- 0 that we
have discussed in the previous sections corre-
sponds to the interaction between the J~ = -1 elec-
tronic level and the nuclear quadrupole moment.
On the other hand, the quadrupole splitting that
is observed in these cubic systems at lorn tempera-
tures in the absence of any external magnetic field
has been shown to be due to the strain-field split-
ting''' *"of the I,~ ground level. In this case,
each strain split level contributes individually to
the quadrupole splitting and the net effect is the
sum total of all the three. A comparison between
AEe) s „ i.e., Eo in the absence of any external

field and nEo( „„i.e. , ~o extrapolated to
H- 0 in the presence of the Zeeman field, might
give some information about the magnitude of the
stra~n field.

The Ham reduction factors Ks(5, 5), Ks(5, 4), . etc.,
in Eqs. (9)—(11)are defined between vibronic:. (s.o.)
states and these could be, in principle, related to
the orbital reduction factors K~, K~, , K~, , etc. ,
by specific model calculations for any particular
system. In the next paper, we shall discuss the
limiting values of these factors for the case of
strong Jahn- Teller coupling under certain approx-
imations. In general, however, numerical proce-
dure would be necessary to explain these reduc-
tion parameters.

%e have developed the above analysis for the
case of the triplet orbital of Fe" ion. It would be
interesting to extend it to the case of the Fe'+ ion
in eight-fold cubic symmetry like CaF, or in
tetrahedral symmetry like'6 ZnS, where the orbital
doublet (E) is lowest. The spin-orbit level split-
ting of this doublet is caused by higher-order spin-
orbit effects involving the excited vibronic levels
and the excited triplet (T,), thus leading to small
s.o. level separations. The pure quadrupole inter-
action would be zero for the ground vibronic (s.o.)
(F,), and it would be interesting to see if the induced
quadrupole interaction due to the mixing of the
excited levels with the ground one is important in
these systems.

The case of Kramers ions in cubic systems like
CaO:Fe+, YSb33y", etc., mould be similar, where
the pure quadrupole interaction for the ground
s.o. level would be zero; but the induced effect
might be brought into play by a suitable choice of
temperature and external magnetic field.
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