
PHYSICAL REVIEW B VOLUME 14, NUMBER 4 1 5 AUGU ST 1976

Theory of the screening of impurity ions in semiconductors with spatially-variable
dielectric constants*

P. Csavinszky
Department of Physics, University of Maine, Orono, Maine 04473

(Received 29 September 1975)

In this paper, Dingle's theory of the screening of impurity ions in semiconductors is generalized. This is
accomplished by inserting in the theory of screening the spatial dielectric function of the medium. Poisson's
equation for the potential of an impurity ion follows from one of Maxwell's equations. With the analytical
form for the spatial dielectric function for Si and Ge, obtained for these materials by Azuma and Shindo and
by Okuro and Azuma, Poisson's equation assumes a specific form. The asymptotic form of this differential
equation, the region where the theory is expected to be valid, is solved approximately by an equivalent
variational principle. The end result of the present theory is an impurity-ion potential which is represented by
a linear combination of two exponentially screened Coulomb potentials scaled by the static dielectric constant
of the medium. Each of the screening lengths appearing in the screened Coulomb potentials is related to
Dingle's screening length. Numerical data, as functions of charge carrier concentration, are given both for the
screening lengths, and for the coefficients involved in the linear combination of the two screened Coloumb
potentials. It is concluded that the form obtained in the present paper for the potential of an impurity ion
leads to modifications in theories of ionized-impurity scattering in semiconductors.

I. INTRODUCTION

One of the important scattering processes, on
which charge transport in doped semiconductors
depends, is the scattering of charge carriers by
ionized impurity atoms.

Theoretical treatments of this scattering pro-
cess, such as the well-known theories of Conwell
and Weisskopf, ' of Brooks and Herring, or tl. e
less often used partial-wave theories of Blatt, 3 of
Csavinszky, and of Krieger and Strauss, ' are all
based on the choice of a potential that an impurity
ion in a semiconductor is assumed to have.

A comprehensive treatment of the screening of
charged (point) impurity atoms in semiconductors
with spherical energy surfaces has been given by
Dingle. s In his theory, a particular semiconductor
is accounted for by a given (isotropic) effective
mass of the charge carrier, and by a given static
dielectric constant. The end result of Dingle's
theory is an exponentially screened Coulomb po-
tential for an impurity ion, which is scaled by the
static dielectric constant of the medium. This
potential is obtained by solving Poisson's equation,
which connects the potential of the impurity ion
with the charge density of its screening cloud
which, itself, is composed of free charge carriers
in their respective bands.

The purpose of the present paper is the general-
ization of Dingle's theory. This is attempted by
replacing the static dielectric constant in the Pois-
son's equation of Dingle by the spatial dielectric
function of the medium. This step, as shown in
the Appendix, is equivalent to solving the asymp-
totic form of Poisson's equation for the potential
of an impurity ion in a medium which is charac-
terized by a spatially-variable dielectric constant

of a specific analytical form. The analytical ap-
proximations to the spatial dielectric function con-
sidered in this paper has been obtained, on the
basis of the Penn model, by Azuma and Shindo
for Si, and by Okuro and Azuma for Ge. ' The
differential equation describing the asymptotic
form of Poisson's equation is more complicated
than that encountered in Dingle's theory. It is
solved approximately by making use of an equiva-
lent variational principle. The end result of the
present theory is an impurity-ion potential which
is represented by a linear combination of two ex-
ponentially screened Coulomb potentials scaled by
the static dielectric constant of the medium. Each
of the screening lengths appearing in the screened
Coulomb potentials is different from, but related
to the screening length of Dingle. Numerical val-
ues, as a function of the concentration of free
charge carriers, are given both for each of the
screening lengths, and for the coefficients involved
in the linear combination of the two screened Cou-
lomb potentials. The form obtained in the present
paper for the potential of an impurity ion is expected
to lead to fairly obvious modifications of both the
Brooks-Herring theory, and of the partial wave the-
ories of ionized-impurity scattering.

The paper is structured as follows. In Sec. II
the modified impurity ion potential is derived. In
Sec. III the potential obtained is compared with the
potential of Dingle. In Sec. IV the dielectric func-
tion is discussed. In Sec. V some concluding
comments are advanced.

II. THEORY

For the sake of simplicity, we shall consider
an n-type (uncompensated) impurity semiconductor
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in which one excess electron is provided by each
donor atom, which, therefore, becomes a singly
charged positive ion.

To establish our notation, we shall first rede-
rive Dingle's result for the potential of a donor
ion, and then we shall proceed with the modifica-
tions.

Let v represent the number of electrons per unit
volume in the conduction band resulting from the
ionization of the donoxs, and let p represent the
electrostatic potential of a donor ion. Then the
Fermi energy, C„, must be replaced by K„+earp(r),
where t.p is the magnitude of the electron charge.

