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Optical phonon anisotropies in the layer crystals SnS2 and SnSe2
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We have measured the far-ir reflectance spectra for the layer crystals SnS, and SnSe, for the two principal
polarizations, Xlc and E II c. We find a large difference in the frequencies of the two ir-active phonons,

vTo(A, „)) vTo(E„). Analysis of the lattice dynamics indicates that this anisotropy is due to Coulomb forces
associated with charge localized on the atomic sites and as such it provides an empirical measure of the bond
ionicity. On the other hand, anisotropies in the Raman modes are explained by noncentral intralayer forces,
with smaller contributions from interlayer and Coulomb terms.

INTRODUCTION

This paper reports results of far-infrared re-
flectance measurements on the layer crystals
SnS, and SnSe, . There have been other studies of
the ir and Raman spectra of layer crystals includ-
ing MoS„' GaS and GaSe, ' As, S, and As, Se3,"
PbI»" CdI»' and several of the transition-metal
dichalcogenides. ' A recurrent theme in these
studies has been the very weak interlayer forces. '
This paper treats a different aspect of layer
crystals, the anisotropies in the behavior of the
long-wavelength optic phonons. We compare our
infrared studies with recent Raman-scattering ex-
periments' and treat all of the zone-center optic
modes.

SnS, and SnSe, crystals occur in the Cdl, (or
1T}structure. The individual tightly bonded layer
in SnX, is an X-Sn-X sandwich in which the Sn
atoms are octahedrally coordinated to six nearest-
neighbor X atoms. Each X atom is nested atop a
triangle of Sn atoms. The three-atom basis of the
unit cell gives rise to nine vibrational modes;
three doubly degenerate E modes in which the
atomic motions are parallel to the layer planes,
and three nondegenerate A modes in which the
atomic motions are perpendicular to the layers.
At the zone center, the irreducible representa-
tions are

r =A„+2A, „+E,+ 2E„.
The acoustic modes are A,„+E„, so that there are
four optic modes; two Raman-active modes,
A, +E, and two ir-active modes, A,„+E„.

Layer crystals are readily grown in a platelet
geometry using vapor-transport techniques. The
platelet growth habit is with the c axis perpendi-

cular to the large face. This geometry allows a
study of both Raman-active modes, but only one
of the ir modes, the E„mode. Recently, we have
succeeded in growing large single crystals of
PbI, and CdI, . This enabled us to study the other
ir mode, A,„.' We found that v To(A,„))v»(E„) for
both materials. We have also succeeded in grow-
ing large single crystals of SnS, and SnSe, so that
both ir modes could be studied in these materials
as well. We find similar anisotropies in the
phonon frequencies, v»(A, „}—vTo(E„}= 135 cm '
for SnS, and 97 cm ' for SnSe, . A force-constant
analysis including Coulomb terms demonstrates
that these large differences in the frequencies of
the ir-active modes are due almost entirely to
Coulomb contributions. Anisotropies in the ir and
Raman frequencies have also been explored in
layer crystals having different crystal structures,
MoS»' GaS and GaSe, ' and As, S,.' The anisotro-
pies in these crystals have been explained without
the necessity to invoke Coulomb interactions.
This is particularly evident in MoS»' where the
ir-active modes show very weak polarization, but
are separated significantly in frequency so that
the large difference in frequency is clearly of a
different origin than in the CdI, -structured cry-
stals. Conversely, it follows that a measurement
of the ir-phonon frequencies in CdI, -structured
crystals then yields information regarding dipolar
interactions, i.e. , the local electric fields.

EXPERIMENTAL

Large single crystals of SnS, and SnSe» approx-
imately 10 mm in diameter and 2-3 cm in length,
were grown in a vertical Bridgman furnace. The
crystals were not intentionally doped, but showed
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where m* is the effective mass. G~ is related to
the relaxation time T by

2acG~ = 1/& . (6)

The mobility p is given by p=er/m*
The plasmon mode is said to be underdamped if

FIG. 2. Frequency dependence of the dielectric func-
tions e2 and -Imr. l/e] as calculated from the oscillator
parameters of Table I. The dashed-line (-—) e2 func-
tions and solid-line (—) energy-loss functions are com-
puted using only the first-order phonon terms. The
second set of energy loss curves (———) is calculat-
ed including the contribution of the damped plasmon as
well.

