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Aggregation effect on the infrared absorption spectrum of small ionic crystals
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The frequency spectrum of clusters of small ionic particles is calculated when the particle mutual interaction

is described by a dipole-dipole interaction Hamiltonian. The crystallites are spheres of known bulk dielectric
properties. The actual geometry of the cluster is taken into account. Clusters of increasing size (pair, triplet,

quadruplet, etc.) have been solved analytically. As expected, the dipolar broadening of the frequency spectrum
of (optically active or inactive) surface modes increases with cluster size and compactness. From the spectrum
of few-particle clusters, one obtains the long-wavelength modes of large linear or planar aggregates of such

clusters by application of the Bloch-Floquet theorem. Application is made to ir optical absorption of NiO. The
present approach is intermediate between the continuum model of a structureless powder on the one hand and

microscopic calculations for single microcrystals of prescribed shape on the other hand.

I. INTRODUCTION

Powders of small ionic crystal have a broad in-
frar ed absorption spec trum spanning a frequency
interval between co~ and ~~, the frequencies of
the long-wavelength transverse and longitudinal
optical modes of the bulk material. ' This is in
contrast with the absorption behavior of pure,
large, single crystals which consists of a sharper
peak at ~&.

Several broadening mechanisms have been con-
sidered.

(a) First, there must exist several size effects.
Thus, a small ionic sphere whose radius is much
smaller than the wavelength of light absorbs
mainly at an intermediate frequency sos(ur «us
«u~) characteristic of the so-called Fr'ohlich sur-
face mode of the sphere' for which the polariza-
tion induced by the external ir radiation remains
uniform throughout the whole sphere. The ap-
pearance of this new mode is a pure surface ef-
fect as it results from the particular value of the
depolarization field of a spherical boundary. On
the other hand, the mere fact of the reduced size
must affect the damping of both bulk and surface
modes as the crystal surface scatters the phonons
just as it does for plasmons' and other visible or
uv excitations.

(b) Second, there are sharP effects for non-
spherical particles. Surface, edge, and corner
modes have been investigated. ' The density of
optically active modes for small nonspherical
microcrystals differs from the bulk density and
this also affects the absorption spectrum.

(c) Third, there are, mixed material effec-ts
The dielectric response of a powder in suspen-
sion is different from the dielectric response

e,(+) of the powder material and also from that

e,(u) of the surrounding medium. Barker' and in-
dependently Genzel and Martin' have introduced
the macroscopic concept of an effective dielectric
function z,ff(e„e„f) depending on a phenomeno-
logical pa, rameter f proportional to the fractional
composition of the suspension in materials 1 and
2. In the theoretical models, "the particles are
assumed to be spheres uniformly distributed in the
substrate and f is simply the fractional volume oc-
cupied by the particles. Hence, this theory takes
into account the interparticle interactions in an
average manner.

In the present paper, we wish to consider model
calculations for another possible source of broad-
ening, namely, the effect of aggregation or clump-
ing of small particles together. The model we
propose takes into account some pure size effects
such as the particles are assumed to be small
spheres but we try to include some of the effects
due to the actual state of aggregation of the pow-
der particles.

We have calculated the frequency spectrum of
different clusters of identical ionic spheres.
Within the clusters, the particles interact via the
dipolar interaction. From the spectrum of a few
particle clusters, one can also obtain the long-
wavelength modes of large linear and planar ag-
gregates of such clusters by application of the
Bloch theorem. Although the clusters we study
(pair, triplet, quadruplet, chains, etc.) are likely
to be present in the powder, the actual, statistical
distribution of particles in a given sample is rarely
known and this will unfortunately forbid quantita-
tive comparison with experiment.

However, our calculations show that clumping
of particles is an important feature for the re-
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sponse of powders to infrared radiation just as it
is in the visible and ultraviolet where the shift and

broadening of absorption lines are partly respon-
sible for the adhesion of particles together.