The number of electrons per unit volume near
a donol ion ls given by

18 Re2&&43/2(2 k T)1/8
+0 k3 +-1/2( 1u) s

KO

where Rp, as will be seen later, is the Dingle
screening length, Eq. (8) can be expressed as

C/" +(2/r)C' —8 C =0.

(9)

Equation (10}is to be solved with the boundary
conditions

///(r- 0) = eo/~or

where Kp is the static dielectric constant of the
medium. We shall refer to Eq. (8) as the unmod-
lfled Poisson s equation,

Introducing the notation

8&V 2 m""'
v(r) =

p(r- ~}=0 . (12)

we can rewrite Eq. (1) as

(2 )1/2mg3/R(k T)3/2
v(r) =

eop(r}
X 1/P gp +

y p

where the reduced Fermi level is defined by

rl„= f„/ke T . (4)

At large values of r, where p(r} is expected to
be small, the function p„~ can be expanded in
terms of eoy{r)/ke T. Defining the screening
charge by

p(r) = e,[v —v(r)], (5)

where v is given by Eq. (1) with p(r) = 0, and mak-
ing use of the relation

8 4( 7) +El-1( l) (8)

the expansion of Eq. (3), upon consideration of Eq.
(5), gives for the space dependence of the screen-
ing charge

4,e',I*"'(2k,T)'"
p{r) = — ', ' 8 g/2(n. )V'(r) ~

With this form for p(r), we wish to obtain y(r) as
a solution of Poisson's equation, given by

() ()
KO

+ 00 E'"dEx~
exp([E —g„—e,q/(r}]/k, T'/+ 1 '

whexe, assuming the energy band to be quadratic,
m* is an isotropic effective electron mass, while
the other quantities have their conventional mean-
ing,

Introducing the Fermi-Dirac integrals by
" x"dx

8A(7) y~ (x 0)8

The general solution of Eq. (10) is

y(r) =k (e " 0/r) + k (e+ o/r) (13)

where the constants k, and k2 are determined by
imposing the boundary conditions on y(r) in Eq.
(13).

The boundary condition in Eq. (12) requires that
k2=0, while the boundary condition in Eq. (11)
demands that k~ =e~/!co, Thus Eq. (13) reduces to

C(r) =(e,/&or) e ""', (14)

which is the Dingle potential of a donor ion.
It should be mentioned here in passing that at-

tempts have been made to improve on the potential
in Eq. (14) by considering higher-order terms in
the expansion of 8'U, in Eq. (3). Csavinszky" has
considered the effect of the second-order term,
and Adawi has further generalized the theory to
all orders. The resulting nonlinear diffex ential
equations, however, lead to quite complicated
correction terms to Eq. (14) and, to the author' s
knowledge, has so far not been used in theories of
ionized impurity scattering.

Our proposed modification of Dingle's theory
consists in the replacement of ao in Eq. (8) by the
spatial dielectric function x(r) of the medium. This
step carries with it two assumptions. First, it is
assumed that the spherically symmetric but, not
pointlike screening charge, which is made up of
free electrons in the conduction band, is itself
screened by the electrons participating in the bind-
ing of the crystal in the same way as a point charge
is screened by them. Second, it is assumed that
the dielectric function in a doped semiconductor
can be taken to be the same as that in the pux e
crystal.

The analytical approximation of the spatial di-
electric function, obtained on the basis of the Penn'
model by Azuma and Shindo for Si, and by Qkuro
and Azumae for Ge, is of the form
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TABLE I. Parameters in the spatial dielectric function. which is to be solved with the boundary conditions

Semiconductor

Ge 0.0544 0.0080 0.9668 0.3757 . 0.7460

g(0) =1 (21)

0.0726 0.0107 0.663 0.9129 0.302 (22)

x(r) ' =e "+A(l —e ~")+B(l —e ""), (15)

where the constants appearing in Eq. (7) are given
in Table I. '3

Considering that according to Eq. (15), at large
values of r, we have

I/x(~} =A+ B= I/xo,

we can rewrite Eq. (8) as

V'P(r) = — ( —4qp(r)(e '" —Ae ~ —Be ""),
(17)

where @ has been written for the previous p.
It is mentioned here that (A+ B}~ is not exactly

equal to the experimental value for Kp. Using the
data in Table I, we have Kp =16.03 for Qe, and
Kp =12.00 for Si, while the exPerimental values
for Qe and Si, as given by Dunlap and Watters, '
are 15.8 and 11.7, respectively. For the sake of
consistency, we shall, however, use (A+B) ' for
Kp,

With the aid of Eqs. (7) and (9}, an alternative
form for Eq. (17) is

Q" + —p —B,'p=x, R p(e ™r Ae '"-—-Be-"-) . (18)
2

as follows from Eqs. (11) and (12) upon considera-
tion of Eq. (19). It should be noted here, however,
that Eq. (21) has been written without the eo/a'0 fac-
tor. This is permissible in view of the fact that
Eq. (18a) is a homogeneous differential equation
(eo/x, is introduced in the end result).

