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Results are reported of a series of molecular-dynamics “experiments” on solid NaCl at temperatures of 80,
302, 954, and 1153 K. Attention is focused primarily on the computation of the dynamical structure factor
and its one-phonon approximation; comparison of the two allows the isolation of contributions from
multiphonon and interference terms. Anharmonic effects are analyzed in terms of perturbation theory and the
theory is found to give satisfactory results for the phonon frequencies at temperatures up to 80% that of
melting. Most of the calculations are carried out for a simple rigid-ion potential, but the effects of polarization
and its incorporation in molecular-dynamics calculations are briefly discussed.

I. INTRODUCTION

The lattice vibrations of NaCl, the protype ionic
crystal, were first analyzed in detail in the clas-
sic paper of Kellermann.' Kellermann’s calcula-
tions were based on the assumption that the crys-
tal is composed of rigid ions interacting through
a potential in which a short-range repulsion is
superimposed on the long-range Coulombic term.
This simple model, even in the more elaborate
version of Tosi and Fumi,? is unable to account
quantitatively for the dynamical properties of
NaCl, as revealed by neutron spectroscopy,® be-
cause it neglects the effects of ionic polarization.
Several models exist which remedy this defect,*”®
and one of these (the shell model of Dick and Over-
hauser?) is discussed briefly in Sec. IVF. How-
ever, the motivation for the work presented here
lies in the question of the general nature of the
lattice vibrations in NaCl-type crystals at high
temperatures and their interpretation in terms
of anharmonic perturbation theory. For that rea-
son we have carried out most of our calculations
with the Tosi-Fumi rigid-ion potential, a model
which is known to give a good fit to many equilib-
rium crystal properties.’

The melting point of NaCl at atmospheric pres-
sure is 1073 K, or approximately three times its
Debye temperature. Above room temperature it
may be treated as essentially a classical solid
and classical theories of anharmonic lattice dynam-
ics® may therefore be applied. Such methods have
indeed been used successfully in the interpretation
of thermodynamic® and optical data'® on NaCL

However, there exist few direct data on the phonons
at elevated temperatures (above two-thirds that of
melting), where a breakdown of simple perturba-
tion approaches to the problem of vibrational an-
harmonicity* can be expected. To make it pos-
sible to study anharmonic effects in the range of
temperature in which experimental data are lack-
ing, we have carried out a series of computer
simulations by the method of molecular dynamics,
the primary purpose being the calculation of the
dynamic structure factor S(é, w). The latter, as
is well known, is related in a simple way to the
double differential cross section for coherently
scattered thermal neutrons, whereas the intensity
of x-ray scattering is related to the integral of
S(Q, w) over all w. The basis of the molecular-
dynamics method is the solution of Newton’s equa-
tions of motion for a finite system of particles
contained in a box with periodic boundary condi-
tions. From the classical phase-space trajectories
which this procedure yields, ensemble averages
of the type encountered in statistical mechanics are
readily evaluated. The outstanding virtue of the
method is that it yields results which are essen-
tially exact for the system studied. This means,
in the present case, that the predictions of per-
turbation theory can be tested in an unambiguous
way if carried out for the same model. We wish
to emphasize at the outset that our definition of
the model includes the fact that a small periodic
system is used. In particular, the lattice-dynam-
ical calculations have been made over a mesh of
points in the Brillouin zone which is consistent
with the size of the molecular-dynamics system.
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The computer “experiments” yield with equal ease
both the full multiphonon S(Q, w) and its one-pho-
non approximation 51@, w). This makes it pos-
sible to investigate the convergence of the stan-
dard phonon expansion of S(Q, w). Moreover, a
study of the Q dependence of various phonons can
be expected to reveal the interesting interference
effects of the type first identified in the beautiful
work of Cowley and Buyers'? and also discussed in
an important paper by Horner.'3

Four separate molecular-dynamics runs have
been carried out. The first, for a temperature
of 80 K, was designed to test the accuracy of the
simulation by comparison with the results of
quasiharmonic lattice dynamics for the same in-
terionic potential. The second, at 302 K, was
made in order to compare with calculations based
on anharmonic perturbation theory in a range of
temperature where the theory should work well.
The other two “experiments,” at 954 and 1153 K,
were carried out specifically to probe possible
inadequacies in the perturbation theory of anhar-
monic effects in the region where these effects
are largest. Anticipating some of our conclusions,
we shall see in Sec. IVE that the perturbation re-
sults are surprisingly good, but that important
differences in detail remain. We shall also see
that all the interesting manifestations of vibra-
tional anharmonicity are contained in our results.
The method, of course, can easily be used in the
study of other alkali halides.

II. MOLECULAR-DYNAMICS CALCULATIONS

The molecular-dynamics calculations were
carried out on a system of 216 particles, con-
sisting of 108 positive (Na*) and 108 negative (C17)
ions disposed on the interpenetrating fcc lattices
of the NaCl crystal structure and lying within a
cubic cell of length L. Periodic boundary condi-
tions were imposed and the classical equations
of motion of the ions were solved by means of a
simple finite difference algorithm,' with a time
step in the numerical integrations of 7x107'° sec.
The interionic pair potential used was the gener-
alized Huggins-Mayer potential with parameters
deduced from solid-state thermodynamic data by
Tosi and Fumi,? namely

¢i;ri)=2,2,/r;;+cy;bexpl(o; + 0, =7,,)/p]
"Cu/"?j =Dy;/7i; 1)

where z; and z; are the charges on ions labeled ¢
and j, located at T;,T; and separated by a distance
r;;= |, -F,|. The second term on the right-hand
side of Eq. (1) describes the overlap repulsion
between ions. In this term the factor b takes the
same value for all alkali halides which crystallize

TABLE I. Parameters in the Tosi-Fumi potential for
NaCl.