In Sec. II, we introduce the model Hamiltonian
describing a single ionic sphere. In Sec. III, the
response of an isolated cluster of identical spheres
to a long-wavelength electric field is obtained.
The cooperative effect of oscillating dipoles is
evident in the solution of the eigenvalue problem
for the interaction Hamiltonian of aggregates. For
illustration, we have explicitly presented the case
of a tetrahedron cluster. For simpler clusters,
we briefly give the relevant modes and relative
absorption strengths. Infinite clusters a.re con-
sidered in Sec. IV. They serve as an analytical
test beside nicely leading to interesting limiting
values. In Sec. V, we illustrate the calculations
of the previous sections by applying our results
to the case of a "model NiO powder. " The numer-
ical values indicate the importance of the cluster-
ing effect. Finally, we discuss the range of the

optically active modes we have found.

II. SINGLE-PARTICLE MODEL

All particles in the powder are assumed to be
spheres of radius R (~ 1000 A) much smaller than

the ir wavelength (A. = 20 pm) and made of a pure
material of bulk dielectric function e (~)

e q(~) =
( 2

R E(~).e ((u) —1
e((d +2 (2)

The response function has a pole at the frequency
such that

&(&)=e + pz 21 —(d /(d T

where ep and e„are the static and high-frequency
dielectric constants and ~~ is the transverse op-
tical frequency. Damping is ignored here to con-
centrate on the pure aggregation effect. Retarda-
tion in the propagation of light across the particle
diameter can be entirely neglected so that, in the
ir radiation, the particle is embedded in an es-
sentially uniform electric field E(u). Its response
is then given by the induced dipole moment'
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FIG. 1. Functionf(~), defined by Eq. (7), for the
case of NiO: co=12, e„=5.4.

f(~) =
Ep+2 f p+2 co~

This function is plotted in Fig. 1 for the case of
NiO.

The equation of motion of this (slightly nonlinear)
oscillator may be seen to derive from the follow-
ing isolated sphere Hamiltonian:

] e2 dqH =2~( )R, ,
d&

+&@ q —eq E.

Indeed, the Hamilton equation of motion md q/dt'
BH/s q b—ecomes

df, (~)+~,' q(~) = —eE(~),

which leads to the correct dynamic polarizability
as given by Eq. (5).

In the following, we shall neglect for simplicity
higher multipolar orders in the sphere polariza-
tion behavior although Hamiltonians for coupled
multipolar oscillations may be treated without ex-
cessive labor.

one sees that around ~= co~ the sphere responds
like a harmonic isotropic oscillator with dynamic
polariz ability'

f ((u)R' e'/m(u, '
+(+) 2 2 2 21 —&d /tds 1 —(d /ale

and the weakly frequency-dependent effective mass

m =e '/f (&u) R' (us',

where

e(cue) +2 =0,
E'~ +2 (2)

III. SMALL AGGREGATE MODELS

eq(~) = —,, E(~),f ((u)R'

+s
(4)

which is the condition defining the Fr'ohlich surface
mode for which the induced polarization is uniform
throughout the sphere volume. '

If we rewrite Eq. (1) in the form

We next consider the response to a long-wave-
length electric field of an isolated cluster of iden-
tical spheres. The spheres are assumed to be in

contact with each other and to interact via the
dipole-dipole interaction only. Although for con-
tacting spheres, higher-order multipolar coupling
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I+X, (e, —1)/(e, +2)
I+Aq (e„—I)/(e „+2)

occurs, the direct dipolar coupling will clearly be
the most important for optical properties. '

Our aim is now to obtain the new frequency spec-
txum of the cluster from the overlap between the
electric field of all oscillating spheres. The inter-
action Hamiltonian of the aggregate has the follow-
ing form:

For future reference, we note that A& =2 and A,
&=-1 introduced into this foxmula generate fre-

quencies ~„equal to u~ and +~, respectively.
Since these are extremal values, one has -1 ~ A,„
~ 2 for any cluster.