We propose to obtain an approximate solution of
Eq. (20) by making use of an equivalent variational
principle. This is a procedure which often can be
used to advantage in mathematical physics. "

Let us consider the functional

"o

where P' stands for the derivative of g with re-
spect to x. Let us now choose I as

B 2/ e sl'p2 x R RBe YT$ 2 (24)

where P is an appropriately chosen function that
depends on several parameters.

The expression for F, in Eq. (24), is such that
upon its substitution into the Euler-Lagrange
equation, given by'

(25)

We shall call Eq. (18) the modified Poisson's
equation, in contrast to Eq. (10) which we have
called the unmodified Poisson's equation. It is
seen from Eq. (18) that the modified Poisson's
equation is still a homogeneous differential equa-
tion since it can also be written in the form

Q" —(2/r)&f&' —R [I+«,(e '"-Ae ~ —Be "")]Q=0.
(18a)

It is also seen from Eq. (18a) that the term in
square parentheses is a correction. term, a sort
of a "perturbation, "which becomes small with in-
creasing y. It is, therefore, reasonable to as-
sume that the overall features of the donor-ion
problem are accounted for by the Dingle model.
For this reason we are going to seek the solution
of the modified Poisson's equation with the bound-
ary conditions of Dingle. 6

To proceed further, the transformation

the modified Poisson's equation as given by Eq.
(20) results. With a given choice for P, one then
proceeds by extremalizing I in Eq. (28) with re-
spect to the parameters in P. By this procedure
one thus obtains an approximate solution of Eq.
(20).

There remains the making of a judicious choice
for g. This is dictated, upon consideration of the
boundary conditions in Eqs. (21) and (22), chiefly
by expediency. Let us say that, if possible, it
would be advantageous to represent P as a linear
combination of exponentials. In this case, the
formulas worked out in theories of ionized impurity
scattering on the basis of the Dingle potential could
be utilized with the potential proposed. The ap-
propriate modifications required would only be of
a simple nature.

In the light of what was just said, we assume the
following form for g:

(19) r 8-(a-b&t' n ~-(e+b)t+D8 (28)

p" —Ito p=x'OBO g(e "—Ae~' —Be~"), (20)

is introduced. In terms of P, the differential equa-
tion in Eq. (18) assumes the simpler form where C, D, a, and b are parameters to be deter-

mined.
For our solution to be meaningful, we must have
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(27) (29}

(28)

as required by the boundary condition in Eq. {22).
Imposing the boundary condition in Eq. (21) on

g, as given in Eq. (26), we obtain

so that instead of four, me are noir left only with
three independent parameters.

Using Eq. (26}, and forming g' =dP/Ch, we can
build Eq. (24) and evaluate the integral in Eq. (23).
The result can be expressed as

2a-b 2
a2-b2 2a+b 1 2 1

2Q —2b+ Q 26+ CL 2Q+ 2b+ Q 2Q —2b+I3 2a+ p

+(1 —C) —&OR, 8 C +(C- C ) +(1 —C) (30)
2a+ 2b+ p

o o 2a —2b+ y 2a+ y 2a+ 2b+ y

e shall novg consider the parameter a as a fixed quantity. The reason for this will be discussed later.
This leaves us only with thoro parameters, b and C, which are determined from the requirements

(31)

and

Carrying out the differention in Eq. (31), we find, after some algebra, that the result can be expressed
as

b b 1 1 -2 1 1 1 1—b ——+R + 2Kogo —2~,Z A —2zog~ JP
( ~ b)

' ' 2a ~ o. 2a ~ 2( ' ' 2 (( 2a 2( ((
' ' 2 y 2 ~ 2( y)

2b2 2 1 1 2 „2 1 1 2
+C +Ro + 2 +

Q 0 —b Q+b 0 2a —2b+ e 2a+2b+ n 2a+ n

1 1 2 -2 1 1 2—2@op() A + —2&oRo 8 + =0.
2a —2b+ p 2a+ 2b+ p 2a+ p

o o 2a —2b+ y 2a+ 2b+ y 2a+ y

8imilarly, we find that Eq. (32) results in the expression

{2a+2b+ n) (2a —25 ) (2 2b ) (2a —25+ y)

1— 1 —C)' =0.
(2a+ 2b+ y)~

Let us noir make the assumption that

a=~o-1 (36}

and

1+n&0 . (38)

Equations (37}and (38) permit n to be either posi-
tive, or negative, edith values restricted to the in-
terval

rvhere n is now our new parameter taking the place
of b. ith this assumption, we have changed the
independent parameters from (8, C) to (n, C).