0 =3.38x10"13 erg

c,, =125
c,.=1
c_.=0.75

g

p

C,,=1.68x10"% ergcm®
C,_=11.2x10"% erg cm®
C._ =116 x10~% erg cm®
D,, =0.8 x10~"¢ erg cm®
D,_=13.9x10""% erg cm?®
D__=233 x10~" erg cm?®

in the NaCl-type structure, o, and 0; are lengths
(“basic radii”) characteristic of the ions, p is a
“hardness parameter” characteristic of the partic-
ular salt, and the c,; are numerical constants in-
troduced by Pauling. The last two terms in Eq.

(1) represent the contributions, respectively,

from dipole-dipole and dipole-quadrupole disper-
sion forces. As we have already remarked, the
major weakness of the Tosi-Fumi model, at least
insofar as the calculation of lattice vibrations is
concerned, is the fact that no explicit account is
taken of the effects of ionic polarization. We shall
return briefly to this question in Sec. IVF. Values
of the potential parameters used in the calculations
are listed in Table I and details of the thermody-
namic states which were studied are summarized
in Table II. In Table II we also give the total
number of time steps which were generated at
each state point.

Use of a periodic boundary condition makes it
possible to employ the Ewald method for the calcu-
lation of the electrostatic energy. In doing so we
have exploited an idea due to Singer (private com-
munication) whereby the total electrostatic energy
E_ is written in the exact form given by

Ec=% 2, A,m)(C%+$%)

n#0
erfc(nry;) zin
+Zi:ziz>;zj ¥i; ‘ _Zn;’z' (2)
J 17 1

The symbol erfc is used to denote the complemen-
tary error function, erfc(x)=1 - erf(x), and

_exp(-1n?/n%L?)
D E—

A,(n) (3)

Cz= Zc;i=zzicos<2nnf">, (4)
i 7
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TABLE II. Selected equilibrium properties of NaCl.

Source T 14 pV/NET =U @HV2 @22 Time steps
(K) (cm®mol™Y) (kJ mol™Y) A) @A) (1000°s)

MD 2 80.3 26.92 0.08 773.5 0.126 0.113 10

Expt.?  298.0 27.0 0.0 764.0

MC © 298.0 27.65 0.0 762.6

MD 301.7 27.60 0.13 762.1 0.234 0.227 6

MD 953.8 29.50 0.87 727.3 0.494 0.460 10

Expt. 1073.0 30.0 0.0 719.6

MC 1073.0 31.37 0.0 7174

MD 1153.0 31.37 0.21 713.2 0.611 0.577 28.8

4 MD, results from present molecular-dynamics calculations.

b Expt., experimental data (Ref. 7).

¢ MC, results from Monte Carlo calculations (Ref. 7).

. Nt
S=z= ZSEFZZ:'Sln(z" 2 ‘> . (5)

The quantity 7 is a disposable parameter (having
dimensions length™!) which governs the relative
rate of convergence of the two series in Eq. (2),
one of which is an expansion in reciprocal space,
the other being a sum in real space. The first
term on the right-hand side of Eq. (2) involves a
summation over reciprocal-lattice vectors n of
the simple cubic structure of cells of side L, to-
gether with a sum over particles within one such
cell. The advantage of writing the reciprocal-
space term in the particular form quoted here is
that the summation over ions runs only over single
ions rather that pairs, with a correspondingly
large reduction in the length of the computations.
The real-space summation in Eq. (2) is taken

over pairs i,j within a single cell. Finally,
differentiation of E. with respect to the COOI‘dl-
nates of ion ¢ y1e1ds the Coulombic force Fc, on ion
i as

Foy=-2 < ) A,)c:S7- s7:C7)

n#0
- erfc(nris) = 2n exp(-n7i;)
+Z.-2.r.~jzj< 3 4 + e xprz ).
=i i i

(6)

Equation (6) has been used in all our molecular
dynamics calculations. The parameter 1 was
taken as 5.6/L and the reciprocal-space term was
evaluated for 309 pairs of vectors, account being
taken of the fact that vectors fi and -1 make iden-
tical contributions both to E, and to F,. The
real-space term was truncated at ;= 3L, the
same cutoff in the potential being used for the
non-Coulombic terms in (1).