Neglecting the frequency dependence of the oscil-
lator strength, a good estimate of the optical ab-
sorption at frequency cu„ is given by the square of
the total dipole moment of the cluster oscillating
in mode (P). If q'g), q~2), . . . , +qg) are the oscillation
amplitudes of spheres 1,2, . . . ,N, respectively; i.e. ,
the normalized eigenvector of the dynamical ma-
trix 0 for eigenvalue A.„, the absorption due to this
mode is proportional to

=1 e dqqH —
2 f( ) 3 2 +(dye

+2e ~ q]' gg~'q
$~)

(10)

where eq; is the dipole moment of sphere i and
where T;& is the dipolar tensor

8
' 1 E3 - 3R'„R',, (11)

a R,') ~gg

in which R,&
is the distance between the centers of

spheres i and), R,'& is the corresponding unit vec-
tor, and E3 is the three-dimensional unit matrix.

Since Eq. (10) is quadratic in the q s, we have
an exactly soluble, small oscillations system. The
standard solution for the frequencies of oscilla-
tions of the normal modes axe the square roots of
eigenvalues of the dynamical matrix

g(V) — g qQ)
$=1

Implicit in this result are the assumptions: (i)
that the linear dimensions of the cluster are also
smaller than the ir wavelength so that all spheres
absorb coherently, and (ii) that the cluster may be
oriented at random with respect to the ir field so
that the average absorption is isotropic. These
conditions are largely satisfied in practice. In-
deed, with a 20 p m wavelength, the first condi-
tion allows for clusters to contain many thousands
of particles of 100 A diameter. The second con-
dition is clearly satisfied with a material in pow-
der form.

We have solved the eigenvalue problem for
small-size clusters of various shapes containing
two, three, or four spheres, namely, pair, linear
triplet, (equilateral) triplet, linear quadruplet,
and regular tetrahedron. As an example w'e dis-
cuss here the solution for the tetrahedron illus-
trated in Fig. 2. Using the coordinate axes and
sphere numbering shown in this figure, the T
matrix of Eq. (13) is calculated to be the 12-di-
mensional symmetric matrix

(12)

(13)

E3 —3R;qR);
(R„/8)'

where N is the cluster size and E» is the 3N-di-
mensional unit matrix.

If A.„designates the 3N eigenvalues of T, the
eigenfrequencies clearly have the form

0 12 13 14

0 $23 q 24

cu„=(v~[1+X„f((o)]'~'. (15)

21There is an inconsistency in the notation of Eq. (15)
since f (&u) still represents a frequency-dependent
polarizability. In order to solve correctly this
nonlinear problem, we may proceed by iteration,
introducing the roots u„ into f(u) and solving again
for co„until self-consistency is reached. The A.„
being purely geometrical factors, depending only
on the arrangement of the spheres within the clus-
ter, one has to solve for the roots of

3 1 +32 +34

41 ~42 43

where

(20)
12 +21 8

3
2+„=(u~[1+) „f((u„)]'~', (16)

(O 0which are

AGGREGATION EFFECT ON THE INFRARED ABSORPTION. .
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FIG. 2. Coordinate systems and positions of the ionic

spheres composing a tetrahedron microcrystal. .3
~43 8 2 (25)

(0 0 I) case of the tetrahedron cluster. In Table II, we
give the optically active modes only and their rel-
ative strengths for the small-size aggregates
which have been considered and for which the
eigenvalue problem has been explicitly solved.

The eigenvectors of T are easily obtained with
the help of the symmetry operations of the tetra-
hedral point group. Table I lists these normalized
eigenvectors and the corresponding eigenvalues
with their multiplicity. In the same table is given
the total dipole moment associated with each mode,
thus showing which modes are optically active and
what are the relative absorption strengths in the

IV. LATTICE MODELS

In this section, we consider models in v hich a
given aggregate is repeated indefinitely in one,

Normalized eigenvectors Eigenvalues Multiplicity

(2v 3 ) 1(111,—1 —1 1, 1 —1 -1,—1 1 —1) xl

(2@2) (1 —10,—110,110,—1-10)
(2v 2 )

i (—1 0 1,101,—1 0 —1, 1 0 —1)
1

16
x2

(2v2) 1(1—10,—110,—1 —10,110)
(2W2) 1(—1 0 1,—1 0 —1, 101,1 0 —1)
(2v 2 ) 1(0 1 —1,011,0 —1 1,0 —1 —1)