To satisfy the requirements in Eqs. (27) and

(28), n must be such that

1-&n&+1 .
With the choices made for a and 8 in Eqs. (35)

and (36), we see that

{40}
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TABLE II. Parameters entering into the potential of
a donor ion in Ge as functions of the Dingle screening
length.

a+ 5=(l+n)RO (41)

Using Eqs. (40) and (41), we can rewrite Eq. (26)
as

-(l-n)(r/Bp) +D -(1+n) (g/8 p)

3.5
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

3.00
3.05
110
115
120
3.25
130
135
340
145
150
155
3.60
165
170
3.75
3.80
3.85
190
3.95
200
205
23.0
215
220
225
230
235
240
300
400
500
600
700
800
900

1000
2000
3000
4000
5000

0.3988
0.3087
D. 2512
0.2115
0.1825
0.1605
0. 1431
0.1291
0.1176
0.1080
0.0998
0.0928
0.0867
0.0813
0.0766
0.0724
0.0686
0.0652
0.0621
0.0593
0.0567
0.0544
0.0522
0.0502
0.0484
0.0467
0.0453.
0.0436
0.0422
0.0409
0.0396
0.0385
0.0374
0.0363
0.0354
0.0344
0.0335
0.0327
0.0319
D. 0312
0.0305
0.0298
0.0293.
0.0284
0.0278
0.0273
0.0218
0.0164
0.0132
0.0110
0.0096
0.0083
0.0075
0.0068
0.0046
0.0038
0.0037
0.0035

0.7060
0.6580
0.6278
0.6072
0.5922
0.5809
0.5721
0.5650
0.5591
0.5543
0.5503.
0.5466
0.5435
0.5408
0.5384
0.5363
0.5344
0.5327
0.5311
0.5297
0.5284
0.5272
0.5262
0.5251
0.5242
0.5234
0.5226
0.5218
0.5211
0.5204
0.5198
0.5192
0.5187
0.5182
0.5177
0.5172
0.5168
0.5164
0.5160
0.5156
0.5152
0.5149
0.5146
0.5142
0.5139
0.5136
0.5109
0.5082
0.5065
0.5055
0.5047
0.5041
0.5036
0.5033
D. 5017
0.5013
0.5011
D. 5010

so that the quantities

R, =RJ(1 —n} (43)

R, =R,/(1+ n), (44)

M, = (2 —2n+ qRO)

N, =(2+2n+qRO)

0, =2(2+qRO)

(50)

(51)

(52)

Similarly, we find that Eq. (34) can be brought
to the form

—~[C + 4nC(1 —C) —(1 —C) ]+—,'[C2(l —n)

—(1 —C)'(1+n)-']+2 [x' O,M—(1 —C)'X ]
—2KOA[C Mg —(1 —C) NB]

—2tcoB[C M„—(1 —C) N„] = 0 . (53)

Substituting the expression for C from Eq. (45)
into Eq. (53}, the task is the finding of that value
of n which, for a given choice of g» makes the
left-hand side of Eq. (53) equal to zero.

Values of n and C, calculated for a wide range
of the Dingle screening length +, are given for
Ge in Table II, and for Si in Table III.

Considering Eqs. (19), (26), and (29), our donor-
ion potential, in terms of C, n, and R0, is ex-
pressed (with the eo/», factor) as

qp(r) =(e,/~, r)[Ce '~&+(1 —C)e "~"], 2(54)
where R, and Rz are defined by Eqs. (43) and (44).

play the role of screening lengths.
Substitution of Eqs. (35) and (36) into Eq. (33)

leads to an expression for C. Vfe find, after some
algebra, that

Qq
—2/co(L~ —ALq —BL,„)

Qa+ 2&o(K —AK~ —Bk „)

where

2n +n
1+n

4n'- 2n'
1-n'

and, using the notation q=n, P, y, the other quan-
tities are defined by

(48)

(49)

with



1654 P. CSAVINSZKY 14

Ro (a~)

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
300
400
500
600
700
800
900

