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Anharmonic effects in the phonon spectra of sodium chloride

E. R. Cowley
Physics Department, Brock University, St. Catherines, Ontario L2S 3Al, Canada

G. Jacucci~
Centre Europeen de Calcu/ Atomique et Moleculaire, Faculte des Sciences, 91405 Orsay, France

M. L. Kleint
Laboratoire de Physique Theorique des Liquides, Universite Pierre et Marie Curie, 75230 Paris, France

I. R. McDonald
Chemistry Department, Royal Hollovvay College, Egham, Surrey TW20 OEX, England

(Received 9 February 1976)

Results are reported of a series of molecular-dynamics "experiments" on solid NaC1 at temperatures of 80,
302, 954, and 1153 K. Attention is focused primarily on the computation of the dynamical structure factor
and its one-phonon approximation; comparison of the two allows the isolation of contributions from
multiphonon and interference terms. Anharmonic effects are analyzed in terms of perturbation theory and the
theory is found to give satisfactory results for the phonon frequencies at temperatures up to 80% that of
melting. Most of the calculations are carried out for a simple rigid-ion potential, but the effects of polarization
and its incorporation in molecular-dynamics calculations are briefly discussed.

I. INTRODUCTION

The lattice vibrations of NaCl, the protype ionic
crystal, were first analyzed in detail in the clas-
sic paper of Kellermann. ' Kellermann's calcula-
tions were based on the assumption that the crys-
tal is composed of rigid ions interacting through
a potential in which a short-range repulsion is
superimposed on the long-range Coulombic term.
This simple model, even in the more elaborate
version of Tosi and Fumi, ' is unable to account
quantitatively for the dynamical properties of
NaC1, as revealed by neutron spectroscopy, ' be-
cause it neglects the effects of ionic polarization.
Several models exist which remedy this defect, ' '
and one of these (the shell model of Dick and Over-
hauser') is discussed briefly in Sec. IVF. How-
ever, the motivation for the work presented here
lies in the question of the general nature of the
lattice vibrations in NaC1-type crystals at high
temperatures and their interpretation in terms
of anharmonic perturbation theory. For that rea-
son we have carried out most of our calculations
with the Tosi-Fumi rigid-ion potential, a model
which is known to give a good fit to many equilib-
rium crystal properties. '

The melting point of NaCl at atmospheric pres-
sure is 1073 K, or approximately three times its
Debye temperature. Above room temperature it
may be treated as essentially a classical solid
and classical theories of anharmonic lattice dynam-
ics' may therefore be applied. Such methods have
indeed been used successfully in the interpretation
of thermodynamic' and optical data" on NaCl.

However, there exist few direct data on the phonons
at elevated temperatures (above two-thirds that of
melting), where a breakdown of simple perturba-
tion approaches to the problem of vibrational an-
harmonicity can be expected. To make it pos-
sible to study anharmonic effects in the range of
temperature in which experimental data are lack-
ing, we have carried out a series of computer
simulations by the method of molecular dynamics,
the primary purpose being the calculation of the
dynamic structure factor S(Q, m). The latter, as
is well known, is related in a simple way to the
double differential cross section for coherently
scattered thermal neutrons, whereas the intensity
of x-ray scattering is related to the integral of
S(Q, ~) over all ~. The basis of the molecular-
dynamics method is the solution of Newton's equa-
tions of motion for a finite system of particles
contained in a box with periodic boundary condi-
tions. From the classical phase-space txajectories
which this procedure yields, ensemble averages
of the type encountered in statistical mechanics are
readily evaluated. The outstanding virtue of ihe
method is that it yields results which are essen-
tially exact f0~ Ne system studied. This means,
in the present case, that the predictions of per-
turbation theory can be tested in an unambiguous
way if carried out for the same model. We wish
to emphasize at the outset that our definition of
the model includes the fact that a small periodic
system is used. In particular, the lattice-dynam-
ical calculations have been made over a mesh of
points in the Brillouin zone which is consistent
with the size of the molecular-dynamics system.
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The computer "experiments*' yield with equal ease
both the full multiphonon S(Q, »»») and its one-pho-
non approximation S,(Q, »d). This makes it pos-
sible to investigate the convergence of the stan-
dard phonon expansion of S(Q, ~). Moreover, a
study of the Q dependence of various phonons can
be expected to reveal the interesting interference
effects of the type first identified in the beautiful
work of Cowley and Buyers" and also discussed in
an important paper by Horner. '3

Four separate molecular-dynamics runs have
been carried out. The first, for a temperature
of 80 K, was designed to test the accuracy of the
simulation by comparison with the results of
quasiharmonic lattice dynamics for the same in-
terionie potential. The second, at 302 K, was
made in order to compare with calculations based
on anharmonic perturbation theory in a range of
temperature where the theory should work well,
The other two "experiments, " at 954 and 1153 K,
were carried out specifically to probe possible
inadequacies in the perturbation theory of anhar-
monie effects in the region where these effects
are largest. Anticipating some of our conclusions,
we shall see in Sec. IVE that the perturbation re-
sults are surprisingly good, but that important
differences in detail remain. We shall also see
that all the interesting manifestations of vibra-
tional anharmonicity are contained in our results.
The method, of course, can easily be used in the
study of other alkali halides.