Our main effort has been directed at the calcula-
tion of the dynamical structure factor 8(6, w),
which we have computed in the manner of Le-

vesque, Verlet, and Kiirkijarvi'* from the classi-
cal expression

@ o= [ e“Hpr(io-g0)at

1 T o, L)
}me‘l‘ e_'w‘pﬁ(t)dt[ eivt p_a(t')dt'

.,l!, IPQ((U 2, (7

where N is the number of ions of each type (i.e.,
the number of unit cells), 7 éis the momentum
transfer, Zw is the energy transfer, and pg(w) is
the Fourier-Laplace transform of the particle
density pz(f). The latter we write in terms of
partial densities as

p3(t) = p5(t) + p3(t) (8)
with

p'.é(t)= Z eia' ?‘(f) ,
cations . . (9)
pé(t)=z eiQ T
anions
Thus the calculation of S(é, w) reduces to the cal-
culatmn of partial dynamical structure factors
Su8 (Q, w), i.e., the Four1er transforms of correla-
tion functions (pQ(t)p 5(0)), where a, 3=+, - and
S, -(Q, w)=5_,(Q, w). Specifically,

S@Q, ) =S,, (@, @) +S5__(Q, w) + 25, _(Q,w). (10)

On the other hand, the cross section for the co-
herent inelastic scattering of neutrons, S"(é, w),

is constructed by weighting the partial quantities
occurring in Eq. (10) by neutron scattering lengths.
The x-ray scattering intensity would be obtained
by weighting with the appropriate form factors

and integrating over w. Similarly, the spectrum
of charge density fluctuations, representing the
optic modes of vibrations, is obtained by weighting
with the charges of the ions. Thus
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S"Q, w)= b2S, , (@, w)+ b25__(Q, w) + 20, b_S, _(Q, w)
(11)
and

SQ, w) =225, (@, w) +22S __(Q, w) + 22,25, _(Q, ).

(12)

The phonon frequencies measured in a neutron ex-
periment can be identified with the peaks in

$"@Q, w), in the calculation of which we have used
the reduced scattering lengths b,=0.52 and b._
=1.47.

During the course of the molecular-dynamics
runs we also evaluated the one-phonon approxima-
tion to S(Q, w), denoted by S,(Q , w), which may be
computed in the same way as S(é, w) itself except
that pp(t) in Eq. (7) is replaced by pa(t), defined
as

o) = pa(d) + Pa() (13)

where, for example,

Po()=d,(Q) Y, € RiQ T, (). (14)
cations
The quantity d, (@) is related to the Debye-Waller
factor (see Sec. III below) and

6,0 =F,(t) - R, (15)

is the instantaneous displacement of the ith ion
from its lattice site _f{‘. The one-phonon a_.pproxi—
mations to S" Q, w) [i.e., S'Q, w)] and S*(Q,
li.e., S (Q, w)] are constructed in an analogous way,
account being taken of the different weighting of
the partial structure factors.

The length of the molecular dynamics cell (for
N=108) is L=3a, where a is the lattice constant,
i.e., twice the separation d of neighboring Na* and
Cl™ lattice sites. From the periodic nature of the
system it follows that the independent values of
momentum transfer which we can study are limited
to é= (27/3a)(m,,n,,n,;), where the n; are integers.
For example, in the (100) direction, we are limited
to studying three different values of the phonon
wave vector §. However, we can study the same
“phonon” for several different values of the mo-
mentum transfer because we can always write
§=Q+, where § is any Bragg vector. It should
also be noted that the appearance of terms of the
form é-ﬁ in both (9) and (14) means that we can-
not study transverse phonons in the first Brillouin
zone, a limitation which applies with equal force
in a real neutron scattering experiment.

Finally, we note that our computations must
satisfy the Placzek sum rule

2% jom w2S(Q, w) dw = kT Q <_ + m‘l—_> ) (16)

where m,,m_ are the ionic masses. This provides
a useful check on the accuracy of the molecular-
dynamics results. In practice the rule is satisfied
to within a few percent, except at the lowest tem-
perature. There, because the peak in S(Q, w) is
very sharp, the fact that the spectrum is sampled
only at discrete values of w can cause the second
moment to be considerably in error.

III. LATTICE DYNAMICS

In this section we briefly indicate the relation-
ship of usual phonon calculations®~!° to the com-
puter simulation work reported here. Our starting
point is an expression for the time correlation
function occurring in Eq. (7), i.e.,

SQ0=5 L stp-30) = I LS exisemieny,
4]
(17)

where X“-zQ (R, R ), x,=iQ+T,(t), and s
-—zQ 1,;(0). The labelsz—l kand j= [, k' are
used to denote the «th (or «’th) ion in the Ith (or
I’th) unit cell; thus U,(#) denoted the displacement
of the kth ion m the Ith unit cell from its equilib-
rium position R,

Ambegoakar, Conway, and Baym' have shown
that from an expression of the type of (17) a Debye-
Waller factor can be rigorously separated out.

In the classical case we may write

(erie®) =d(x;)d(y )1 +(x;y;)
+ %((x?y) - <x.y§>) + %(xlyj>2 teee ] .
(18)
Successive terms on the right-hand side of this
equation are the correlation functions correspond-
ing to elastic, one-phonon, lowest-order inter-
ference, a_gd lowest-order two-phonon contribu-
tions to S(Q,t). The Debye-Waller factor d(x;) is
defined in terms of a cumulant expansion as
(17205 + (1/4D(x) = 3(xD?) + =+ .
(19)

For a cubic crystal, Eq. (19) can be written in a
more transparent notation as d(x,;) =d (Q), with

d (Q) = exp(~- £ Q*uy)) . (20)

The one-phonon approximation for S, t) follows
immediately. On substituting (18) into (17) we
find that

Ind(x;) =

5,(@Q,1)= —( 3(t)p-5(0)), (21)

where p(t) is the density operator defined by (13).
We now introduce the quantities pQ(t) and pz(t)
where, for example,
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pat)= ), e TG, (22)
cations

with §= QE. With the aid of (22) we can rewrite
Eq. (21) in the form

(N/Q)S,(Q, 1) =d2 (QKp3(1)p-5(0))
+d2(Q)pE(P_3(0)
+2d, (Qd-(QP3(DP_3(0)
=[Qa(Q)F, (23)

which serves as a formal definition of the quantity
d(Q); F is a correlation function which is indepen-
dent of Q.

