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The photoluminescence spectrum of phosphorus-doped silicon at dopant concentrations ranging from 1.2 g 10"
cm ' to 4X 10' cm ' is studied as a function of excitation power. The results are interpreted in terms of
recombination of charge carriers inside an electron-hole drop and of a free hole with an electron loosely
bound to an impurity site. Comparison is made with theoretical estimates of the impurity band density of
states outside the drop and improved estimates of the charge carrier density and threshold energy associated
with the electron-hole liquid.

I. INTRODUCTION

In the semiconductors Si and Ge a high density
of nonequilibrium carriers is known to condense
to form macroscopic droplets of liquid known as
the "electron-hole droplet" (EHD). ' The ground-
state properties of the EHD in the case of intrinsic
material have been extensively studied both ex-
perimentally" and theoretically' ' and the agree-
ment between theory and experiment is very good.
Recent photoluminescent studies by Halliwell and
Parsons' indicate that the EHD is observed in
phosphorus-doped silicon at quite high dopant con-
centrations, even above the critical concentration
n,„t=3 &10" cm ' for the semiconductor-metal
txansition. However, these results were not ob-
tained with good signal-to-noise ratio and there-
fore the interpretation of the data did not permit
a detailed analysis of the line shapes, especially
for dopant concentrations near and above n„it As
the experimental section outlines below, we have
rebuilt our appax'atus and are now able to obtain
well-resolved spectra with good signal-to-noise
ratio at all impurity concentrations of interest
and over a wide range of excitation power. A pre-
liminary account of the experimental results has
been already reported. ' Here we present a com-
plete description of the experiment and data to-
gether with a theoretical treatment.

A theory for the ground-state properties of the
EHD in heavily doped Qe and Si has been presented
by Bergersen et al." Good agreement was found
between the theoretical and expeximental values
of the threshold energy associated with radiation
from recombination inside the liquid. The theox'y
of Ref. 10 was developed for the high impurity
concentration domain above the semiconductor-
metal transition although the agreement with ex-

periment on Si(P) actually turns out to be fair for
all densities.

When it comes to the line shape there exists in
addition to Ref. 10 a more phenomenologieal theory
by Mahler and Birman. " As mentioned above, the
low signal-to-noise ratio for the experimental re-
sults did not permit a detailed line-shape analysis.
However, the half-widths of the observed peaks
were found to be in qualitative agreement with
theory.

By studying the photolumineseent spectrum of
Si(P) as a function of the excitation level we are
able to analyze the spectrum as a sum of two spec-
tra. The first of these is interpreted in terms of
recombination inside the EHD; the second, in
terms of recombination of free holes with elec-
trons in the "impurity band. '"' At low excitation
intensity the droplets are few and far apart and
most recombination events are of the latter type.
As the excitation intensity is increasedthedroplet
line grows. An important aspect of the present
paper is to show that by studying the spectra at
various excitation intensities the two types of lines
can be disentangled and a comparison made be-
tween experiment and theory for the different
types of recombination.

Section II contains a summary of our theoretical
treatment of the EHD in heavily doped material.
New numerical results are presented for the
threshold energy and charge-carrier concentra-
tions taking into account some of the effects ne-
glected in Ref. 10. When these methods are ex-
tended to lower impurity concentrations an inter-
esting feature of the results is a dip in the eharge-
earrier densities inside the drop for intermediate
dopant concentrations. Some insight into why this
dip occurs can be found by looking at the ener-
getics of the situation in the Hartree-Fock ap-
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proximation and a discussion of this point is given
in the Appendix. We expect that if the impurity
contribution to the energy had been calculated
more accurately the effect would have become
much less pronounced. The experimentally ob-
served dip in the minority carrier concentration
is also quite shallow.

In Sec. III we discuss the density of states in

the impurity band. For very low impurity con-
centrations the impurity states can be described
in terms of the discrete energy levels of the iso-
lated impurities. With increasing impurity con-
centration the wave functions of the donor elec-
trons centered at different sites start to overlap
and one gets an impurity band.