5

16

A (11B,—1 —1B,-11B,11B)
A (1B1,1 B —1, —1 B 1,—1 B —1)
A (B11,B 1 —1,B —1 —1,B —1 1)
with A = 3/[2(73+v 73)]~~~

B =~(1+~73)

3', (1 —~73 )

A (11B,—1 —1B,—11B,11B)
A (1B1,1 B —1, —1 B 1,—1 B -1)
A (B11,B 1 —1,B —1 —1,B —1 1)
A = 3/[2(73 —v 73)]
B =-(1—v73)

—(1+~73) 1.77

TABLE I. The normalized eigenvectors and the corresponding eigenvalues with their re-
spective multiplicity for the tetrahedron microcrystal illustrated in Fig. 2. In the last col-
umn, the total dipolar moment associated with each mode is given.
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2 x + 0.125

2x 065 x10 0.169

2.9 3

1x 293 0.37 0

x 065 x10" + 0338

TABLE II. Optically active modes and their relative
strengths A&» for all the small-size aggregates which
have been explicitly considered here. In the first col-
umn, letters indicate the type of aggregates: {a) pair;
{b) linear triplet; {c) linear quadruplet; {d) equilateral
triangle; {e) square. Vectors representing the optically
active modes are indicated in the second column; multi-
plicities are also given. In the third column, the optical
absorption A{» relative to the single sphere absorption
is given. The fourth column gives the X& values.

justified to assume that there is an infinite number
of particles within a wavelength. Then, for the
optical absorption we are interested only in the
modes k =0 for which all spheres oscillate in
phase.

The question arises whether one should include
retardation effects for the calculation of the eigen-
modes of infinite aggregates. The consideration of
the convergence of dipole lattice sums immediately
shows that this is not necessary for the linear and
planar aggregate while for three-dimensional mod-
els, retardation effects are important (and well
known in the problem of optical absorption of sin-
gle crystals).

For a general wave vector k, the eigenfrequen-
cies are the square roots of the eigenvalues of the
dynamical matrix

rrik)=rrr'(Z„ fR PTe''"' rI,

(c}

~1x 383

1x 016 + 0.17 6

2x 35P + 0.218

collective motion e 1 x 3 + 0.250

2" 2,17

-1

P
2x 072x10 — 0.088 (27)

where n is the number of spheres in the primitive
cell of the sphere lattice, R; are the lattice posi-
tions, and T, is the 3nx 3n matrix whose elements
are the various n' dipolar tensors like

Toj pp (Ep 3RjpvRgpv)/Rjp v

R;„„being the distance between sphere p, in the
reference cell and sphere v in the jth cell.

For instance, for a linear single-strand chain
of touching spheres (n =1), we have three long-
wavelength, optically active modes (vanishing k,
parallel to the cha. in) illustrated and labeled 1, 2, 3
in Fig. 3. The longitudinal mode 1 is nondegener-
ate and has a frequency

1 (ds ~ ~ 3 (28)

collective motion ei 1 x 4

2x 38

+ 0.294

+ 0.160

0.204

f 1 1 1/2

~2=3=(ds ~+8 . 3

Here again, the frequencies must be consistent
with the polarizability f(&d). The solutions are
given by formula (17) but with

1
for p=l, (il'

I
+— i, l3

for p =2, 3.
~ ao

(31)

where j takes on all nonzero integer values. The
two degenerate transverse modes have a frequency

two, or three dimensions to form chains, planar,
or three-dimensional aggregates. The calculation
of the full frequency spectrum of such an infinite
aggregate is a standard problem in lattice dyna-
mics. However, here we need only the long-wave-
length dipolar modes since we are interested in ir
properties. In practice, the wavelength is so much
larger than the particle dimension that we are

FIG. 3. Eigenvectors of the three long-wavelength
optically active modes of a linear single-strand chain
of touching spheres.
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FIG. 4. Eigenvectors of the long-wavel. ength modes
of a double strand of touching spheres. Eigenvalues
having a minus index are not optical. ly active.

FIG. 5. Eigenvectors of the three long-wavelength
active modes for a close-packed planar aggregate of
spheres. Eigenvalues are given in the text.