To proceed further in lattice-dynamical calcula-
tions it is necessary to evaluate the correlation
function (§,(#) - §,(0)). This is done by introducing
normal coordinates derived from the eigenfrequen-
cies wy,, i.e., the harmonic frequencies of wave
vector  and polarization A, and their associated
eigenvectors E% . In the harmonic approximation
(and the classical limit) the result is

5,Qw=7 L aQ-0IF@atw, (@9

where A(Q— ﬁ)ois the crystal & function, the spec-
tral function A ,(w) is given by

A%\ (@) =27{8(w - wgy) = 8(w+wz )], (25)

and the one-phonon inelastic structure factor
F3)\(Q) is defined as

—>

Fin@ = T (@ & (G- 8520 /(2 mewz )2

(26)

Thus the spectrum is given as a sum of 6-function
peaks of appropriate weights.

For an anharmonic crystal the problem is more
difficult, requiring the use of many-body perturba-
tion theory.®™'° However, the results bear a strong
similarity to those for a harmonic crystal, pro-
vided that the coupling of one-phonon states cor-
responding to the same wave vector but different
polarization branches is neglected. This so-called
polarization mixing effect vanishes for the zone-
center modes, and elsewhere is usually assumed
to be small. The expression for Sl(é, w) is then
the same as that obtained in the harmonic case,
except that the 0 functions are broadened and
shifted by the phonon-phonon interactions. The
effect is to replace the spectral function (25) by

Aga(w)

2
Bwinl ga(w) )
[=w? +w%>\+2w;>‘A;X(w)]2 +2wg\ TsA(w)]?

@7
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Aga(w) and I'gy(w) are related to the anharmonic
terms in the Taylor series expansion of the total
potential energy of the crystal in powers of the
displacements of the ions from their equilibrium
positions.® To second order in the cubic anhar-
monicity and first order in the quartic anharmon-
icity the shift is given by

_ V(ly _1’2, -2)
Al(w)—IZszz: T
_ 2 (w, +w,)? >
18kT Y | V(1,2,3)] <_—‘—1_2_(w1+w2)2_w2
2,3
N (w2w > (28)
172
and the width by
_ o w +w2>
Iy(w)=18kT 3 [V(1,2,3)] (—*—wlwz

2,3

X7[0(w, + w, = w) = 8(w, +w, +w)] ,
(29)

where w, = w3 », etc., and the matrix elements V
are essentially the Fourier transforms of the cubic
and quartic terms in the potential energy.

In the case where polarization mixing is included,
the Green’s functions are obtained as a matrix with
finite nondiagonal terms. The one-phonon con-
tributions to S(é, w) can be expressed as a sum
over all the elements multiplied by appropriate
products of structure factors. The detailed formal-
ism has been given by Cowley.®

In the actual lattice-dynamical calculations re-
ported here, the w3, and Eax were calculated from
the interionic potential (1) for lattice spacings
identical to those used in the simulations. This
is the so-called quasiharmonic (QH) approximation,
use of which allows the harmonic frequencies to
change with volume. Similarly, the anharmonic
force constants V in (28) and (29) were evaluated
for each volume. Coulomb contributions to the
harmonic and cubic terms were evaluated using
an Ewald transformation. All other types of force,
and the Coulomb contribution to the quartic shifts,
were summed in real space over enough shells of
neighbors to give a converged result.

The principal parts and 6 functions appearing
in expressions (28) and (29) were replaced by
analytic functions corresponding to a finite width.
In the usual applications'® of this technique the
expectation is that when a sufficiently fine mesh of
wave vectors is used the results become indepen-
dent of the width of the function used. In the pres-
ent case the number of wave vectors is fixed at
108. We must then of necessity use quite a wide
representation of the 6 function. In fact the value
used in all of the present calculations corresponds
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to a full width at half-maximum of 0.3 X10" sec™*.
The most obvious justification for such a smooth-
ing function is that the intermediate phonons them-
selves have finite lifetimes, so that the necessary
width can be estimated from a suitable average
lifetime. The value we have used then corresponds
quite well to what we should estimate for 300 K.
For higher temperatures the phonons are less well
defined and we can expect that the response func-
tions may show even less structure than we have
calculated. For lower temperatures, however, the
use of a mesh of the size together with a reason-
able estimate of the phonon widths leads to the re-
sponse functions having a spiky appearance. This
may possibly indicate that at the lowest tempera-
tures (i.e., below 300 K) the size of sample we
have used cannot be considered “large,” but at the
higher temperatures it should be satisfactory.

We have calculated the scattering function both
with and without the inclusion of the polarization
mixing terms. For the particular examples shown
here the effect is not large, but we hope to consider
other examples in later work. We whall refer to
calculations based on Egs. (27)—-(29) as anharmonic
perturbation theory (APT).