At moderately low impurity concentration one
can treat the lowest-lying impurity states in the
tight-binding approximation. The Coulomb re-
pulsion between electrons makes it energetically
unfavorable for two impurity electrons to occupy
the same site and this interaction will be treated
in the Hubbard" model. We are not aware of any
calculations in the literature which adequately
take into account both the Coulomb repulsion be-
tween electrons and the randomness of the im-
purity distribution. For this reason we follow the
treatment of Berggren" and assume that the do-
nors form a regular lattice and use the Hubbard

model for the electron interactions.
As one increases the dopant concentration be-

yond the critical density n,„,, correlation effects
associated with the electron-electron repulsion
become relatively less important while there con-
tinue to be significant effects due to the random-
ness of the impurity distribution on the charge-
carrier densities of state. We expect that the
main effect of this is to produce "tails" in the
energy bands. No numerical estimates of the
band tailing will be presented here.

The experimental setup is described in Sec. IV.
The experimental results and the analysis of the
data are presented in Sec. V. A summary is pre-
sented in Sec. VI.

II. THEORY OF THE ELECTRON-HOLE LIQUID IN
HEAVILY DOPED MATERIAL

A. Model

We represent the Si conduction band by a six-
valley structure centered at

k, = (2 w/a) (0.85, 0, 0), (I)

and equivalent points. Here a = 5.43 A. Near the
bottom of these valleys the conduction band will
be treated in the effective-mass approximation. "'"
We have taken the values m„= 0.91mo and m&,
=0.19m, for the longitudinal and transverse ef-

fective masses. The conduction- electron wave
functions can be written in the Bloch form

y„«(r) = n "u.«(r) e'"',
with 0 denoting the volume of the crystal. It is
useful to expand the periodic function

(2)

U(r) = g U(q) e'" '

q

can be written

(4)

(nk~ U(nk') =Q U(k-k'+K ) C««(K ) . (5)

As long as we restrict the wave vectors to lie in

the same valley we can put

C«(0) =I,
nn

and the terms C««(K ) with m 40 are small in

comparison. It is then a good approximation to
put

(nk( U~nk') =U(k-k') .

(8)

However, when it comes to evaluating the matrix
elements of the Coulomb interaction between states
in different valleys (7) does not appear to be a good
approximation. There will always be one nonzero
reciprocal-lattice vector K such that ~k —k' —K
&(k-k'), i.e., the most dominant contribution to
the sum in (5) does not necessarily come from the
K =0 term. Nevertheless, approximation (7) is
known empirically to give good results for the
impurity energies" in Si(P). We hope elsewhere
to be able to present results based on (5) without
the approximation (7). In the present paper we
are only interested in intervalley terms in order
to check whether they are negligible or not and for
this purpose (7) is adequate.

The valence bands will be described in terms
of light and heavy holes with masses m~ =0.16m,
and m~= 0.48mo, respectively. Coulomb matrix
elements between states in the valence bands are
treated as described by Combescot and Nozieres. '"
This means that we neglect any nonparabolicity of
the valence bands, but take into account the cou-
pling between the two top valence bands. Since we
will only be concerned with n-type impurities,
the hole concentration will never become so large
that it will become necessary to take into account
the j =

& valence band.

u„«(r) u„«(r) =P C««(K ) e

Km

where K are the reciprocal-lattice vectors. In

this notation, "matrix elements of one-body oper-
ators of the form
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The Coulomb interaction between the charge
carriers is screened by the dielectric function of
the host. We make use of the simplified analytic
form suggested by Nara and Morita"

1 q' (1-A) q' e '(0) y'
c(q) q'+ o. ' q'+ p' q'+y' (6)

+E„„(n„n„)+E ,(n„n„) . . (9)

Suppose the volume of the crystal is 0 and there
is an electron-hole drop of volume V inside the
crystal. The total energy is then

E(crystal) = (A —V) E(&&, 0) + VE(n& + nI„np) .

At lorn tempex'atures the hole density e& mill be
determined by the requirement that (10) be a min-
imum, subject to the constraint that the total num-
ber N= Vn& of excess charge-carrier pairs be kept
constant. This leads to the exact condition for
equilibrium

with A =1.175, a=0.7572 a.u. , P =0.3123 a, .u. ,
y=2.044 a.u. , and e(0) =11.4.