v~) G~ and overdamped if the reverse is true, i.e. ,
G~) v~. Estimates of G~ and v~ from the dc Hall
and resistivity data indicate that the plasmons in
SnS, and SnSe, are overdamped. This means that
G~» v for the frequencies of the infrared mea-
surements. For this case

e"(v) -i v~2/vG~

and the primary effect of the overdamped plasmon
appears as a broadening of the LO phonon mode.
The infrared measurements are then consistent
with coupling to overdamped plasmons. In con-
trast, for the underdamped plasmon, two coupled
LO phonon plasmon modes result. "

Table I contains the oscillator parameters for
SnS, and SnSe, . These were obtained through a
computer-directed iterative search. The spectra
for E&c required both plasmon and phonon terms.
The spectra for Eiic required only phonon terms.
This is simply related to the sharpness of these
modes which renders them insensitive to the
overdamped plasmons. For the Eic bands, the
reststrahl width is considerably greater than the
phonon damping, for SnS„109 cm ' as compared to
6 cm ', so that the contribution to &, at the leading
edge of the reststrahlen band from the plasmon
mode is large compared to the contribution to &,
from the lattice mode. In contrast, the width of
the reststrahlenband for E II c is comparable to the
phonon damping so that the plasmon contribution is
not as important for that polarization.

Table I also contains properties of the phonon
modes that are derived from the oscillator param-
eters. The first of these is the macroscopic trans-
verse effective charge e$(j) (Ref. 18); the index j
indicates the polarization, either perpendicular or
parallel to c. er(j) is given by

( ) 1 42 lp (m) '[s.(j))"vTo(j)X
N i./2

0

TABLE I. Phonon parameters.

Material
VTO

(cm-')

Phonons

S() (crn i)

Derived parameters
LO

(cm ~) e

SnS2 E&c
Ell c

SnSe2 ELc
Ell c

7.57
5.65

10.7
9.42

205
340
144
241

10.2
0.53

12.5
0.60

5.95
12.2
5.90
9.16

314
356
204
248

3.52
1.32
3.71
1.36

Plasmons

@opt
(0 crn)

I dc

(0 cm)

dc measurements
N

(cm 3) (cm V isec i)

SnS2 Eic
SnSe2 ELc

1.11
0.28

0.60
0.27

2 x 10~7

7.9 x 10
51.5
29.3
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where m is the mode mass and N, is the oscillator
density. For the CdI2 structure, m =ma, mx/(ma,
+2mx), where we have written SnX, . A second
property of interest is the LO phonon frequency.
This is obtained from a determination of the posi-
tion of the peak in -1m[1/e(v)] (see Fig. 2). For
this calculation we include only the phonon contri-
bution. For the E &c polarization, including the
overdamped plasmons produces a small shift of
the coupled and broadened LO modes to higher
frequency, -4 cm"' in Sns, and 9 cm ' ln Snse, .

Before discussing the important anisotropies in
the phonon properties, we note the agreement be-
tween the dc resistivity and the resistivity as
calculated from the oscillator fit parameters.
Since the plasmons are overdamped we can only
determine a resistivity and not the values for
1V/m* and r separately. The dc and optical re-
sistivities are also included in Table I.

FORCE-CONSTANT MODEL

In order to understand the anisotropy in the pho-
non frequencies in a quantitative way we must also
consider the frequencies of the Haman active
modes. These have been determined' and are in-
cluded in Table II. The anisotropies to be ex-
plained are (i) the difference in the two Raman
frequencies, v(A„) —v(E,) = 107 cm ' for SnS, and
73 cm ' for SnSe, ; (ii) the difference in the two
TO phonon modes, v(A,„)—v(E„)=135 cm ' for
SnS, a.nd 97 cm ' for SnSe„and finally, (iii) the
difference in the reststrahl bandwidths for the two
polarizations, [vLo(E„)—vTo(E„)] —[vLo(A, „)
-vTo(A, „)]=93cm ' for SnS, and 53 cm ' for SnSe, .

Simplified force-constant models have been ap-
plied to the layered crystals to identify the large
differences between the intralayer and interlayer
forces. ' The approach taken in this paper is more
generalized, treating the intralayer and Coulomb
forces in greater detail. We use a valence-force-
field (VFF) formulation" to describe the harmonic
restoring forces and then consider the Coulomb

contributions. In the VFF model, the harmonic
forces result from an (r, 8) representation of the
energy, where x is a bond length and e a bond
angle. For layer crystals we consider two types
of bonds, bonds within the layers denoted by x and
bonds between the layers by R, a similar notation
is used for the bond angles, 0 and O. In the VFF
model, the energy is expanded to second order in
the deviations from the equi. librium bond lengths
and bond angles, &x and ~e, and 4R and &e. We
neglect terms in 4e, assuming these to be smaller
than the other terms we retain. The harmonic en-
ergy U is then given by