We wish to stress that our definition of the one-
phonon approximation ensures that 31(6, w)/
[Qd(Q)]? is independent of Q. Hence a study of
the quantity S(Q, w)/[Qd(Q)]? provides a simple
means of monitoring the effects of higher-order
terms in the phonon expansion (18), i.e., effects
due to interference and multiphonon processes.

IV. MOLECULAR-DYNAMICS RESULTS
A. Equilibrium properties

Results on selected equilibrium properties (pres-
sure, internal energy and rms displacements) are
shown in Table II. In the case of thermodynamics
properties there is fair agreement with previous
Monte Carlo calculations’ based on the same po-
tential model, and also with experimental mea-
surements. The highest temperature studied is
actually above the melting point (at atmospheric
pressure) of real NaCl. In the simulation, how-
ever, the crystal is apparently still stable. In
particular, the pressure is positive and the quasi-
harmonic normal-mode frequencies are all real.
The rms amplitude of vibration of the ions is very
large at high temperatures, but is everywhere in
fair agreement with the results of quasiharmonic
lattice-dynamical calculations. It is evident from
these results that anharmonicity makes only a
small contribution to the mean-square displace-
ment of the ions. However, the molecular-dynam-
ics results, which contain all anharmonic effects,
are systematically larger than those obtained from

the quasiharmonic calculations. In the harmonic
approximation the mean-square displacement is
given by

<uz> - E <E£)‘_I >2 (30)

" Nmy, W ’

qX

The dominant contribution to this expression comes
fromthe lowest frequency branch of the dispersion
curve, i.e., the TA mode. In this branch the an-
harmonic frequency shift is negative, as we shall
see below. Thus the effect of anharmonicity is to
increase the mean-square displacement.

B. Temperature dependence of the phonons

In all four molecular-dynamics runs, S(Q, w) was
calculated for the following values of the wave vec-
tor Q (expressed in units of 27/3a):

(1,0,0), (1,1,0), (1,1,1), (2,0,0),
2,2,0), (3,0,0), (3,3,0), (0,2,4),
(0,1,5), (3,3,3), (0,6,1), (0,6,2),
(o, 6,3), (7,0,0), (9,9,9), (10,10, 10).

Additionally, at 302 and 954 K, we studied the
points (2, 2,2), (4,4,4), and (8, 8, 8), while at 80
and 1153 K we studied also the points (4, 2, 2), and
(6,0, 0).

Figure 1 shows the calculated phonon frequencies
along the 100) direction at 80 K. For each of the
four modes, the molecular dynamics results agree
well with those of quasiharmonic theory. On the
other hand, agreement with the experimentally
measured® phonons is not especially good, the
main failure of the simulation being the overesti-
mation of the frequencies of the LO phonons. This
is a straightforward consequence of the neglect
of ionic polarization in our model, as we shall
show in Sec. IV F. It should be noted that our use
of a finite system means that we are unable to ob-
serve the ¢ =0 LO phonon.

At sufficiently low temperatures the phonons are
all very well defined, the only feature of the spec-
trum being a sharp peak close to the quasihar-
monic frequency. With increasing temperature
the phonons shift and broaden, a behavior illus-
trated in Figs. 2 and 3 for selected longitudiral
phonons propagating in the (100) direction. Figure
2 shows the neutron cross section for the zone-
boundary LA phonon at the lowest and highest tem-
peratures studied. The observed frequency shift
is large, approximately 20%, but is nonetheless
considerably smaller than that predicted by quasi-
harmonic theory. The other obvious effect of in-
creasing the temperature is the growth in intensity
at low frequencies. Figure 3 shows the neutron
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6
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(0,00) q (2r/a)(1,0,0)

FIG. 1. Phonon frequencies for the (100) direction at
80 K. The dots are molecular-dynamics results and the
solid lines give the quasiharmonic results for the same
model. The dash-dot lines represent experimental neu~
tron scattering data (Ref. 3).

cross section at 302 and 1153 K for the smallest
wave vector we can study in our periodic system
of 216 ions, i.e., @=(27/3a)(1,0,0). The main
peak is the LA phonon. This remains well defined
as the temperature increases, and simultaneously
a peak centered at w=0 develops, so that the spec-
trum qualitatively resembles a Rayleigh-Brillouin
triplet. The weak response at high frequency is
shown in the inset diagrams; the peak near 5x10%
rad sec”! corresponds to the LO mode. The dashed
curves in the insets show the charge-weighted
spectra, plotted on a different relative scale; this
comparison between S"(Q', w) and S‘(Q, w) aids the
identification of the optic-mode frequency at high
temperatures. As is well known, the relative in-
tensity of the acoustic and optic peaks for the same
d can be very different in different Brillouin zones,
and this behavior can also be exploited in iden-
tifying a mode frequency.