II. MOLECULAR-DYNAMICS CALCULATIONS

The molecular-dynamics calculations were
carried out on a system of 216 particles, con-
sisting of 108 positive (Na') and 108 negative (Cl )
ions disposed on the interpenetrating fcc lattices
of the NaCl crystal structure and lying within a
cubic cell of length L,. Periodic boundary condi-
tions were imposed and the classical equations
of motion of the ions were solved by means of a
simple finite difference algorithm, "with a time
step in the numerical integrations of Vx10 "sec.
The interionic pair potential used was the gener-
alized Huggins-Mayer potential with parameters
deduced from solid-state thermodynamic data by
Tosi and Fumi, ' namely

»t»„(r;, )=z, z. ,/r. ,, + e„bexp[(.o, +»»,. —r, , )/. p]

—C,,/r', -D„/r,', , .(1)

where z, and z,. are the charges on ions labeled i
and j, located at ri, r,. and separated by a distance
r„.= ~r» —r,. (. The second term on the right-hand
side of E»l. (1) describes the overlap repulsion
between ions. In this term the factor 5 takes the
same value for all alkali halides which crystallize

TABLE I. Parameters in the Tosi-I'umi potential for
NaCl.

0 = 3.38 x 10 ~3 erg

c++ = 1.25

c = 0.75

0'+ =1,170 A
0 = 1.585 A

p =0.317 A

C„=1.68x M-«
C, =11.2x10-"
C =116 x10-«

D++ ——0.8 x 10
D+ = 13.9x 10
D =233 x10

elg cm
erg cms

erg cm8

in the NaCl-type structure, o, and a,. are lengths
("basic radii") characteristic of the ions, p is a
*'hardness parameter" characteristic of the partic-
ular salt, and the c,, are numerical constants in-
troduced by Pauling. The last two terms in Eq.
(1) represent the contributions, respectively,
from dipole-dipole and dipole-quadrupole disper-
sion forces. As we have already remarked, the
major weakness of the Tosi-Fumi model, at least
insofar as the calculation of lattice vibrations is
concerned, is the fact that no explicit account is
taken of the effects of ionic polarization. We shall
return briefly to this question in See. IV F. Values
of the potential parameters used in the calculations
are listed in Table I and details of the thermody-
namic states which were studied are summarized
in Table II. In Table II we also give the total
number of time steps which were generated at
each state point.

Use of a periodic boundary condition makes it
possible to employ the Ewald method for the calcu-
lation of the electrostatic energy. In doing so we
have exploited an idea due to Singer (private com-
munication) whereby the total electrostatic energy
E~ is written in the exact form given by

n&0

erfc(»»r», ) g z;2q

j&i ij

The symbol erfc is used to denote the complemen-
tary error function, erfc(x) =1 —erf(x), and

( )
exp(- »»'r»'/»l'I, ')

n~ +2
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TABLE II. Selected equilibrium properties of NaCl.

Source V P V/NOT

(cm3mol ~)

-U
(kJmol )

(u,') '~' (u
' )'~' Time steps

(A) (A) (1000 's)

MD
Expt.
MC'
MD
MD

Expt.
MC
MD

80.3
298.0
298.0
301.7
953.8

1073.0
1073.0
1153.0

26.92
27.0
27.65
27.60
29.50
30.0
31.37
31.37

0.08
0.0
0.0
0.13
0.87
0.0
0.0
0.21

773.5
764.0
762.6
762.1
727.3
719.6
717.4
713.2

0.126

0.234
0.494

0.611

Q.113

0.227
0.460

10

6
10

28.8

' MD, results from present molecular-dynamics calculations.
b Expt. , experimental data {Ref. 7).

MC, results from Monte Carlo calculations (Ref. 7).

The quantity q is a disposable parameter (having
dimensions length ') which governs the relative
rate of convergence of the two series in Eg. (2),
one of which is an expansion in reciprocal space,
the other being a sum in real space. The first
term on the right-hand side of Eg. (2) involves a
summation over reciprocal-lattice vectors n of
the simple cubic structure of cells of side L, , to-
gether with a sum over particles within one such
cell. The advantage of writing the reciproeal-
spaee term in the particular form quoted here is
that the summation over ions runs only over single
ions rather that pairs, with a correspondingly
large reduction in the length of the computations.
The real-space summation in Eq. (2) is taken
over pairs i,j within a single cell. Finally,
differentiation of E~ with respect to the coordi. -
nates of ion i yields the Coulombic force F~,. on ion
z as

erfc(qr;g) 2q exp(- qr';, )+gi ~ ri~8~ 3 + y/2 2 ~

j &i ij ig

(6)

Equation (6) has been used in all our molecular
dynamics calculations. The parameter g was
taken as 5.6/I. and the reciprocal-space term was
evaluated for 309 pairs of vectors, account being
taken of the fact that vectors n and -n make iden-
tical contributions both to E~ and to F~i. The
real-space term was truncated at r,-,. = —,L„ the
same cutoff in the potential being used for the
non-Coulombic terms in (1).