We next turn to the energetics of electron-hole
drop formation. Let n~ represent the concentra-
tion of impurity electrons and n~ the number of
valence band holes per unit volume inside the
electron-hole liquid. We only consider here the
case where the drops formed are large enough
fox the sux"face energy to be small compared with
the bulk energy so that we can assume the drops
to be approximately charge neutral. This allows
us to put n, =~I, +n~ for the total density of elec-
trons. Next, let E(n„n„}be the total energy per
unit volume, i.e., the sum of the kinetic, exchange,
correlation, and impurity energies associated
with the indicated densities:

E(n„n„)= Et (n„n~) +E,„,(n„nI,)

E, =mme'/M' e' = 13.1 me V, (13)

4m''
Og ~3

3 C
l

+C (15)

where

a, = ek'/m„e' = 48.6 A

is the exeiton Bohr diameter.

(16)

B. Calculation of E/n„n& )

/. Kinetic and exchunge energies

The kinetic and exchange contributions to the
energy density mill in the present ealeulation be
computed as described in Hefs. 4 and 10. We give
the formulas in the Appendix. The calculation
neglects the energy due to intervalley exchange.
A proper calculation of this contribution would
involve summing up terms involving different
reciprocal-lattice vectors as discussed in con-
nection with ( 5). Such a calculation would be ra-
ther complicated and in order to estimate the pos-
sible significance of intervalley exchange let us
instead make the effective-mass approximation
(7). This gives for the conduction-electron ex-
change energy per unit volume, with f (k} as the
Fermi distribution function,

m„= [-,'(m, ,'+2~,') +-,'(m '+ma')] ' =0.124m, .

(14)

The impurity, hole, and conduction-electron den-
sities are parametrized by the quantities r~, r„,
and r, given by

&(ng, n~) =(1/np) [E(%+n„,nI) —E(n„0)]
= minimum .

Stated otherwise Eq. (11) implies that the average
enex gy per excess charge-carrier pair inside the
drop should be a, minimum. At this quasiequilib-
rium me have

= 8
E(nc, na).=Ep =

S
E(n~+na, na),

@a

l.e., the avex'age energy F pex' pair lnslde the
liquid has to be the same as the energy E~ - re-
quixed to add one extra electron-hole pair. The
latter quantity can be determined from the high-
energy threshold of the droplet luminescence line.
Throughout this calculation our unit of energy is
the "exciton Hydberg"

Equation (1'l) can be separated into an inter- and
intravalley part. In the latter case the momentum
transfer lk —k'I will never be very large and we
have neglected the wave-vector dependence of the
dielectric function in the intravalley term. In the
intervalley contribution k and k' lie in different
valleys and the wave-vector dependence of e(k) is
quite important. If 4; is the distance fxom the I
point to any of the valley xninima we then must
either have (k —k'] =k, = W2k„or ]k —k'] =k, =2kq.
With this approximation the intervalley contribu-
tion to ( 1'7) can easily be evaluated to yield

w e'n,' 8 1
24 k', e(k,) e(k, )
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What matters in the present calculation is not
the absolute value of the different contributions
to the energy, but their effect on the derivative
of the energy with respect to the minority carrier
density [see Eq. (12)]:

E„(intervalley exch) = —,' +
m e'n, 8 1

(19)

At n~=4x10" cm ' Eq. (19) represents 2% of

Ep and its importance is even less for lower
impurity densities [e.g. , Eq. (19) represents

0.15% of E~ at the critical density n,„., ]. We
therefore felt justified in neglecting the inter-
valley contribution to the exchange energy in our
determination of n& and E„at quasiequilibrium.

Z. Correlation energy

We will (as was done in Ref. 10}, calculate the
correlation energy inside the electron-hole drop
in the random-phase approximation (RPA). Our
treatment differs from that of previous work in
that we have replaced the dielectric constant e of
the pure host by a wave-vector dependent dielec-
tric function. This gives

1 d'q '"
den 4me'

2 (2 )' 2 i ( ),S(q, u)+in 1— (20)

Here S(q, ~) is the pair correlation function
which in the present work is evaluated as described
in detail in Ref. 10. The replacement of the di-
electric constant by a dielectric function will give
greater emphasis to the large q contributions. The
resulting change in E~ is quite small (a few per-
cent). Since the RPA is not a good approximation
at large momentum transfer, we have made no
attempt to include intervalley corrections to (20}
in our calculations.