In Fig. 3(a) the dots on the figure are the direct
output from the molecular-dynamics calculations.
At 954 and 1153 K the direct output is somewhat
noisy, particularly at large momentum transfer,
because our method of computing S(Q, w) neces-
sarily includes the long-time statistical errors in
S(Q, t). The noise level can be reduced by con-
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T=80K
[ ]
41
21
[ ]
[ ]
0 | L el® Saes | | 1
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FIG. 2. Zone-boundary LA phonon (in arbitrary units)
at two temperatures. The dots are molecular dynamics
results and the arrows mark the location of the quasi-
harmonic frequencies. The curve represents the results
of the smoothing procedure described in the text.

voluting the calculated spectrum with a Gaussian
filter of given width, say 6. This in turn is equiv-
alent to truncating correlations in pg(t) beyond a
time 7~2/8. The solid lines in Figs. 2 and 3 show
results obtained by this procedure; the width used
for the filter is shown on each graph and is usually
equivalent to 600 time steps. The correctness of
the method can be checked by transforming the
raw S(Q, w) data to yield S(Q, ¢), truncating the
long-time tail at the appropriate value of 7, and
the transforming back to obtain the smoothed

S@Q, w).

C. TO (g =0) phonon

The g=0 TO phonon is of particular interest be-
cause it can be studied by infrared spectroscopic
methods as well as in neutron scattering experi-
ments. For this reason it is the only phonon on
which experimental data are available at relative-
ly high temperatures (up to approximately 700 K).
In our calculations we have studied this particular
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FIG. 3. (a) Neutron cross-section (in arbit_:gary units) for the smallest accessible wave vector. The curves in the in-
set show the high-frequency response in S"(Q, w), plotted on the same relative scale (full line), and in S%(Q,w), plotted
on an arbitrary relative scale (dash line). (b) As (a) but at a higher temperature. The full curve in the main figure

shows the effect of smoothing the molecular dynamics results.

phonon for a momentum transfer corresponding to
Q=(27/3a)(3, 3, 3) at temperatures of 302, 954, and
1153 K. At the lowest temperature the spectrum

is sharp, as for all the phonons we have measured.

At 954 K the peak is still clearly defined but sits
now on a broad background. There is also some
evidence for a weak secondary peak at approxi-
mately one-half the frequency of the main peak.
At 1153 K the subsidiary peak has grown some-
what in intensity and a further satellite line can be
seen at 3 the main peak frequency. It is possible,
of course, that the detailed structure of the spec-
trum is related to the small size of our system,
but it could also represent a contribution from
real multiphonon effects. The frequencies of the
main peaks and their approximate full widths at
half maximum height (with due allowance made for
our resolution) are compared with experimental
infrared results'® in Fig. 4. The absolute values
of the frequencies are too low, but the tempera-
ture dependence and the width are both in fairly
good accord with the experimental data. The low
value of the TO frequency reflects the inadequacy
of the force constants in the Tosi- Fumi model, the
question of polarization being of much less impor-
tance for this mode.

D. 6 dependence and the one-phonon approximation

One of the original aims of this work was to in-
vestigate the Q dependence of the phonon spectra

in an attempt to isolate the contribution from mul-
tiphonon processes. In Fig. 5 we show the charge-
weighted spectrum S$*(Q, w) and its one-phonon ap-
proximation $%(Q, w) for the LO phonon Q= (27/3q)
x(7,0,0) at 302 K. In the one-phonon approxima-
tion the peak is asymmetric, whereas the full
Sz(é, w) is essentially symmetric. The influence
of the interference term in the phonon expansion
(18) is clearly visible, even at this low tempera-
ture and low value of é The interference effect
in lowest order contributes a term proportional to
@® which changes sign as the phonon wave vector
4 (=Q= &) crosses a Bragg vector §. In the case
illustrated, the result is to move intensity from
the left-hand side to the right-hand side of the
peak, incidentally making the peak more symmet-
ric. At higher temperatures the effect is even
more marked, as Fig. 6 shows. The one-phonon
approximation for Q= (27/3a)(1, 0, 0) is virtually
identical with the full result for Q= (27/3a)(1,0,0)
when due allowance is made for the factor [Qd(Q)]?.
Thus Figs. 5 and 6 display directly the Q depen-
dence of this particular phonon. We see that at
954 K the center of gravity of the spectrum is no-
ticeably shifted by the interference effect. The in-
crease in temperature has led to a substantial
growth in the multiphonon background, but the peak
remains easily identifiable.

In the left-hand part of Fig. 6 we show the 6 de-
pendence of the corresponding LA phonon at 954 K.
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FIG. 4. ¢=0 TO mode. The upper half shows the peak
frequency v as function of temperature; circles are
molecular-dynamics results, dots are experimental data
(Ref. 15), and the dash line gives the predictions of quasi-
harmonic theory. The lower half shows the full width at
half-maximum relative to v; molecular-dynamics results
are shown as error bars.

There is almost no evidence here of any interfer-
ence effect, but the increase in the multiphonon
background for Q= (2m/3a)(17, 0, 0) has caused a
shoulder to appear on the side of the main peak.
The one-phonon approximation has a peak at w=0,
which is little different from that occurring in the
full S(Q, w) for the point Q= (27/34)(1, 0, 0) (shown
as open circles). Thus the central peak is clearly
not the result of multiphonon processes, lending
support to our earlier suggestion that it is the rem-
nant of a Rayleigh-type line.