Our main effort has been directed at the calcula-
tion of the dynamical structure factor S(Q, u},
which we have computed in the manner of Le-

vesque, Verlet, and Kurkijarvi" from the classi-
cal expression

S(Q, )= ) e' '(pU(()q &(ODdk
0

-i~t= lim — e '"'po(t)dt e' '
p z(t')dt'

1 . 1= —lim —
~ po((u) )',

where N is the number of ions of each type (i.e. ,
the number of unit cells), a Qisthe momentum
transfer, h&u is the energy transfer, and po(tu) is
the Fourier-Laplace transform of the particle
density p&(t). The latter we write in terms of
partial densities as

pg(t ) = po(t)+ po(t), (6)

with

p+(t) g e~o. r&(~)

cations

On the other hand, the cross section for the co-
herent inelastic scattering of neutrons, S"(Q, ~),
is constructed by weighting the partial quantities
occurring in Etl. (10) by neutron scattering lengths.
The x-ray scattering intensity would be obtained
by weighting with the appropriate form factors
and integrating over co. Similarly, the spectrum
of charge density fluctuations, representing the
optic modes of vibrations, is obtained by weighting
with the. charges of the ions. Thus

p-(t) Q e(Q ~ r~(t)

anions

Thus the calculation of S(Q, v} reduces to the cal-
culation of partial dynamical structure factors
S„8(Q, &u), i.e. , the Fourier transforms of correla-
tion functions (po(t)p &(0)), where n., P =+, —and

S, (Q, &u) = S,(Q, ~). Specifically,

S(Q, ~) = S„(Q,~)+ S (Q, ~)+ 2S. (Q, ~) . (1o)



14 ANHARMONIC EFFECTS IN THE PHONON SPECTRA OF. . 1761

S"(Q, (u) = 0,'S„(Q,a))+ O' S (Q, (u) + 2b, h S, (Q, (u)

S'(Q, (o) =z', S„(Q,(u)+x'S (Q, u))+2m, x S, (Q, (u).

The phonon frequencies measured in a neutron ex-
periment can be identified with the peaks in
S"(Q, &u), in the calculation of which we have used
the reduced scattering lengths 5,= 0.52 and 5
= 1.47.

During the course of the molecular-dynamics
runs we also evaluated the one-phonon approxima, -
tion to S(Q, &u), denoted by S,(Q, ~), which may be
computed in the same way ss S(Q, &u) itself except
that pQ(t) in Eq. (7) is replaced by pQ(t), defined
as

where rn„m are the ionic masses. This px'ovides
a useful check on the accuracy of the molecular-
dynamics results. In practice the rule is satisfied
to within a few percent, except at the lowest tem-
perature. There, because the peak in S(Q, e) is
very sharp, the fact that the spectrum is sampled
only at discrete values of ~ can cause the second
moment to be considerably in error.

III. LATTICE DYNAMICS

In this section we briefly indicate the relation-
ship of usual phonon calculations' "to the com-
puter simulation work reported here. Our starting
point is an expression for the time correlation
function occurring in Eq. (7), i.e. ,

1 1
S(Q, t) =-N &pQ(t) p-Q(o)& =g Q s "&s**e'&&

&oi

(17)

PQ(t) = PQ(t) + PQ(t)
where X,, =i Q (R; - R,.), x, = iQ u, (t), and y,
= -iQ. u,.(0). The labels i =- I, x and j = I, x' are
used to denote the xth (or x'th} ion in the lth (or
I'th} unit cell; thus u,.(t} denoted the displacement
of the gth ion in the lth unit cell from its equilib-
rium position R, .

Ambegoakar, Conway, and Baym" have shown
that from an expression of the type of (17) a Debye-
%aller factor can be rigorously separated out.
In the classical case we may wxite

where, for example,

po(t)=d, (Q) Q e'Q'"Q u, (t).
cations

The quantity d, (Q) is related to the Debye-Wailer
factor (see Sec. III below) and

u, (t) = r,.(t) -R,,

&e"ie'~'& =d(x, )d(y, )[1+(x,y,.&

+-'(&xlyj& —(x;yg&)+ 2&x(y,&'+".1

(18}
Successive terms on the right-hand side of this
equation are the correlation functions correspond-
ing to elastic, one-phonon, lowest-order inter-
ference, and lowest-order two-phonon contribu-
tions to S(Q, t). The Debye-Wailer factor d(x, ) is
defined in terms of a cumulant expansion as

lnd(x, ) = (1/2!)&x',.&+ (I/4!)(&x4& —3(x',&') p ~ ~ ~ .
(19)

For a cubic crystal, Eq. (19) can be written in a
more transparent notation as d(x, )

=—d„(Q), with

d„(q) = exp(- —,
' Q'&u'„&) .