1000
2000
3000
4000
5000

0.5068
0.4056
0.3378
0.2892
0.2528
0.2245
0.2018
0.1833
0. 1679
0.1549
0. 1438
0. 1341
0.1257
0.1182
0.1116
0. 1057
0.1004
0.0956
0.0912
0.0872
0.0836
0.0802
0.0771
0.0742
0.0716
0.0691
0.0668
0.0646
0.0626
0.0607
0.0589
0.0572
0.0556
0.0541
0.0527
0.0513
0.0500
0.0488
0.0477
0.0465
0.0455
0.0445
0.0435
0.0426
0.0417
0.0408
0.0328
0.0247
0.0197
0.0165
0.0143
0.0124
0.0110
0.0100
0.0056
0.0041
0.0037
0.0032

0.7709
0.7149
0.6775
0.6510
0.6313
0.6161
0.6040
0.5942
0.5861
0.5793
0.5734
0.5684
0.5640
0.5602
0.5567
0.5537
0.5509
0.5485
0.5462
0.5442
0.5423
0.5406
0.5390
0.5375
0.5362
0.5349
0.5337
0.5326
0.5316
0.5306
0.5297
0.5288
0.5280
0.5273
0.5265
0.5258
0.5252
0.5246
0.5240
0.5234
0.5229
0.5224
0 ~ 5219
0.5214
0.5210
0.5205
0.5165
0.5124
0.5099
0.5083
0.5071
0.5062
0.5055
0.5052
0.5025
0.5017
0.5013
0.5011

TABLE III. Parameters entering into the potential of
a donor ion in Si as functions of the Dingle screening
length.

Equation (54}, together with Eqs. (43) and (44)
represent the central result of this paper. They
constitute an approximate solution of the modified
poisson's equation which is given by Eq. (18). The
dependence of ft) on m*, K„and on the electron
concentration v, via the reduced Fermi level g„,
is contained in Rp. For the last-mentioned quan-
tity several simple limiting forms can be given.

For a highly degenerate electron gas g„»0, and
application of the asymptotic relation

&a(n) n"&(k'+ I) r (55)

1/6 lEKl/2
0 g-1/2p-1/6

~ d 3 4~e ~1/2
0 0

(56}

where 5=m*/mo is the ratio of the effective elec-
tron mass to the real electron mass.

For a highly nondegenerate electron gas q„«0,
and application of the approximation

&,(n) = e" (5V)

permits us to deduce from Eq. (9) the limiting
form

Ro „=(xokeT)"'l(4m~)'"eo . (58)

The formula in Eq. (56) is valid when T& Tz,
while that in Eq. (58) is valid when T& T~, where
the degeneracy temperature is defined by

(59)

For intermediate degeneracy, where T= Td, the

full expression for Ro, as given in Eq. (9), has to

be used. Extensive tables of Fermi-Dirac inte-
grals, defined by

F»(n} = &r 5:~(n) (60)

are given by McDougall and Stoner. "
It is seen from Tables II and III that, at large

values of Rp we have In I -0, and C--,'. In this
limit, therefore, the modified donor ion potential,
given in Eq. (54), goes over into Dingle's poten-
tial, given in Eq. (14). Inspection of Eq. (58)
shows that, at a fixed T, large values of Rp are
associated with a nondegenerate electron gas,
i.e. , with low electron concentrations. It is also
seen from Tables I and II that larger values of
I n I occur at smaller values of Rp which range,
upon inspection of Eq. (56), is associated with a
degenerate electron gas. "

III. MODIFIED POTENTIAL

For theories of ionized impurity scattering it is
of great interest to compare Dingle's potential
with our modified potential of a donor ion. An in-
vestigation of the ratio

permits us to obtain from Eq. (9) the limiting form
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TABLE IV. Ratio of the potential obtained in this
paper to that of Dingle for Ge.

Dingle potential is more important than in the case
of a nondegenerate electron gas, that corresponds
to light doping.

0
].0
20
30
40
50
60
70
80
90

],00
120
140
16D

180
200
300
400
500
600
700
800
900

].000

HO=30 ag

1.000
1.012
1.021
l. 024
1.022
1.01G
]..003
0.986
0.965
0.941
0.913
0.850
0.781
0.709
0.638
0.569
0.300
0.151
0.075
0.037
0.018
0.009
0.004
0.002

@,=60 a~

l. 000
l. 002
l. 003
l. 004
l. 005
]..006
1.006
l.006
]..005
l.005
1.003
l. 000
0.996
0.990
0.983
0.975
0.919
0.844
0.757
0.666
0.579
0.497
0.423
0.359

&0=90 ag

1.000
l.001
]..00].
1.001
l. 002
]..002
l.002
]..003
1.003
l.003
l.003
]..002
l.002
]..001
l.000
0.999
0.989
0.972
0.951
0.924
0.893
0.859
0.822
0.784