(33)

(transverse, in-plane modes);
+ ao + ce

8 ~ Izl +8 ~ (1+ ')'
(transverse, out-of-plane modes). The "s" signs
refer to the parity of the mode. Only the "+"
modes are optically active.

In the case of a close-packed planar aggregate
of spheres, the eigenvectors of the three long-
wavelength active modes are illustrated in Fig. 5.
The corresponding eigenvalues are given by Eq.
(17) where

I
(i2+j2+jj) '~2,i (35)

1
II 1 Il 2 2 (36)

Finally, we give the A. values appropriate to a
three-dimensional fcc lattice of spheres" (neglect-
ing retardation). There are one longitudinal and
two transverse, degenerate polarization modes
with

We next consider the double-strand chain of
touching spheres illustrated in Fig. 4. We find six
long-wavelength modes, three "acoustic"-like
modes which are optically active and three "opti-
cal"-like modes which are inactive (zero dipole
moment per cell). The frequencies are given by
formula (17) with the following X&'s:

(32)
4) „8) „(1+f' )' '

(longitudinal modes);

= —rv sR' = —v/3v 2,

where n =4/a' is the sphere number density, for a
fcc lattice of cube edge a. One may compare these
A. 's with the extremal values 2 and —1 which gener-
ate the bulk eigenfrequencies &~ and ~~, respec-
tively. One can see that a substantial ( 70%%up) por-
tion of the bulk interval (&or, u~) is covered by the
above frequencies.

V. DISCUSSION AND CONCLUSIONS

In Table III, we have listed the frequencies cor-
responding to the dipole optical phonon modes of a
"model NiO powder" containing one type of every
aggregate considered in the previous sections. Let
us note that the calculated frequencies fall on both
sides of the frequency &~ characteristic of the
Frohlich surface mode of an isolated sphere; these
frequencies are distributed in the interval (d~ ~ &
& &~, but they mainly span the upper half. One
may wonder why the lower half of the spectrum is
not as well represented. One reason for this is
the restrictive class of clusters considered here.
Although the clusters which we have studied are
likely to be present in the powder, the actual sta-
tistical distribution of particles in a given sample
is not known. Agglomerates more complicated than
those we have considered are also present in the
powder, which makes the quantitative comparison
with experimental results rather difficult. A fur-
ther reason why only the upper two-third of the
interval (&ur, ~z) is covered with our aggregates
is the fact that the single sphere absorption fre-
quency e~ is closer to u~ than to ~~.
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cu„(cm ')

u& = 401

477.2
500.2
502.7
523.6
526.4
536.3
537.0
537.3
539.6
542.0
547.1

Geometry of the aggregates

fcc lattice of spheres
linear single-strand chain
double-strand chain
linear quadruplet
linear triplet
pair
equilateral triangle
tetrahedron
square
linear triplet
linear quadruplet

(us =552
553.5
558
559.7
560.4
560.7
562.1
563.4
565
565.2
565.3
573.6
576.5
592.1

single sphere
double-strand chain
pair
square
equilateral triangle
linear triplet
linear quadruplet
equilateral triangle
square
tetrahedron
linear single-strand chain
double-strand chain
linear quadruplet
fcc lattice of spheres

~, =598

TABLE III. Frequencies of ir-active modes for a
powder of NiO. They are given in increasing order of
cu for all the clusters considered.

Micrograph pictures' show the presence of irregu-
lar solids, ellipsoids, chains of cube-like crystallites,
etc. This variety in microcrystallite shape is also
influencial for the width of the observed spectrum
as shown in Ref. 5.

Indeed, from numerical calculations by Martin, '
one finds that frequencies corresponding to edge
and surface modes of cube-like solids fall in a
frequency region lower than &s and close to &~.
Other calculations" have indicated that six reso-
nances, located in a frequency range encompass-
ing &s, contribute to the optical absorption of an
isolated cube. This must be contrasted with the
single resonance frequency &s of an isolated
sphere.

Whatever the shape assumed for the individual
particles, it is clear from our calculations on
spheres that a substantial broadening mechanism
is to be found in their clustering, so that further
investigations of cluster geometries and particle
size distribution would be of great interest for the
interpretation of experimental infrared spectra of
powders.
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