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The differential cross section of the spherical pores in ferrimagnetic materials is calculated by using the Born
approximation in scattering theory. Using ibis scattering cross section, the theory is developed for evaluating
the wave-vector dependence of the spin-wave linewidth, The wave-vector dependence of the spin-eave
linewidth is 1/k in the long-wavelength region and is proportional to k for the short-wavelength region, where
k is the wave vector of the spin waves. The present theory indicates that the spin-wave linewidth is a function
of the number of pores and their radii. Agreement between the formula and the experimental results is good
except in the region very near k -0.

I. INTRODUCTION

The influences of grain size and porosity on the
effective linewidth and spin-wave linewidth in fer-
rimagnetic materials are well known. The influence
of grain size on the spin-wave linewidth can be
qualitatively explained by a Inodel, the grain- size
transit-time theory, proposed by Vrehen et al. '
This description, however, is not satisfactory for
the porous polycrystalline materials. Scotter'
has recently observed the effect of inclusions and
porosity on spin-wave linewidth. In order to give
a simple explanation of the experimental facts,
Scotter proposed a more refined theory in which
he suggested that a nonmagnetic inclusion or pore
rather than grain boundaries limits the mean free
path of a spin wave. Hereafter we call this theory
a spin-wave transit-time theory. '

In this theory he assumed that the expression for
the total cross section has the form

the incident wave is a spin wave; the scattering
region is a spherical cavity. In order to derive
the differ entlal cross section of a spherical cavityq
it is first necessary to convert the equation of mo-
tion into a Schrodinger- type equation of motion for
a transverse rf magnetization. The deviation of
the magnetization vector from static equilibrium
ls delloted bp m(t', i) and 1't satisfied tile llnearlzed
equation of motion given by

Bt
= ym x (0+ D&2m+ H~„„,),

where y is the gyromagnetic ratio (negative), H

the total static magnetic field, H«„„the mag-
netostatic field outside the spherical cavity, and
B the exchange constant. From the boundary con-
ditions at the surfa, ce of the pore, the magneto-
static potential 4 is given by'

4'' 1» &~ sin8 M,m+e»+m e ~~ ~ + ~' cos8

where R is the radius of a spherical nonmagnetic
inclusion or pore. However, it is clear that the
total cross section is expected to be a more com-
plicated function of radius, frequency, saturation
magnetization, dc magnetic field, and exchange
constant. The main purpose of Sec. D is to obtain
the differential cross section of the spin wave. In
Sec. III the results of Sec. II are extended to the
evaluation of the relaxation time and the linewidth
of the spin wave in polycrystalline materials.

II. THEORY

%e begin by considering a ferromagnetic region
that is uniformly magnetized to saturation in the
z direction by a dc magnetic field, in which the
polar angles of the direction of the wave vector
k, are 8, and P, . The incident wave is directed
toward the scattering region whose pxoperties
differ from the surrounding medium. In this case,

where r is the length of the vector r having spher-
ical angles 8 and ~IF), m'=I„+jm„B is radius of
the spherical cavity, and M, the saturation mag-
netization. The magnetic dipole field is given by

(4)

%e treat the problem of scattering of the spin
waves by a pore by adopting the fast-passage ap-
proximation. %hen the spin waves go across a
pore region with velocity v, the transit time is
l/v = r, where i is the effective length oj the pore
region. If ~ is much longer than the relaxation
time T.„of the spin waves, spin-wave energy will
betransferxedintothe pores. For, 7 «v'~, there
is no energy transfer from the spin waves into the
pore, and so the m' and rn terms in the potential
4 can be neglected. For v = 10' cm/sec and l = 10 '
cm, we find 7 =10 ' sec and T~=10 ' sec, i.e. ,
for hH„=0.5 Qe. Now we will limit the analysis
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to the case r «r, . Eq. (3) ean be rewritten as

4 (r, 8) =--; vs'(M, /r') eos8. (5)

With this approximation, the equation of motion
may be expressed in the form

n', = — G'(r, r')g(r') e' o'~ d r"

G'(r, r")g(r")G'(r", r')F(r') d r'd r" .

1 —3 cos'8
yDV'+v —co —co P

cos0 sin8e'~
= &mP (6)

(15)

The second term of Eq. (15) is of second order and
is negligibly small, while comps, rison of Eq. (6)
wltll Eq. (7) shows tllat

where

n'=m'/M„(, d=yH, ~ = 4vyM„P=-'vR'.

g(r}= —&u P(1 —3 cos'8)/r',

F(r) =(d p(cos8sin8/r')e&».

(16)

(17)

In order to obtain the scattering cross section we
shall consider the inhomogeneous equation

[L„+eg(r, 8, P}]n' = F(r, 8, (t)),

If n is a unit vector pointing in the direction of
scattering given by k, the Green's function takes
the form

G'(r, r') = (1/4&yD)(el~"/r)e l~",
where L, is an operator expressed as I.„=yDV'
+ co —vo. The total wave function a' may be de-
composed into a zeroth-order wave and a first-
order wave

+ + +
o. =e,+&a, &

where e is the covergence fa.ctor. Equation (7)
then becomes

where we have used the approximate relation

lr' —rl =r n ~ r'+-o(r'/r).