IV. DIELECTRIC FUNCTION

The wave-vector-dependent dielectric function
describes the static screening of a longitudinal
electric field which varies in space. In other
words, this quantity describes the crystal re-
sponse to an electric field parallel to the wave
vector. For this reason, the dielectric function
is sometimes also referred to as the response
function. If the electric field results from placing
a charge in a medium, then the charge will have
its field altered by the medium which tends to
shield the charge. This shielding effect is de-
scribed by the dielectric function. The chief con-
tribution to the shielding of a point charge in an
undoped semiconductor crystal results from the
electrons participating in the chemical bonds.
The dielectric function, at large distances from
the charge, assumes the value of the static dielec-
tric constant of the medium. For this reason, we
can also talk of a spatially-variable dielectric con-
stant even though this usage appears to be some-
what confusing unless we are prepared to look at
this quantity in the enlarged sense of considering
it a constant at a given distance from the charge.

Penn, 7 on the basis of a formula given by Ehren-
e-r/Ro

f(r)
t

- /R (1 g) - /R~ (61)

may give us some insight into the importance of
replacing in Poisson's equation the static dielec-
tric constant by the spatial dielectric function of
the medium.

Before we embark on obtaining f(r) from Etl.
(61), a comment on the parameter n is in order.
In performing the present work, the numerical
calculations of n and C have first been carried out
in the —1 & n &0 range. Subsequent calculations
in the 0&n&1 range have, however, shown that
sf/sb is symmetric with respect to its zeros.
This means t;hat C as a function of —n is equal to
(1 —C) as a function of +n. To avoid confusing
tabulations, we have only listed, in Tables II and

III, the C values which go with —n.
Values of f(r), as a function of r, for several

values of Ro, are shown in Table IV for Qe, and
in Table V for Si. It is seen from these tables
that, for smaller values of Ro, the potential ratio
f(r) becomes smaller than unity for moderate
values of r. The larger is R„ the farther away
one must go from the donor ion to have f(r) ap-
preciably less than one. From the inspection of
the data we must, therefore, conclude that in the
case of a degenerate electron gas, corresponding
to heavy doping, the present modification of the

0
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40
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70
80
90

100
120
140
160
1.80
200
300
400
500
600
700
800
900

1000

Ro =30 +g

]..000
l. 025
]..042
l. 049
1.046
l.034
l.013
0.983
0.947
0.905
0.860
0.761
0.660
0.565
0.478
0.401
0.158
0.061
0.023
0.009
0.003
0.001
0.000
0.000

Z, =60 a~

l.000
]..004
l.007
]..009
l.Oll
l.012
l.013
l.013
l.012
l.011
l. 008
l.002
0.993
0.982
0.968
0.952
0.848
0.721
0.592
0.475
0.376
0.295
0.230
0.178

R, =90 a~

l.000
l.001
1.002
1.003
l.004
l. 005
l.005
l.005
l.006
l.006
1.006
l. 005
l.004
1.OD3

l.000
0.998
0.976
0.943
0.900
0.850
0.794
0.736
0.677
0.619

TABLE V. Ratio of the potential obtained in this paper
to that of Dingle for Si.
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reich and Cohen, ' has discussed a crude approx-
imation to the dielectric function. In this approx-
imation, if the static dielectric constant is much
greater than unity, then the dielectric function can
be approximated by its value for the free electron
gas. An analytic expression for this quantity for
the case of a free electron gas has been derived
by Hubbard.

A more refined approximation for the dielectric
function of a semiconductor has been given by Cal-
laway, ' who introduced the energy gap into the
model. In his model, the semiconductor consists
of a free electron gas (with an effective mass m"),
which has an energy gap above the Fermi surface.
All other effects of the crystal structure are ig-
nored.

Penn has shown that the Callaway model of a
semiconductor gives an infinite value for the static
dielectric constant because this model does not
allow for the formation of standing waves at the
Brillouin-zone boundaries. He has also shown
that the neglect of umklapp processes leads to
serious error. For this reason, Penn has chosen
a third model, the nearly-free-electron model
isotropically extended to three dimensions, which
allows for the formation of standing waves at the
zone edge, and for the possibility of umklapp pro-
cesses.

Using Penn's wave-number-dependent dielectric
function for Si, Azuma and Shindo have calculated
the spatial dependence of this quantity. An ie!enti-
cal calculation has been performed by Qkuro and
Azuma for Ge.

A more refined calculation of the wave-number-
dependent dielectric function of Si and Ge has been
performed by Nara, '2 who took into account the
detailed form of the energy band structure of these
semiconductors. Nara has calculated the wave-
vector-dependent dielectric function numerically
along the three principal directions [100], [110],
and [111]. His results show that, apart from
smaller values of the magnitude of the wave vector,
the dielectric function is roughly the same in all
three directions.