Figures 7(a) and 7(b) show some of the phonons
studied by Cowley and Buyers in their classic
work' on the interference effect in KBr. To illus-
trate the importance of the effect we have plotted
the neutron cross section s"(c'i, w) and its one-pho-
non approximation for values of (_5 on either side
of the Bragg vectors g=(2n/3a)(3,3,3) and &
=(27/3a)(9,9,9). For the smaller Bragg vector,

| Q=(211/3a)(7.0,0)
| T=302K
3 I
I
U
|
|
22
)
l
L ! —
|
]
|
|
\
ol od

35 45 55 6.5 7.5
w (10" rad/sec)

FIG. 5. Charge-weighted spectrum (in arbitrary units)
for @ = 27/34)(7,0,0) at 302 K. The dots are the molecu-
lar-dynamics results for Sz(ﬁ,w) and the line shows the
corresponding one-phonon approximation. The dashed
line gives the results for Sf( é, w) from perturbation
theory and the arrow locates the quasiharmonic frequency.

T=954K
. Q=(211/32) (7,0,0)

8L 084

0.64

SZ(Q.w)

S mare—
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FIG. 6. Right-hand part same as in Fig. 5, but at a
higher temperature. The left-hand part shows S( ﬁ , W)
for the same wave vector [Q = (27/34a)(7, 0, 0)]. Results
for @ =(27/3a)(1,0,0), scaled by the factor [Qd(Q)]%, are
shown as open circles. For the sake of clarity, the per-
turbation results have been reduced in intensity by a fac-
tor of 4.
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FIG. 7. (a) The mterference effect in the neutron cross section at 302 K. The full curve is S{ (Q w) and the broken
curves are S"(Q w) for Q— (21/3a) (2, 2,2) (dashes) and Q (21r/3a) (8,8,8) (dash-dot). The spectra have in all cases

been divided by [Qd(@)]%. (b) As (a) but for wave vectors Q =

where the spectra are not complicated by multi-
phonon effects, the interference effect is clearly
visible. For the larger one, both the multiphonon
and interference effects have grown in magnitude
and are not so readily separable. However, there
is clearly a large enhancement of mtens1ty on the
low-frequency side of the spectrum for Q= (21r/3a)

X (8,8, 8) and on the high-frequency side for @

(21r/3a)(10, 10,10). The relative effects seen
here are not symmetrical. This arises from the
necessity of both spectra (when divided by @3) hav-
ing the same second moment; clearly the transfer
of intensity from high to low frequency must be ac-
companied by a correspondingly greater enhance-
ment of the spectrum relative to ST(Q, w) than in
the reverse case.

E. Comparison with perturbation theory

Figures 5 and 6 show a comparison between the
molecular-dynamics results for S3(Q, w) at the
smallest accessible wave vector, i.e., Q=(27/3a)
x(1,0,0), and the predictions of anharmomc per-
turbation theory. At 302 K (Fig. 5) there is rea-
sonably good agreement. Both calculations give
rise to a peak which is asymmetric (in the same
sense) and shifted to a frequency higher than the
quasiharmonic result. (Note that both spectra have
been convoluted with the same smoothing function.)
The simulation gives a broader peak and the shift
from the quasiharmonic frequency is somewhat
smaller. However, the perturbation theory used
here is limited by the assumption that one phonon
decays into two others, and therefore yields a

2n1/3a) 4,4

,4) (dashes) a.ndQ—(27T/3a)(10 10,10) (dash-dot).

lower limit on the width of the phonon or, equally,
an upper limit on the lifetime.

At 954 K (Fig. 6) the molecular dynamics result
for the same phonon is much broader and shifted
noticeably less from the quasiharmonic frequency
than in the perturbation calculations. In the case
of the wave vector Q= (2m/3a)(7,0, 0) there is
somewhat better agreement with the full $*(Q, w)
than with the one-phonon approximation. This, of
course, is fortuitous, because the full result in-

TABLE II. Phonon frequencies, in units of 10 rad
sec™! for (@ =(27/3a)(3,0,0).

T (K) TA LA TO LO
80.3 QH 1.93 3.28 3.14 4.28
APT 1.92 3.29 3.15 4.26

MD 2 1.90 3.30 3.15 4.30

301.7 QH 1.92 3.08 2.94 4.23
APT 1.89 3.16 3.02 4.18

MD 1.90 3.15 3.00 4.20

500.0 QH 1.92 2.91 2.78 4.19
APT 1.85 3.05 2.91 4.14

700.0 QH 1.90 2.73 2.62 4.15
APT 1.83 2.98 2.81 4.09
953.8 QH 1.89 2.54 245 4.11
APT 1.82 2.9P 2.70 4.04
MD 1.75 2.85 2.75 4.05

3 MD, molecular-dynamics results, with typical sta-
tistical uncertainty of +0.05.
b Very broad.
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cludes a significant contribution from the interfer-
ence effect. It is possible to extend the perturba-
tion calculations to take account of the interference
term, but we have not so far attempted this. The
satellite peak in the molecular dynamics result is
less separated from the main peak than in the per-
turbation calculation. Qualitatively this can be
understood as resulting from the neglect of phonon
renormalization in the basis set used in the per-
turbation theory. In the simulation, the phonon
linewidth arises from interactions between pho-
nons which already have a finite width and shift
compared with the harmonic approximation. Hence
any fine structure in the phonon spectral function
will necessarily be shifted (relative to the main
peak) and broadened when compared with that found
in a simple perturbation calculation.

