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Defining the correlation length by the /th moment of the magnetization-magnetization correlation, we give a
simple proof of the inequality $v($) & 2b, 4

—y ($ & d) for the ferromagnetic Ising model in d dimensions. We
briefly discuss the relevance of this inequality for the constructive $„' approach.

The Josephson inequality' dv ~ 2 —z is an im-
portant inequality in the study of critical phenom-
ena. Although generally believed, its proof is
based on assumptions seemingly difficult to mo-
tivate. ' In this note we present a simple proof
of a new inequality which will lead to an inequality
closely related to Josephson's inequality. More
precisely let (ij) ~ 0 (i,jEZ') b-e the translation-
invariant magnetization-magnetization correlation
for the ferromagnetic Ising model in d dimensions
above the critical temperature such that X =P, &0i&

is the susceptibility. For any P&0 let'

be the correlation length and let the critical ex-
ponent v(j&) be defined by $(p) —(DT) "~' (4T
=T —T, small). By Holder's inequality $(p) ~ $(p')
and v(P) ~ v(P'& for P ~ P'.

We will prove

j,k, l

8

u, (0,j, k, l)

)
1/3

Here each A~ is either

(Oj)(0k)(0l )(jk)( jl)(kl)

or else a permutation of

(Oj)'(kl) (Ok)( jl) .

Let (t)&d, then

g ((Oj )(Ok)(0l ))(j k)( jl )(kl) )'/'

By Griffiths's second inequality' we obtain

0 ~ -u, (i, j, k, l) ~ &ik&(jl& +(il)(jk)

and similar inequalities by cyclic permutation.
This gives"

(4)

pv(p) ~ 26~ —y (2)
j k, i

for any (II)&d. Here y is the critical exponent for
the susceptibility and 64 is a gap exponent. ' We
note that for P =d Eq. (2) is an equality if Kada-
noff's4 scaling hypothesis holds. It is also an

equality for d =(t) =4 if the critical exponents take
their mean-field value. Assuming equality of the
gap exponents, the inequality

pv(y) ) (2 o.') ) 2
(5+1)(5,—1)
(u —1)(n, +1)

for any p&d is then an immediate consequence
of the inequality -y5+A(5 —1) ~ 0 due to Gaunt and
Baker' and the inequality y(5, +1) ~ (2 —o.)(5, —1)
due to Griffiths, ' who also showed that 5 ~ 5, with
equality if o. ~ o.'. Hence we may consider (3) to
be a weak form of the Josephson inequality.

Now the proof of (2) is quite simple and is based
on the Lebowitz inequality' for the fourth-order
Ursell function

0 ~ —u~(i, j, k, l)

=-(ijkl) +(ij)(kl)+(ik)(jl) +(il)(j k)

for zero external field.

= P [(1+ I j I)'(1+ I l I ) &&Oj&&ik&]"'

j,k, l

x[(1+ ll I)+(1+ fkf) +&01&(jk)]' '

x[(1+ fkl)@(1+ Ijl) +&Ok&&jl)]' '

~[1+/'(y)+]x'2+ Q (1+
I ll) +,

where the last inequality follows from Holder's
inequality and the trivial estimate (1+

Ij l)~
c 2~(1+

I jl~). Similarly

g ((oj)'&ok)&kl)'(jl&)"
j,k, l

=Q [(1+Il- jl&'(1+ Ik- ll) '(oj)&ji&]~'
j,k, i

x [(1 +
I j I) ~(1 +

I
l -j I & ~&Oj&&kl&]

' '

x[(1+ lk- ll) ~(1+ Ijl)-'&Ok)(ki&]

~[1+('(0&']x'2'Q (1+ Ill) ',
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such that finally

u,-&8x2~ Q(1+ ~ l~) ~[1+)(y)~]y' (5)

from which (2) follows since Fi, --(n.T) & ' 4

by definition.
We note that without further information, it is

not possible to neglect the P dependence of v. In-
deed for the (unphysical) case (ij) -

~i —j ~

~ ""'
(e&-', ) the right-hand side of Eq. (4) is ~ for d&4,
whereas y & ~, ](2)& ~. However, by the results
of Lebowitz and Penrose" (ij) decreases exponen-
tially for ~i —j ~

large above the critical tempera-
ture, provided the interaction is of finite range.
If $ denotes the corresponding decay length, then
under reasonable assumptions it is easy to see
that $(Q) =C(P}$, where, near the critical point,
C(P) does not depend on the temperature in a
singular way. Then in particular

v(p) = v = const, p & 0. (6)

Based on assumptions similar to relation (6),
Glirnm and Jaffe have also given a discussion of
Eq. (2)."

We note that the preceding arguments may be
easily applied to systems other than the Ising mod-
el provided the corresponding Lebowitz and Grif-
fiths inequalities are satisfied. In particular we

may apply it to the Euclidean (t}'„ field theory and
redo the arguments in Ref. 7. For the correspond-
ing quantities estimate (5) is the analog of relation
(2.7) in Ref. 9, if we interpret the mass as an in-

verse correlation length. Thus we obtain an a Pri-
ori bound on the renormalized coupling constant
and get away without the assumptions of the Eucli-
dean axioms. '2 Inequality (2) for the Ising model
combined with assumption (6) has also a direct ap-
plication to P„due to a discussion in Ref. 13, which
is closely related to the one in Ref. 9. There the
p4 theories are parametrized by a triple y;) 0
(i = 1,2, 2) of normalization constants. Specifically
y, /y, and y, play the role of the square of the cor-
relation length and the truncated four-point func-
tion at momentum zero, respectively. In the lat-
tice approximation with lattice constant a, this set
of possible normalization constants is bounded by
a two-dimensional "Ising surface" which is param-
etrized by y, ) 0 and T and is of the form

y, (1» T) =a'r&X(T)

y, =y, (y„T) =a'y, g'(T)y(T),

y, =y, (y„T}=-a'"y3u, (T),
where y(T), $'(T) = $'(T, y =2} and u, (T) are our
Ising model quantities. We discuss the case T) T,.
For a-0, we have to let T-T, such that y,y, '
=a'g'(T) stays finite 40. Eliminating a gives

For T- T, by (6}y, stays greater than 0 only if
(2) is actually an equality and again Eq. (2.7) of
Ref. 9 is recovered. Then also a nontrivial (I|',

is expected to exist. "
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