Nara has also found that the effect of core states
on the static dielectric constant is negligibly small,
and that the same is true concerning the effect of
the higher bands. Finally, it is mentioned, that
another contribution to the dielectric function,
namely, that resulting from bound exciton states
is neglected in Nara's calculations both for Si, and
for Ge, on the assumption that it is very small.

In summary, it can be said that despite the an-
isotropy of the dielectric function at small values
of the magnitude of the wave vector, Nara's calcu-
lations confirm the principle features of Penn's
model.

Srinivasan, 24 has reconsidered Penn's model in

detail, and extended his calculations for the model
dielectric function for larger values of the magni-
tude of the wave vector. (He has also corrected
some algebraic errors in Penn's formulas. ) Srini-
vasan has evaluated the dielectric function both
from the normal, and from the umklapp processes.
His findings are interesting, inasmuch as they show
that the contribution from umklapp processes is
most important at small values of the magnitude of
the wave vector which is precisely the region where
Nara's more realistic calculations show the most
pronounced anisotropy in the [100], [110], and

[111]directions. Srinivasan, however, cautions
that in order to be certain that Nara's results are
more accurate than his, it would be necessary to
repeat Nara's calculations with more attention
paid to details at large values of the magnitude of
the wave vector. This, however, does not seem
to have been done yet.

Recently Chadi and White ' used a different ap-
proach, based on the tight-binding model, to evalu-
ate the dielectric function for Si. Their result for
this quantity seems to give a, somewhat lower value
at all values of the magnitude of the wave vector
than that of Srinivasan, but the general dependence
of the dielectric function on the wave vector appears
to be the same.

Calculations of the dielectric function for Si, Ge,
GaAs, and ZnSe have also been performed by
Walter and Cohen on the basis of a pseudopoten-
tial method using the same model as Nara. They
find a fair agreement with Srinivasan's calculations
but do not find the anisotropy which characterizes
Nara's results. Walter and Cohen find that the
dielectric function in the [100] direction is slightly
less than that in the other directions.

In addition, the results of Walter and Cohen
show the dielectric function to be a monotonically
decreasing function of the magnitude of the wave
vector, a feature which is not present in the re-
sults of Srinivasan or Nara. The slight maxima
in the dielectric function, occurring at small val-
ues of the magnitude of the wave vector in these
calculations, are assumed to arise from approxi-
mations in the computations.

An examination of the Penn model by Heine and
Jones~7 supports the isotropic feature.

Brust has generalized the Penn model to in-
clude more than one gap. His two-gap calculations
for Si and Ge, just like those of Walter and Cohen,
show the dielectric function to be a monotonica, lly
decreasing function of the magnitude of the wave
vector. Otherwise, his results at larger values of
the wave vector agree fairly well with those of
Walter and Cohen and Nara.

Finally, it is mentioned that for Si Walter and
Cohen have calculated the frequency- and wave-
vector-dependent dielectric function using a pseudo-
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potential method. A similar calculation for Ge,
GaAs, and ZnSe has been carried out by Sramek
and Cohen. ' These last authors have also recal-
culated the wave-vector-dependent dielectric func-
tion for Ge, on the basis of the Penn model, but
without the analytical simplifications of Penn. It
was found that the dielectric function they obtained
agrees fairly well with the results of Walter and
Cohen.

To round out the discussion on the spatial dielec-
tric function, it is mentioned that Penn's model has
also been applied to solids other than semiconduc-
tors. The dielectric screening of the electron-hole
interaction in solid rare gases has been considered
by Hermanson ' in connection with the theory of
exciton and impurity states in these materials.
Hermanson's spatial dielectric function for the
rare-gas crystals, considered as isotropic insula-
tors, is, however, somewhat simpler than the
analytical expression used in this paper for Si and

Ge inasmuch as it contains only one exponential
term for I/ «(r)

D(r) =«(r) E(r) . (A2)

we can write Eq. (A3), upon consideration of Eq.
(A2), as

V«(r) ' E(r) + «(r)V E(r) = 4«p(r) (A5}

Since we know that

E(r) = VA(r—), (A6)

where P is the potential of a donor ion in the me-
dium, we can rewrite Eq. (A5), considering that

v vy(r) =v y(r), (AV)

One of Maxwell's equations states that

V ' D =47t'p, (A3)

where p is the screening charge density, if E is
the electric field of a donor ion in the medium.