Equation (13) is

co P e++ e)Q»r+ m

4nyD r

(19)

[r...+eg(r, 8, y}](n,+en', ) =F(r, 8, y). (6)

Equating the coefficients of equal powers of & we
obtain

I.„n,'=F(r) . (9)

A particular solution of Eq. (9) can be expressed
in the form

Equation (15) is

P e ";~;.~ 1 —Scos'8"
Q

4myD
jkn»

ytl3

~ r» r» t' (d P..' -a-, .0( -' *)
4myD

(21)

a', tr)= fG'tr, F)r(F)dr', (10)

where the Green's function G'(r, r') satisfies

I.„G'(r, r') = —5(r- r')

and the solution takes the form, within the infinite
medium,

G'(r r') = (1/4vyD)(e" "'/Ir- "I) (12)

With the help of this Green's function, we may
write the solution of the wave equation (9) in the
form

The relationship of the associated vectors r' and
n to n, is indicated in Fig. 1. The integral in Eqs.
(20) and (21) ean be calculated by using the coordi-
nate system shown in Fig. I. In order to perform
the integration in Eq. (20), we expand e l"' in
I.egendre polynomials,

IZ

(13)

where the first term in Eq. (13) represents the
incident wave normalized to one magnon per unit
volume. The first-order solution n,' is given by

ax= — G' r, r'g r' hodr

By substituting Eq. (13) into Eq. (14), we have

(14)
FIG. 1. Coordinate system as used in cat.cul. ations

pertaining to Eqs. (20) and (21).
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e ""' " =Q (2n +1)(-j)"
77=0

ranged with separation s on a cubic lattice. The
probability P that a spin wave mill hit N pores
within a distance s is given by

n-m !xge, cosm{Q' —P)P„(cos8')
(n+ m)!

P = No(8o)/s2. (33)

&&P„(cos8,)j „(kw'),

(23)

mhere

f,{8,) = -(&u„p/4 wyD) —', wP,'(cos 8,)e"~'.

The solution of the Eq. (10) is

(24)

where e„ is the Neuman factor e, =1, e„=2(n
=1, 2, . . .). The integration in Eq. (21) is also
easily done using this expansion. We then have

+ @jko'r + (e jhow/w)f (8 )

Hence the mean free path l is defined by

I =s/P =s'/Are'(8, ) = P/Po'( 8,),
where

(34)

(35)

is the porosity. The present theory is based on the
most plausible assumption that the relaxation times
of the spin waves are expressed by averaging the
transit time over all the incident angles of the
spin waves. Using Eq. (34), the spin-wave line-
width r H» is given by' (see Appendix)

n,
' = (ej"/r) f, (8,}+O{(~.p/4wyD}'),

where

f, (8,) =—;w(&u P/4wyD)P, '(cos8.),

(25)

(26)

1 1 l

ysH, 4w u, (8,)
dQ

p 1
dQ.4' U{ 8) c(r8) (36)

where eos8, is the directional cosine of the vector
a and a =n —n~. It follows from the geometry of
the situation that 8, is related to 8„and 80 by

From the definition of cross section, it follows
that

cos8, =(cos8, —cos8,)/a,

where a is given by

IaI =a =[2(I —cosy}]'~'

and

cosP = -sin8~ sin80 cosP~+eos 8~ cos 8o.

(27)

(29)

o(8. , 4„8.) = If(8„4., 8.)l',

f(8» 4~ 80}=f0(8» 4a 8o)+fi(8. 4. 80}

(37)

(38a}

In Eqs. (24) and (26), the functions P20 and P,' are
Legendre functions depending only on angles

v~ (80) =(2yDk)'+ (u„sin8o cos80/k) .

The total cross section is given by

(38b)

P,'(cos8, ) = —,'(3cos'8, -1),
P', (cos 8») = 3 eos 8» sin 8» .

(30) '(8.}= If(8. , 0, 8.)I'« . (39)

In the calculation of the integrals Eqs. (20) and

(21) we have used the formula

J
- j,(x)

3 ~

0
(32)

III. RELAXATION TIME

In this section me shall consider the problem
from the viewpoint that spin waves behave l.ike
particles (magnons}. Scotter' proposed a phe-
nomenological theory of the spin-wave transit time
in which nonmagnetic inclusions in polycrystalline
yttrium iron garnet (YIQ) limit the mean-free-
path length of spin-waves.

Our theory of the relaxation times follows along
the general lines suggested by Scotter. The non-
magnetic inclusions are assumed to have a total
scattering cross section ur(80), where 80 is the
polar angle of an incident spin-wave, and to be ar-

From Eqs. (24) and (26), we have

or = (u p/4wyD} w x 2.726.