+ g [akim(r, &8)'+k,„,&r&r'+k„~dr(&8)r, ], (9)

where the k's are the VFF forces and x, is an
equilibrium bond length. The energy is separated
into two sums. " The k„and k~ terms depend only
on distances between two atoms (two-body forces)
and hence are the central forces present in all
bonding mechanisms. The sum is then over all
pairs of relevant atoms. The remaining terms de-
pend on the positions of three atoms (three-body
forces) and are the noncentral forces important in
covalent bonding, e.g. , bond-bending forces. We
have neglected terms that represent interac-
tions between intralayer and interlayer bonds,
e.g. , k„z4„4~. However, these forces as well as
terms in ke, must be included in fitting the full
dlsper sion curves.

Expressions for the zone-center modes, I' =A. ~
+A,„+E +E„, have been developed by considering
the idealized CdI, structure. These calculations
are discussed in detail in another publication. "
We first note that the c/a ratio for idealized CdI,
is 1.63 so that the ratios for SnS, and SnSe»
1.613 and 1.61, respectively, are very nearly
ideal. The following expressions result:

TABLE II. Zone-center optic modes.

Mate ria1
Raman modes (cm ~}

v(Q& ) v(E~)
ir modes (cm ~)

v (A2 ) v (E) v (E)

SnS2
SnSe2

208
113

340
241

356
248

205
144

314
204

Phonon
anis otropies

(cm ~) v (A2„) — o (E )
[vLo(E„}- vTO(E„)]

[ LO(&2&) vTo(+2„)1
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m v'(A, ) = k„+k„„.+ 8ke+ 3.6k',
m„v'(E ) = k„+k„„.+ 2k~ + 1.2ks,

mv'(A2„) =—mv2(E„) = k„—k„„.+ 4k& —Sk„e .

(10)

vTo(j) = v', —4mL, (N, /m)[e*, (j))',

vLo(j) = vro(j)+4(NO/m)[er(j)] /e (j)

where j indicates the polarization and where v, is
the mechanical or "spring-constant" frequency;
e.g. , the frequency calculated in the VFF model.
From Ref. 22, we obtain the expressions for L, ,
for c/a&1,

L, =L,= 0.37(c/a), L, = 1 —0.74(c/a) . (12)

The charges defined in (11) for the Cdl, lattice are
those on the Sn atom. For c/a = 1.61, L„L,
=0.60 and L,= —0.20. Therefore, the inclusion of
dipolar coupling serves to increase the frequency

vT (A,„) with respect to v„but to decrease the

frequency vro(E„). Thus, the inclusion of these
Coulomb contributions removes the degeneracy in
these modes that arises in the VFF model. Be-
fore we treat this quantitatively, let us consider

This calculation predicts the observed anisotropy
in the Raman modes v(A ~) & v(E ), but fails to ac-
count for the observed splitting of the ir modes
v(A, „)& v(E„). The disparity between the VFF
model and experiment for the ir modes is re-
moved when we consider the contributions due to
Coulomb forces. The effect of such forces on the
TO phonon frequencies is model dependent. " "
In semiconductors, it is appropriate to separate
the macroscopic charge as e~ into a local part,
e( and a nonlocal part. This separation of e f leads
to the following expressions for the TO and LO
phonon frequencies" ".

the Coulomb contributions to the Raman modes.
These contributions are approximated by noting

that charge neutrality within the unit cell requires
charges of —,

'
~e,*(j)

~

on the chalcogenide atoms.
The Raman modes involve out of phase displace-
ments of the chalcogenide atoms with the Sn atoms
at rest. ' The chalcogenide atoms occupy sites on
an approximately fcc lattice and the resultant
Raman modes are equivalent to zone-boundary
modes of this lattice. Dipole sums have been com-
puted for these lattices" so that it is a simple
matter to write the appropriate Coulomb terms;
these are given by

mdiv'(A ~) = 1.80N,[e,*(ll)]',

m„d v'(E ) = —0 90N, [. e,*(&)]'.
(13)

mxv'(A~) = k„+k„„,+ Skz+ 3.6ka + 1.80NO(e,*)',

m v'(E, ) =k„+ k„,, +2k, + 1.2ks —0 90N, (e,".)',

mvTo(A, „)=k„—k«, +4k~ 8k~+2.41N, (e,*)',

mvro(A, „)=mvTo(A, „)+[4~N./& (ll)][sr(ll)]',

mvTo(E„) =k„—k„„,+ 4k~ 8k„, —7.49N, (e,*)',

mvLo(E„) =mvr2o(E„)+ [4',/e„(&)][er(L)]'.