In the case of intrinsic material Bhattacharyya
et al. ' argue that one can expect corrections to
E„ that go beyond the random-phase approxima-
tion to amount to slightly above 20% of E ~

. .
These corrections will become less important
when the charge-carrier concentration is higher
than the concentration within the EHD of pure Si,
and the percentage error must be expected to be
larger than this for lower carrier concentrations.
The corrections to E„„will have the effect of
making this quantity more negative. Let us now

consider the two terms E(n, +n„, n„) and E(n„0)
which enter in E~ . For very low impurity con-
centrations the percentage error in E(nc, 0) will
be large, but since this term will be very small
compared to E(n, +n„, n„) this will be of little con-
sequence. The effect of corrections to the RPA
correlation energy must then be about the same
as in the intrinsic case. However, when consider-
ing impurity densities which are of the same order
of magnitude as the quasiequilibrium n„ the abso-
lute error in E(n~, 0) could well become just as
large or even larger than the error in E(n~+n„, n„).
For this reason the errors must be expected to
cancel out to a considerable degree —or one could
even have a situation where a calculated correla-
tion energy which is not negative enough leads to

a calculated E ~ which is too negative. Similar
cancellation effects are expected to play a role
in the impurity energy contribution to be discussed
later and they probably contribute significantly to
the quite good agreement obtained between the
theoretical value for E~ . and the location of the
high-energy edge of the droplet luminescence line
that we have obtained experimentally. Finally,
if we go to very high impurity concentrations the
RPA will become a very good approximation and
the correction term correspondingly small.

27TZ8 Ply

jmp( c~ c)
(2 )c

d'q 4ve' e '(q) S(q, 0}
e(q}p' [p' —4 we' e '(q) S(q, 0)]

'

(21)

This equation differs from the corresponding re-
sult in Ref. 10 in that we have attempted to include
"central-cell corrections" by replacing the host
dielectric constant by a wave-vector dependent
e(q). Equation (21) is linear in the impurity con-
centration. There is another second-order con-
tribution involving a carrier interacting with two
different impurity sites. This term is quadratic

Impurity energy

We will, as was done in Ref. 10, assume that
the phosphorus impurities are linearly screened
randomly distributed point charges. Since the
"jellium" contribution to the impurity energy al-
ready is included in the correlation term the major
part of E

~ will be an intravalley term which is of
second order in the charge-carrier-impurity in-
teraction and which involves a carrier interacting
twice with the same site,
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in the impurity concentration and can only be ex-
pected to be important at very high impurity con-
centrations. In order to estimate it we write the
impurity-impurity interaction in the form

1add=-'Z n —~~ ~-e'~'~ .d d g ~ q

q, /wso

(22)

Here the sum over / is a sum over all sites in the
crystal and I', = n„/X is the probability that this site
is occupied by a phosphorus ion. X is the number
of sites per unit volume of the crystal and vq is
the Fourier transform of a screened impurity-
impurity interaction. Equation (22) can be re-
written

BZ
dd 1"~-x Z"-~)

Kft ~0
BZ

—
2 Xn~"' (23)

The superscript BZ indicates that the sum is re-
stricted to the first Brillouin zone.

We are only interested in the contribution of (23)
to E~, i.e., to the derivative of the energy with
respect to the minority charge-carrier density in-
side and outside the droplet. This contribution
comes about because the screening of the impuri-
ties is more efficient if there are more free charge
carriers present. Only the contribution from the
first Brillouin zone is important for this screen-
ing. We can thus approximate

O
I

'ie ~

' 'Is
lO ncrit tO IO = nd

l7

approach of Sec. III is more appropriate. In order
to illustrate this point we show in Fig. 1 how the
average energy per impurity electron varies with
the impurity concentration. At low impurity con-
centrations this quantity should approach the ion-
ization energy of the lowest impurity state in Si(P).
Experimentally'o the energy of the impurity state
is found to be —45.3 meV. When the methods of
Pantelides and Sah" are used to calculate this en-
ergy we get —46.9 meV (see also Sec. III). This
value was obtained taking into account intervalley
terms in the approximation (7}. If intervalley
terms had been neglected one would have obtained
the value -31 meV for the impurity ground-state
energy. Equation (21) was evaluated without taking
into account intervalley terms. It is easy to make
a crude estimate of the neglected effect in the same
spirit as was done in going from (I'I} to (19). How-
ever, the effect will now be very small because
the terms will contain factors proportional to 0, 4

or ~, '.
We conclude that Eq. (21) will lead to a fairly

gross underestimate of the impurity energy except
at the very highest densities considered. However,
there will be the same type of cancellation effect
that we discussed in connection with the correla-
tion energy. The error in the calculated value of