The one-phonon approximation for S(Q, t) follows
immediately. On substituting (18) into (17) we
find that

(20)

S,(q, t) =~ (pQ(t)p Q(0)),
1- (21)

where pQ(t) is the density operator defined by (13}.
We now introduce the quantities pQ(t) and pI)(t)
where, for example,

is the instantaneous displacement of the ith ion
from its lattice site R, . The one-phonon approxi-
mations to S "(Q, ~) [i.e. , S,"(Q, u&) J and S'(Q, ai)

[i.e. , S,*(Q, ~) J are constructed in an analogous way,
account being taken of the different weighting of
the partial structure factors.

The length of the molecular dynamics cell (for
N = 108) is I, = 3a, where a is the lattice constant,
i.e. , twice the separation d of neighboring Na and
Cl lattice sites. From the periodic nature of the
system it follows that the indePendent values of
momentum transfer which we can study are limited
to Q = (2&/3a)(n„n„n, }, where the n, are integers. .

For example, in the (100) direction, we are limited
to studying three different values of the phonon
wave vector q. However, we can study the sa,me
"phonon" for several different values of the mo-
mentum transfer because we can always write
q=Q~ g, where g is any Bragg vector. It should
also be noted that the appearance of terms of the
form Q ~ u in both (9) and (14) means that we can-
not study transverse phonons in the first Brillouin
zone, a limitation which applies with equal force
in a real neutron scattering experiment.

Finally, we note that our computations must
satisfy the Plaezek sum rule
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p (t)= Q eiQ Ri $'u (t)
cations

(22)

S1(Q ~)=—Q&(Q-q}IFqAQ)l'Aq(~} (24)

where tk(Q —q) is the crystal & function, the spec-
0tral function Aq ~((3)} is given by

Aq q((d) =2w[5((3) —(dq q) —5(a+ aq)}], (25)

and the one-phonon inelastic structure factor
Fqq(Q} is defined as

F-~(Q) = g d„(Q) e'q' K(tQ eqq)/(2m„qiqq)' '

(28)

Thus the spectrum is given as a sum of &-function
peaks of appropriate weights.

For an anharmonic crystal the problem is more
difficult, requiring the use of many-body perturba-
tion theory. ' " However, the results bear a strong
similarity to those for a harmonic crystal, pro-
vided that the coupling of one-phonon states cor-
responding to the same wave vector but different
polarization branches is neglected. This so-called
polarization mixing effect vanishes for the zone-
center modes, and elsewhere is usually assumed
to be small. The expression for S,(Q, (d) is then
the same as that obtained in the harmonic case,
except that the & functions are broadened and
shifted by the phonon-phonon interactions. The
effect is to replace the spectral function (25) by

Aq) ((d)
2

8(d, I'-, ((d)
[- (g'+ (d' ~+2(o; ~aq) ((u)]'+[2(d-q ~r q ~(q))]'

'

(2 t)

with Q= Q$. With the aid of (22) we can rewrite
Eq. (21) in the form

XIQ')S,(Q, t) =d, (Q)(pQ(t)p Q(0))

+d'(Q)(pQ(t)p Q(0))

+ I (Q)d-(Q)(pQ(t)p-Q(0))
-=[Qd(Q)]'F, (22)

which serves as a formal definition of the quantity
d(Q); F is a correlation function which is indepen-
dent of Q.

To proceed further in lattice-dynamical calcula-
tions it is necessary to evaluate the correlation
function (u, (t) ~ u, (0)). This is done by introducing
normal coordinates derived from the eigenfrequen-
cies coq~, i.e. , the harmonic frequencies of wave
vector q and polarization A., and their associated
eigenvectors e-" . In the harmonic approximation

qX
(and the classical limit) the result is

n„q((3)) and r q q(q)) are related to the anharmonic
terms in the Taylor series expansion of the total
potential energy of the crystal in powers of the
displacements of the ions from their equilibrium
positions. ' To second order in the cubic anhar-
monicity and first order in the quartic anharmon-
icity the shift is given by

a, ( ) =12kTQ
2

—1832+ I V(1, 2, 3)(* ',', )
28 3

1 2

and the width by

X
(d~ (d2

(28)

1',( ) 18kTQ (=V(1, 2, 3)l*(
2 ~ 3 1 2

X )([5((3), + (3)2 —a) —5 ((3)2 + (d 2 + (d) ]

(29)

where ~, = e-„z, etc. , and the matrix elements V

are essentially the Fourier transforms of the cubic
and quartic terms in the potential energy.