It is interesting to note that the total cross section
is independent of the angle of incidence 80. The
80 independence of the total cross section is not
surprising. The first-order solution n, in Eq.
{21)contains terms of first and second order in
the factor of &u P/4wyD. The 8, dependence of the
total cross section arises in second order in the
factor of ru P/4wyD. However, in the pore scat-
tering the first order perturbation term 0(u& P/
4wyD} reduces to a constant when integrated over
all. solid angles, and the 80 dependence thereby
disappears. As a numerical example me consider
YIG at room temperature. Using D=5X10 '
Gecm' and {d =3&10'0 sec ', finally we have

1+ 1.37' 10 0' )'/
1 „(1+1.37 10 0 ) (41)

kE(sin 'r!, K}
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where the F(sin 'rt, K) is the elliptic integral. and

is defined by

it ri

F(sin ')), K) =

where

dQ
(1 —A' sin2$)'t' '

1+[1+(4yD/&u )'k']'~'
2[1+(47 D/(() )'k ]'t'

1+(1+1.37x10 22k')'t2

2(1+1.37x10 2~k~)'~'

2[1+(4yD/(d )'k4]V'
1+ [1+(AD/(d )'k']'t'

2(1+ 1.37x10 "k4)'t4
l p (1+ 1 $7x 10 22k'))~/2 (44)

For pores of radius A =5.4&10 ' cm, we get for
sufficiently large k

t)H~=4x10 'k (Oe) for k»10' cm ',

where we have used X=1.86X10" per unit volume
(1 cm') for the number of pores. The porosity
P ls defined as

gion. These wave-vector dependences arise from
the k dependence of the group velocity. The re-
laxation time is obtained by dividing the mean
free path by the group velocity of the spin waves.
The group velocity is proportional to k in the
short-wavelength region and varies as 1/k in the
l.ong-wavelength region, while the mean free path
is independent of k.

It has been generally believed that the linewidth
is linearly proportional to the porosity; in fact,
the physical. mechanism is far from that simple
and as shown in the present theory the spin-wave
linewidth is a function of both the number of pores
and their radii. Scotter' has suggested that the
effect of porosity on the spin-wave linewidth is
influenced by the size of the pores present in
polycrystalline YIQ and is not simply related to
porosity alone, and that a more complicated pro-
cedure is necessary for the experimental inves-
tigation, which permits changes of pore size at
constant porosity. The present analysis serves
to support that contention. That is to say, it is
impossible to form a physical picture of the spin-
wave linewidth without a theoretical or experi-
mental investiga, tion of the number of pores and
the reasonable value of their radii.

where P = —,'nR'. In this estimation we have P =1k.
The curve for the spin-wave l.inewidth versus
wave vector is shown in Fig. 2 together with the
experimental results. ' After comparing their
experimental results with this theoretically de-
rived linewidth 40~ we conclude that the relation
between the group velocity and the relaxation time
of the spin wave is probably the most important
relation although it does not completely explain
the data particularly in the low-k region. The
wave-vector dependence of the spin-wave line-
width is 1/k in the long-wavelength region and
is proportional to k to the short-wavelength re-

APPENDIX: SPIN-WAVE LINEWIDTH
AN& RELAXATION TIME (REF. 5)

The relaxation time of waves can be defined as
as integral over the time-dependent decay func-
tion f(t)e' o'

The linewidth of this decay is given by

where F (e) and f(t) are related to each other by
Fourier transforms, and therefore

~f5
O

V

—1Q

Q

C +
CL

9,7 J.
a 5.5'io

6) 'io

7%1
BOJ

r

wave number(cm )

$=5x10crrr
Cj

FIG. 2, Experixnental values (Bef. 3) for the ~HE are
show'n for comparison. The plotted theoretical curve is
incorrect very near & =0.

1
f(t)e' O'= F((d)e'"' d(d

23' (As)

and

r'( )= Jf(r}e"' ' "'dr.

Let us assume the existence of N identical time-
varying processes. The measured quantities,
such as the linewidth or the relaxation time, are
equal to the sum of identically and independently
existing phenomena started at time (=0. Thus the
over-all measured observables fr(t) should be
given by
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f (&)=Zf (&)~ (AS)

Defining the relaxation time r, (i = l, 2, 3, . . . , N)
by »I; dk= (A9)

, t dt »0, (AS)

From E(ls. (A5)-(AV), we have the over-all re-
laxation time

Jif, (() «i) f,(o)

(AS)

The w~ is nothing but the average relaxation time
of N identical phenomena started at time t= 0.
Using this relaxation time, the linewidth ~(d~
should be given by

from the require~went of X-identical time-varying
processes it follows that

(A7)

We thus come to the following conclusion. The
over-all linewidth &~~ is proportional to the in-
verse of the average value of the relaxation time
T.
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