(14)

Also included in Eqs. (14) are expressions for the
LO modes. These incorporate the definitions for
e*,(f )

These dipolar contributions add to the anisotropies
a.lready evident in the force-constant model [see
Eq. (8)]. Combining Eqs. (10), (11), and (13), and for
simplicity, assuming e,*(ll) =e,*(&)=e, , we obtain
the following expressions for the zone-center
modes:
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APPLICATION TO SnS~ AND SnSe~

The procedure used to quantify the phonon anis-
otropies is illustrated in Fig. 3. %'e start with the
experimentally determined frequencies, multiplied
by the appropriate mass mdiv& [see Eq. (14)]. If
the vj ar e in cm ' and the m& are in atomic mass
units, then multiplication of these terms by 0.059
gives the k in dyncm '.

Consider first the LO- TO splittings of the ir-ac-
tive modes. These splittings define the er(j).
er(L) ~er(ll) byapproximatelyafactorof 3 forboth
SnS, and SnSe, . Similar differences, but smaller
in magnitude, have been found for PbI, and CdI, .'
The effective charges in SnS, and SnSe, as well as
those in PbI, contain large dynamic contribu-
tions. "' In principal, these can be deduced from
the band structure and we are currently pursuing
this calculation.

The difference in frequency between the TO
modes for EI)c and E &c is used to define a local
effective charge e,*. %e obtain similar values of
e,* for SnS, and SnSe„1.63e and 1.598, respective-
ly. Since the charge on the Sn atom for a com-
pletely ionic bond is 4e, we can define a bond ion-
icity by comparing e, with 4e. This leads to ioni-
cities of -0.4 for SnS, and SnSe, . Similar calcula-
tions for PbI, and CdI, yield e, -1.28 and hence
ionicities of -0.6.' These relative ionicities are
anticipated on the basis of other properties, e.g. ,
the optical-frequency dielectric constants" and the
anion-radius-cation-radius ratios, ' as well as the
electronegativity differences of the appropriate
pairs of atoms. "

Having obtained e,* we can then find the contribu-
tion to the TO modes from the VFF forces. This
is also illustrated in Fig. 3. %e can also calcu-
late the Coulomb contributions to the Raman modes
and thereby allow a comparison with the VFF
model for these modes as well. Consider first the
reduced Raman frequencies. The differences be-
tween the A& and E frequencies are due to two

types of forces, intralayer noncentral or three-
body interactions and interlayer forces. Similarly
the difference in frequency between either one of
the Haman modes and the VFF ir mode is also due
to the same types of forces [see Eq. (10)]. Since
we have introduced more VFF forces than we have

frequencies, we would have to make arbitrar y as-
sumptions about some of the k to generate a set
of forces. We note here that such an analysis is
only possible if the full dispersion curves have
been obtained. For SnS, and SnSe» the reduced
frequencies, those obtained after removal of the
Coulomb terms, are consistent with values of k„
being greater than k~ and the noncentral intralayer
forces, k~, k„„,, and k„~.

The most important aspect of this study is the
explanation of the frequency differences for the
in-plane and out-of-plane Raman and ir modes.
Consider first the ir-active modes. The large dif-
ference in frequency between v~o(A, „) and v~o(E„)
is the result of Coulomb contribution to the local
field. The difference in these two frequencies for
CdI, -structured crystals then provides a direct
measure of a local effective charge, "'"in our
formulation a charge on the Sn atoms. Compari-
son of this charge with 4e then yields an estimate
of the ionic contribution to the bonding. The dif-
ferences in the reststrahl bandwidths v„o(j)
—vro(g) for the two polarizations gives significant
differences in the macroscopic effective charges,
for SnS, and SnSe„ez(&)/er(~~) =3. This is direct
evidence for large dynamic contributions to both
er(j). Finally, the differences in the two Raman
frequencies result from three different effects,
noncentral intralayer forces, interlayer forces,
and relatively small Coulomb contributions. A
more complete parametrization of the VFF forces
can only be accomplished when phonon-dispersion
curves become available.

Xofe added in Proof. The lattice dynamics of
CdI, -structured crystals have also been studied
using central-force (CF) models. The differences
between VFF and CF models are discussed in an-
other publication" where we show that CF models
are adequate for more ionic crystals, e.g. , PbI„
but not for SnS, and SnSe, . Secondly, an estimate
of the ionicity of a crystal must take into account
the atomic coordination and availability of bonding
electrons as well as the electronegativity differ-
ence." This point is also addressed in Ref. 2V.
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