In the case where polarization mixing is included,
the Green's functions are obtained as a matrix with
finite nondiagonal terms. The one-phonon con-
tributions to S(Q, qi) can be expressed as a sum
over all the elements multiplied by appropriate
products of structure factors. The detailed formal-
ism has been given by Cowley. '

In the actual lattice-dynamical calculations re-
ported here, the

aqua

and eqq were calculated from
the interionic potential (1) for lattice spacings
identical to those used in the simulations. This
is the so-called quasiharmonic (QH) approximation,
use of which allows the harmonic frequencies to
change with volume. Similarly, the anharmonic
force constants V in (28) and (29) were evaluated
for each volume. Coulomb contributions to the
harmonic and cubic terms were evaluated using
an Ewald transformation. All other types of force,
and the Coulomb contribution to the quartic shifts,
were summed in real space over enough shells of
neighbors to give a converged result.

The principal parts and ~ functions appearing
in expressions (28) and (29) were replaced by
analytic functions corresponding to a finite width.
In the usual applications" of this technique the
expectation is that when a sufficiently fine mesh of
wave vectors is used the results become indepen-
dent of the width of the function used. In the pres-
ent case the number of wave vectors is fixed at
108. We must then of necessity use quite a wide
representation of the & function. In fact the value
used in all of the present calculations corresponds
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to a full width at half-maximum of 0.3 X 10" sec '.
The most obvious justification for such a smooth-
ing function is that the intermediate phonons them-
selves have finite lifetimes, so that the necessary
width can be estimated from a suitable average
lifetime. The value we have used then corresponds
quite well to what we should estimate for 300 K.
For higher temperatures the phonons are less well
defined and we can expect that the response func-
tions may show even less structure than we have
calculated. For lower temperatures, however, the
use of a mesh of the size together with a reason-
able estimate of the phonon widths leads to the re-
sponse functions having a spiky appearance. This
may possibly indicate that at the lowest ternpera-
tures (i.e., below 300 K) the size of sample we
have used cannot be considered "large, "but at the
higher temperatures it should be satisfactory.

We have calculated the scattering function both
with and without the inclusion of the polarization
mixing terms. For the particular examples shown
here the effect is not large, but we hope to consider
other examples in later work. We whall refer to
calculations based on Eqs. (27)-(29) as anharmonic
perturbation theory (APT).

We wish to stress that our definition of the one-
phonon approximation ensures that S,(Q, u)/
[Qd(Q)]' is independent of Q. Hence a study of
the quantity S(Q, &u)/[Qd(Q)] ' provides a simple
means of monitoring the effects of higher-order
terms in the phonon expansion (18), i.e. , effects
due to interference and multiphonon processes.

IV. MOLECULAR-DYNAMICS RESULTS

A. Equilibrium properties

Results on selected equilibrium properties (pres-
sure, internal energy and rms displacements) are
shown in Table II. In the case of thermodynamics
properties there is fair agreement with previous
Monte Carlo calculations' based on the same po-
tential model, and also with experimental mea-
surements. The highest temperature studied is
actually above the melting point (at atmospheric
pressure) of real NaCI. In the simulation, how-

ever, the crystal is apparently still stable. In
particular, the pressure is positive and the quasi-
harmonic normal-mode frequencies are all real.
The rms amplitude of vibration of the ions is very
large at high temperatures, but is everywhere in
fair agreement with the results of quasiharmonic
lattice-dynamical calculations. It is evident from
these results that anharmonicity makes only a
small contribution to the mean-square displace-
ment of the ions. However, the molecular-dynam-
ics results, which contain all anharmonic effects,
are systematically larger than those obtained from

the quasiharmonic calculations. In the harmonic
approximation the mean-square displacement is
given by

kT + I e~ zl

Nm„cvq z
qX

(30)

The dominant contribution to this expression comes
fromthe lowest frequency branch of the dispersion
curve, i.e. , the TA mode. In this branch the an-
harmonic frequency shift is negative, as we shall
see below. Thus the effect of anharmonicity is to
increase the mean-square displacernent.

B. Temperature dependence of the phonons

In all four molecular-dynamics runs, S(Q, &u) was
calculated for the following values of the wave vec-
tor Q (expressed in units of 2v/3a):

(1,0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0),

(2, 2, 0), (3, 0, 0), (3, 3, 0), (0, 2, 4),

(0, 1, 5), (3, 3, 3), (0, 6, 1), (0, 6, 2),

(0, 6, 3), (7, 0, 0), (9, 9, 9), (10, 10, 10).

Additionally, at 302 and 954 K, we studied the
points (2, 2, 2), (4, 4, 4), and (8, 8, 8), while at 80
and 1153 K we studied also the points (4, 2, 2), and

(6, 0, 0).
Figure 1 shows the calculated phonon frequencies

along the (100) direction at 80 K. For each of the
four modes, the molecular dynamics results agree
well with those of quasiharmonic theory. On the
other hand, agreement with the experimentally
measured' phonons is not especially good, the
main failure of the simulation being the overesti-
mation of the frequencies of the LO phonons. This
is a straightforward consequence of the neglect
of ionic polarization in our model, as we shall
show in Sec. IV F. It should be noted that our use
of a finite system means that we are unable to ob-
serve the g =0 LO phonon.