Using the identity

V' [«(r)E(r)]=[V«(r)] E(r)+«(r)[V ' E(r)], (A4)

V. CONCLUDING COMMENTS V «(r) ' [-VP (r) ] —«(r) V Q (r) = 4 &p(r) . (A8)

All these calculations of the dielectric function
have one feature in common:

A fair agreement with each other. On this basis,
it seems reasonable to conclude that our use of the
spatial dielectric function, resulting from the Penn
model, is probably sufficiently good. Much more
reliable calculations on the anisotropy of the dielec-
tric function are needed, in the author's opinion,
to warrant the derivation of a sort of an average
impurity-ion potential ' which could then be used
in theories of ionized-impurity scattering.
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APPENDIX: DERIVATION OF POISSON'S EQUATION
FOR A MEDIUM WITH SPATIALLY-VARIABLE

DIELECTRIC CONSTANT

The replacement of the static dielectric con-
stant «, by the dielectric function «(r) in Eq. (8)
needs justification. It will now be shown that Eq.
(18) can be viewed as the asymptotic form of Pois-
son's equation for a medium characterized by a
spatially-variable dielectric constant.

We start from the definition of the electric dis-
placement D, namely, from

D =K()E, (A1)

where E is the electric field, and replace K, by
«(r}, giving

We can rearrange Eq. (A8) to read

4«p(r) V«(r) [-VA(r)]'~( ) =-,(,) „) (A9)

Equation (A9) is Poisson's equation in a. medium
with a spatially-variable dielectric constant. It
differs from Eq. (18) by the presence of the term

v«(r) [-vy(r)]
«(r)

(A10}

We shall now proceed with the investigation of
the term T, defined in Eq. (A10). In spherical
polar coordinates r, 8, p, we have for the numera-
tor of T

~K 1 ~K 1 BK
V«(r) [-Vg(r)] = — r + ———6"+

r ~g r sing By

) [
-

( ))
d«(r) dy(r)

(A12)

Using Eq. (A12), we can express Eq. (A9) as

2, 4vp(r) 1 d«(r)
r ~ «(r) «(r) dr

We now focus attention on the term

1 d«(r)
«(r) dr

(A13)

(A14)

—r+ ——g+
~r r ~6} r sing 8y

(A11)
where r, 6, y are unit vectors. Considering that
«(r) does not depend on 8 and y, and that neither
does the potential P, we find from Eq. (A11) that
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(A15)

or

T = a,-(~)y', (A15)

Using for g(y) the expression given in Eq. (15), the
differentiation is performed and we obtain

totically, neglected. Otherwise, the solution of
the differential equation in Eq. (A13} would appear
to present intractable difficulties.

Another argument for dropping the term T in Eq.
(A13) can also be advanced, based on the relative
importance of the coefficients of Q' in Eq. (A13).
Denoting the coefficient of Q' on the left-hand side
of Eq. (A13) by h~(s), i. e. , introducing

where we have denoted the coefficient of Q' in Eq.
(A15) by h, (r). We find that at r =0, and at r =~
it assumes the values we find that the quantity

(A19)

[I,(y}]„,=o ~P ay-

[I,(~)]„=0.

(A17) h, r(&e '" Ap-e "—Bye "")
2[e- "+A.(l -e-'") +&(1-e "")]

at y=0, and at y =~ assumes the values

(A20}

With the aid of Eqs. (Al I) and (A18), we see
from Eq. (A15), that k2(r) rapidly drops from a,

constant value at r =0 to a value of 0 as r increases.
%e recaLL that the expansion of the Fermi-Dirac
integral in Eq. (3) is meaningful only when Q is
small, which happens at large values of r. For
this reason, we may justifiably drop the term T in
Eq. (A13) and view the resulting equation, which
has been used in this paper, as the asymptotic
form of Poisson's equation for the potential of a
donor ion in a medium with a spatially-variable
dielectric constant. This then is the justification
of simply replacing the static dielectric constant
in Eq. (8) by the spatial dielectric function. It is
then also the justification for our assumption that
the not pointlike screening charge density is itself
screened the same way as a point charge is
screened by the dielectric function. This conclu-
sion appears plausible, since a spatially extended
but spherically symmetric charge distribution,
when viewed from a large distance, should re-
semble a point charge.

It is fortunate that the term T can be, asymp-

(I,/I, )„,=0

(I,/I, )„.=0 .
Equations (A21) and (A22) tell us that the term T

is unimportant both at very small, and at very
large values of r The s.tructure of Eq. (A20),
however, suggests that the magnitude of h2/h„goes
through a maximum at some finite value of y. Ow-

ing to the predominance of the exponentials over z,
however, this maximum should hover close to zero,
permitting us to infer that the term hag', relative
to the term h&(It}', is not important.

As a final comment, we might add that, perhaps,
it is possible to approximate hz(r) by a simple
analytical function and then search for a variational
principle that could lead to an approximate solution
of the complete modified Poisson's equation. This
step requires formidable effort and, in the author' s
opinion, would only be justified should one be able
to agree on the most reliable analytical approxi-
mation to the physically best spatial dielectric
function.
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