In Table III we make detailed comparison between
the molecular-dynamics results and the theoretical
predictions for the frequencies of the zone-bound-
ary (100) phonons. Since zone-boundary phonons
display no interference effect, the comparison is a
meaningful one, even though the perturbation cal-
culation of the neutron cross section is limited to
the one-phonon approximation. For this particular
value of é, the TA and LO phonons show only
small negative shifts from the quasiharmonic re-
sults, whereas the LA and TO shifts are large and
positive. (The shift in the LA phonon and its tem-
perature dependence are also illustrated in Fig. 2.)
Such a variety of behavior clearly constitutes a
severe test of a theory of anharmonic effects. In
fact, as the table shows, agreement between the
molecular-dynamics and perturbation theory cal-
culations is excellent at 302 K and remains good
even at 954 K. Thereafter the perturbation theory
rapidly breaks down and no useful comparison can
be made at 1153 K. Nonetheless, at least insofar
as the prediction of the phonon frequencies are
concerned, the perturbation method used here re-
mains adequate up to temperatures roughly 80% of
melting. The range of validity of the theory is
therefore substantially greater than in comparable
calculations on rare-gas solids.'?

F. Effect of ionic polarization

As we have already stressed, the Tosi-Fumi
model takes no account of ionic polarization and
for that reason is unable to account quantitatively
for details of the dynamical properties of NaCl.
The effect of polarization on the interionic forces
can be incorporated explicitly in a molecular-
dynamics simulation, though at the cost of a con-
siderable increase in computing time. The tech-
nical problems involved in such a calculation have
been discussed in detail in a recent paper,*® both
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for a model consisting of point polarizable ions
and for a simple version of the shell model. In the
shell model the total ionic charge is assumed to be
divided between a core and a shell, and polariza-
tion corresponds to a bodily displacement of the
shell with respect to the core. The shell, which
represents the outer electron cloud, is assumed
to be bound to the core by a harmonic potential and
the short-range repulsive interactions are assumed
to act between the shells. In the molecular-dynam-
ics “experiment” the equations of motion of the
cores are solved in the usual way, whereas the
shells are assumed to adjust themselves instanta-
neously so as to minimize the total potential ener-
gy of the system. The second step is considerably
more complicated to carry out than the first and
requires the use of iterative methods. Use of the
shell model in molecular-dynamics calculations
has also been discussed by Dixon and Sangster.®®
In Fig. 8 we show a typical result obtained from
a shell-model calculation in which polarization is
superimposed on the Tosi-Fumi potential for NaCl.
Only the C1” is treated as polarizable, the param-
eters of the model (the charge on the shell and the
spring constant in the shell-core potential) being
taken from the work of Sangster.?® The phonon
shown corresponds to the LO mode of smallest
wave vector. There is a large negative shift with
respect to the rigid-ion result, bringing the pho-
non frequency into good agreement with the exper-
imental value (see Fig. 1). Such effects are, of
course, already well known from lattice-dynam-
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FIG. 8. Effect of polarization on the charge-weighted
spectrum (in arbitrary units) for Q= (27/3a)(1,0,0) at
302 K. The full curve shows results from the rigid ion
“experiment,” the dash curve those from a shell-model
simulation.
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ical calculations; we include the comparison here
primarily to demonstrate that the molecular-dy-
namics simulation can be made substantially more
realistic if this is particularly required. The
broadening of the spectrum and the appearance of
a double-peaked response is qualitatively similar
to the behavior found by Cowley' in a perturbation
calculation for the =0 LO mode. Since polariza-
tion acts in such a way as to reduce the phonon
frequencies (though the effect in other branches

is less pronounced than for the LO mode), its in-
clusion necessarily leads to an increase in the am-
plitudes of vibration. This effect turns out to be
very large, as shown by the results given in Ta-
ble 1V.

V. CONCLUSIONS

The results reported here demonstrate that com-

puter simulation can play a valuable role in analyz-

ing the lattice vibrations of a simple ionic crystal
such as NaCl. The fact that the one-phonon ap-
proximation to the dynamic structure factor can be
evaluated in parallel with the calculation of the
complete spectrum means that anharmonic effects
can readily be isolated and their importance as-

sessed. Our main quantitative result is that a sim-

ple perturbation treatment is adequate for the pre-
diction of phonon frequencies at temperatures up
to 80% of the melting temperature; on the other
hand, the phonon linewidths are underestimated,
particularly at high temperatures. In making this
comparison it is sufficient to work with a much
oversimplified potential model and most of our

TABLE IV. Root-mean-square displacements of the
ions. d (=%a) is the nearest-neighbor separation.

100@2)Y2/d 100 @2)/?/d
T (K) MD 2 QH MD QH
(i) Rigid ions
80.3 4.5 4.0 4.0 3.8
301.7 8.2 7.8 8.0 7.6
953.8 17.0 154 15.8 14.8
1153.0 20.6 19.0 19.5 18.5
(ii) Polarizable ions®
306.3 12.6 11.0
1153.5 24.3 23.6

3 MD, molecular-dynamics results.
b Shell-model results from Ref. 18.

calculations have, in fact, been made for a sys-
tem of rigid ions. The effects of polarization can
be included, however, though only at considerable
added expense in computing time, and fair agree-
ment with experimental results can then be
achieved. However, the qualitative features of
our results are likely to be insensitive to details
of the interionic potential, and hence should carry
over to other ionic systems.
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