At sufficiently low temperatures the phonons are
all very well defined, the only feature of the spec-
trum being a, sharp peak close to the quasihar-
monic frequency. With increasing temperature
the phonons shift and broaden, a behavior illus-
trated in Figs. 2 and 3 for selected longitudinal
phonons propagating in the (100) direction. Figure
2 shows the neutron cross section for the zone-
boundary LA phonon at the lowest and highest tern-
peratures studied. The observed frequency shift
is large, approximately 20%, but is nonetheless
considerably smaller than that predicted by quasi-
harmonic theory. The other obvious effect of in-
creasing the temperature is the growth in intensity
at low frequencies. Figure 3 shows the neutron
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T=BO K T=80 K

0

3
fa 12-
If'

10

T =1153K

Q =—(1,0,0)
8

(0,0,0) q (2D/a) (&,0,0)
FIG, 1. Phonon frequencies for the (100) direction at

80 K. The dots are molecular-dynamics results and the
solid lines give the quasiharmonic results for the same
model. The dash-dot lines represent experimental neu-
tron scattering data (Ref. 3).

cross section at 302 and 1153 K for the smallest
wave vector me can study in our periodic system
of 216 ions, i.e. , Q = (2w/Sa) (1, 0, 0). The main
peak is the LA phonon. This remains mell defined
as the temperature increases, and simultaneously
a peak centered at +=0 develops, so that the spec-
trum qualitatively resembles a Hayleigh-Brillouin
triplet. The weak response at high frequency is
shown in the inset diagrams; the peak near 5&10"
rad sec ' corresponds to the LO mode. The dashed
curves in the insets show the charge-weighted
spectra, plotted on a different relative scale; this
comparison between S"(Q, ar) and S'(Q, u) aids the
identification of the optic-mode frequency at high
temperatures. As is mell knomn, the relative in-
tensity of the acoustic and optic peaks for the same
q can be very different in different Brillouin zones,
and this behavior can also be exploited in iden-
tifying a mode frequency.

In Fig. 2(a) the dots on the figure are the direct
output from the molecular-dynamics calculations.
At 954 and 1153 K the direct output is somewhat
noisy, particularly at large momentum transfer,
because our method of computing S(Q, ~) neces-
sarily includes the long-time statistical errors in
S(Q, t) The noise leve.l can be reduced by con-

2- ~
o

I I

1 2 3 4 5 6
M I10 rad / sec)

FIG. 2. Zone-boundary LA phonon (in arbitrary units)
at two temperatures. The dots are molecular dynamics
results and the arrows mark the location of the quasi-
harmonic frequencies. The curve represents the results
of the smoothing procedure described in the text.

voluting the calculated spectrum with a Gaussian
filter of given width, say &. This in turn is equiv-
alent to truncating correlations in po(t) beyond a
time r=2/6. The solid lines in Figs. 2 and 2 show
results obtained by this procedure; the width used
for the filter is shown on each graph and is usually
equivalent to 600 time steps. The correctness of
the method can be checked by transforming the
raw S(Q, e) data to yield S(Q, t), truncating the
long-time tail at the appropriate value of r, and
the transforming back to obtain the smoothed
S(Q, &u).

C. TO (q = 0) phonon

The q= 0 TO phonon is of particular interest be-
cause it can be studied by infrared spectroscopic
methods as well as in neutron scattering experi-
ments. For this reason it is the only phonon on
which experimental data are available at relative-
ly high temperatures (up to approximately 700 K).
In our calculations we have studied this particular
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Q=(2n/3a) (1,0,0)
T =302K

0 =(2n /3aj(1, 0,0)
T =1153K

.03—

3.
t'ai

C
V)

.02

.01

4
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l

&&~~ae a4 a
0 1

~L- }

2 3
(0 (10 rad/sec)
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0 1 2 3 4 5
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FIG. 3. (a) Neutron cross-section (in arbitrary units) for the smallest accessible wave vector. The curves in the in-
set show the high-frequency response in S"(Q, ~), plotted on the same relative scale (full line), and in S'(Q, ~), plotted
on an arbitrary relative scale (dash line). (b) As (a) but at a higher temperature. The full curve in the ~~~n figure
shows the effect of smoothing the molecular dynamics results.

phonon for a momentum transfer corresponding to
Q=(2w/3a)(3, 3, 3) at temperatures of 302, 954, and
1153 K. At the lowest temperature the spectrum
is sharp, as for all the phonons we have measured.
At 954 K the peak is still clearly defined but sits
now on a broad background. There is also some
evidence for a weak secondary peak at approxi-
mately one-half the frequency of the main peak.
At 1153 K the subsidiary peak has grown some-
what in intensity and a further satellite line can be
seen at & the main peak frequency. It is possible,
of course, that the detailed structure of the spec-
trum is related to the small size of our system,
but it could also represent a contribution from
real multiphonon effects. The frequencies of the
main peaks and their approximate full widths at
half maximum height (with due allowance made for
our resolution) are compared with experimental
infrared results' in Fig. 4. The absolute values
of the frequencies are too low, but the tempera-
ture dependence and the width are both in fairly
good accord with the experimental data. The low
value of the TO frequency reflects the inadequacy
of the force constants in the Tosi-Fumi model, the
question of polarization being of much less impor-
tance for this mode.

D. Q dependence and the one-phonon approximation

One of the original aims of this work was to in-
vestigate the Q dependence of the phonon spectra

in an attempt to isolate the contribution from mul-
tiphonon processes. In Fig. 5 we show the charge-
weighted spectrum S'(Q, &u} and its one-phonon ap-
proximation S;(Q, &u) for the LO phonon Q = (2w/3a)
x(7, 0, 0} at 302 K. In the one-phonon approxima-
tion the peak is asymmetric, whereas the full
S*(Q, &o) is essentially symmetric. The influence
of the interference term in the phonon expansion
(18) is clearly visible, even at this low tempera-
ture and low value of Q. The interference effect
in lowest order contributes a term proportional to
Q' which changes sign as the phonon wave vector
q (=@ag) crosses a Bragg vector g. In the case
illustrated, the result is to move intensity from
the left-hand side to the right-hand side of the
peak, incidentally making the peak more symmet-
ric. At higher temperatures the effect is even
more marked, as Fig. 6 shows. The one-phonon
approximation for Q = (2v/3a)(7, 0, 0) is virtually
identical with the full result for Q = (2v/3a)(1, 0, 0)
when due allowance is made for the factor [Qd(Q)j'.
Thus Figs. 5 and 6 display directly the Q depen-
dence of this particular phonon. We see that at
954 K the center of gravity of the spectrum is no-
ticeably shifted by the interference effect. 'The in-
crease in temperature has led to a substantial
growth in the multiphonon background, but the peak
remains easily identifiable.

In the left-hand part of Fig. 6 we show the Q de-
pendence of the corresponding LA phonon at 954 K.
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FIG. 5. Charge-weighted spectrum (in arbitrary units)
for Q = (27r/3a) (7, 0, 0) at 302 K. The dots are the molecu-
lar-dynamics results for S'(Q, cu) and the line shows the
corresponding one-phonon approximation. The dashed
line gives the results for Sf(Q, ~) from perturbation
theory and the arrow locates the quasiharmonic frequency.

I I I

200 600
T(K)

1000

FIG. 4. q=0 TO mode. The upper half shows the peak
frequency v as function of temperature; circles are
molecular-dynamics results, dots are experimental data
(Ref. 15), and the dash line gives the predictions of quasi-
harmonic theory. The lower half shows the full width at
half-maximum relative to v; molecular-dynamics results
are shown as error bars.

T=954 K

Q=(2 n!3a) (7, 0,0)

0.8

0.6

There is almost no evidence here of any interfer-
ence effect, but the increase in the multiphonon
background for Q = (2v/3a)(7, 0, 0) has caused a
shoulder to appear on the side of the main peak.
The one-phonon approximation has a peak at ~ = 0,
which is little different from that occurring in the
full S(Q, &u) for the point Q= (2v/3a}(1, 0, 0) (shown
as open circles}. Thus the central peak is clearly
not the result of multiphonon processes, lending
support to our earlier suggestion that it is the rem-
nant of a Rayleigh-type line.

Figures 7(a) and 7(b) show some of the phonons
studied by Cowley and Buyers in their classic
work" on the interference effect in KBr. To illus-
trate the importance of the effect we have plotted
the neutron cross section S"(Q, u&) and its one-pho-
non approximation for values of Q on either side
of the Bragg vectors g= (2v/3a)(3, 3, 3}and g
= (2v/3a)(9, 9, 9). For the smaller Bragg vector,

3 (I

ta

4 0.4

3.
Ia
N

0.2

1 2 3 4
(i)(10 rad/sec)

FIG. 6. Right-hand part same as in Fig. 5, but at a
higher temperature. The left-hand part shows S(Q, )
for the same wave vector [Q = (27'/3a) (7, 0, 0)]. Results
for Q =(27r/3a)(1, 0, 0), scaled by the factor [Qd(Q)]2, are
shown as open circles. For the sake of clarity, the per-
turbation results have been reduced in intensity by a fac-
tor of 4.
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FIG. 7. (a) The interference effect in the neutron cross section at 302 K. The full curve is S&(Q, ~) and the broken
curves are S"(Q, ~) for Q = (2&/3a)(2, 2, 2) (dashes) and Q =(2~/3a)(8, 8, 8) (dash-dot). The spectra have in all. cases
been divided by [Qd(Q)] . (b) As (a) but for wave vectors Q = (27(/3a)(4, 4, 4) (dashes) and Q = (27t/3a)(10, 10, 10) (dash-dot).

where the spectra are not complicated by multi-
phonon effects, the interference effect is clearly
visible. For the larger one, both the multiphonon
and interference effects have grown in magnitude
and are not so readily separable. However, there
is clearly a large enhancement of intensity on the
low-frequency side of the spectrum for Q= (2w/3a)
x(8, 8, 8) and on the high-frequency side for Q
= (2w/3a)(10, 10, 10). The relative effects seen
here are not symmetrical. This arises from the
necessity of both spectra (when divided by Q') hav-
ing the same second moment; clearly the transfer
of intensity from high to low frequency must be ac-
companied by a correspondingly greater enhance-
ment of the spectrum relative to S",(Q, u&) than in
the reverse case.

TABLE III. Phonon frequencies, in units of 10~3 rad
sec ~ for (Q =(2r/3a)(3, 0, 0).

TA LA TO

lower limit on the width of the phonon or, equally,
an upper limit on the lifetime.

At 954 K (Fig. 8) the molecular dynamics result
for the same phonon is much broader and shifted
noticeably less from the quasiharmonic frequency
than in the perturbation calculations. En the case
of the wave vector Q=(2w/3a)(7, 0, 0) there is
somewhat better agreement with the full S'(Q, ~)
than with the one-phonon approximation. This, of
course, is fortuitous, because the full result in-

E. Comparison with perturbation theory

Figures 5 and 6 show a comparison between the
molecular-dynamics results for S*,(Q, &u) at the
smallest accessible wave vector, i.e. , Q=(2v/3a)
x(1, 0, 0), and the predictions of anharmonic per-
turbation theory. At 302 K (Fig. 5) there is rea-
sonably good agreement. Both calculations give
rise to a peak which is asymmetric (in the same
sense) and shifted to a frequency higher than the
quasiharmonic result (Note th. at both spectra have
been convoluted with the sa,me smoothing function. )
The simulation gives a broader peak and the shift
from the quasiharmonic frequency is somewhat
smaller. However, the perturbation theory used
here is limited by the assumption that one phonon
decays into two others, and therefore yields a

80.3

301.7

500.0

700.0

953 ~ 8

QH
APT
MD

QH
APT
MD

QH
APT

QH
APT

QH
APT

1~ 93
1.92
1.90

1.92
1.89
1~ 90

1.92
1.85

1.90
1.83

1.89
1.82
1.75

3.28
3.29
3.30

3.08
3 ' 16
3 ' 15

2 ~ 91
3.05

2 ~ 73
2.98

2 ~ 54
2.9 b

2.85

3 ~ 14
3 ~ 15
3 ~ 15

2.94
3.02
3.00

2.78
2.91

2.62
2.81

2.45
2.70
2.75

4.28
4.26
4.30

4.23
4 ~ 18
4.20

4 ~ 19
4 ~ 14

4.15
4.09

4 ~ 11
4.04
4.05

~ MD, molecular-dynamics results, with typical sta-
tistical uncertainty of + 0.05.

Very broad.
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ical calculations; we include the comparison here
primarily to demonstrate that the molecular-dy-
namics simulation can be made substantially more
realistic if this is particularly required. The
broadening of the spectrum and the appearance of
a double-peaked response is qualitatively similar
to the behavior found by Cowley" in a perturbation
calculation for the q= 0 I 0 mode. Since polariza-
tion acts in such a way as to reduce the phonon
frequencies (though the effect in other branches
is less pronounced than for the LO mode), its in-
clusion necessarily leads to an increase in the am-
plitudes of vibration. This effect turns out to be
very large, as shown by the results given in Ta-
ble IV.

100 (u 2) ~~2/d

MD QH

100 &u'&'~2/d

MD QH

(i) Rigid ions
80.3

301.7
953.8

1153.0

(ii) Polarizable ions ~

306.3
1153.5

4.5 4.0
8.2 7,8

17.0 15,4
20.6 19.0

12.6
24.3

4.0 3.8
8.0 7.6

15.8 14.8
19.5 18.5

11.0
23.6

~ MD, molecular-dynamics results.
Shell-model results from Ref. 18.

TABLE IV. Root-mean-square displacements of the
ions. d (=Ta) is the nearest-neighbor separation.

V. CONCLUSIONS

The results reported here demonstrate that com-
puter simulation can play a valuable role in analyz-
ing the lattice vibrations of a simple ionic crystal
such as NaCl. The fact that the one-phonon ap-
proximation to the dynamic structure factor can be
evaluated in parallel with the calculation of the
complete spectrum means that anharmonic effects
can readily be isolated and their importance as-
sessed. Our main quantitative result is that a sim-
ple perturbation treatment is adequate for the pre-
diction of phonon frequencies at temperatures up
to 80%%uo of the melting temperature; on the other
hand, the phonon linewidths are underestimated,
particularly at high temperatures. In making this
comparison it is sufficient to work with a much
oversimplified potential model and most of our

calculations have, in fact, been Inade for a sys-
tem of rigid ions. The effects of polarization can
be included, however, though only at considerable
added expense in computing time, and fair agree-
ment with experimental results can then be
achieved. However, the qualitative features of
our results are likely to be insensitive to details
of the interionic potential, and hence should carry
over to other ionic systems.
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