OQ

1T 0 +h

If we next put

4we'/e(q}
q'+ [4we'/e(q)]S(q, 0)

4 we'/e(0)
q'+[4we'/e(0}]S(0, 0) '

we can easily evaluate (24) to give

8 Pld 1 1 ~8

Be(0) 3I v s Ss„'

(24)

(25)

(2B)

C:

0

UJ

where s= —4we'S(0, 0)/e(0). At the highest impurity
concentration considered here (4 X IO" cm '), Eq.
(26) is 1% of Ep and the contribution falls off
fairly rapidly with decreasing impurity concentra-
tion. Since this term is very small we have ne-
glected it in our energy minimization calculation.

There are other corrections to (21) which are
more serious. Even at dopant concentrations as
high as several times n~, it is believed that the
charge-carrier states have some localized char-
acter. " At still lower densities the tight-binding

-E0

FIG. 1. E(nd, 0)/nd, the energy per donor outside the
droplet as obtained by adding the kinetic, exchange, and
correlation energies, is shown as a function of the im-
purity concentration nd. —Eo denotes the binding energy
of the isolated donor in it ground state. The energy is
in units of 80, the excitonic rydberg.
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E~ will therefore be much smaller than could be
expected from R quick glRnce at Flg. 1.

C. Calculation of n& and E

The different contributions to E(n~, n„) in Eq.
(12) were evaluated numerically from (Al), (20),
and (21) for different impurity and excess charge-
carrier densities. For each value of n~ we found

the value of n& for which E had a minimum. The
resulting values of Ep - Rnd n& are plotted in Figs.
2 and 3, respectively, and compared to previous
results. " In Fig. 3 we also plot the majority car-
rier density inside the drop for different impurity
concentrations. A striking feature of the results
is the minimum in n& and n, at an intermediate
impurity concentration. This minimum was also
pI'eseIlt ln the cRlculRtlon ln Ref. 10 Rnd R slmll3. r
effect was found by Mahler and Birman "'m %e
discuss in the Appendix how this minimum comes
about by looking at the somewhat simpler Hartree-
Fock approximation.

The calculated minimum in the minority charge-
carrier density must be treated with a certa, in
scepticism. As discussed in Sec. II 8, we expect
that in the intermediate density region our cal-
culations significantly underestimate the magnitude

—IO

)Ol8

)O
l7

FIG. 3. The equilibrium hole density n& is shown as a
function of the impurity concentration nz. The solid
curve represents the theoretical result with the correla-
tion energy contribution to &(n„,0) calculated in the BPA,
the dashed curve is the result obtained w'ith &(n„, 0)/n~
taken to be the experimental ionization energy. The dots
with error flags I'epxesent the experimental data.

'a
CL

LaJ

4WP% ~ % 4WSWI '0 ~ 0 ~ % ~ 0 WSW

$4ISWSW

of both the impurity Rnd the correlation energy.
Vje argued that thex'e is likely to be a considerable
cancellation of the errors introduced this way.
Nevertheless, the minimum in Z is quite shallow
and sxnall errox's in the density dependence of E
could have a significant effect on n&. This ques-
tion can be somewhat clarified by the following
argument. In the large-U l.imit of the Hubbard
model discussed in Sec. III (I/n~) E(n„0) will be
roughly equal to the elect, ronic ground-state en-
ergy of the isolated impurity. %'e have therefore
calculated Ep and e~ assuming that

E(n„, 0)/n = —45.3 mey,

but with E(n~+n„, n„) calculated as before.
results are shown in Figs. 2 and 3. It is seen that
the minimum in n& now has disappeared while the
change in Ep is less dramatic. The experimental
values of @& and Ep~ Rre discussed in Sec. V.

III. THE IMPURITY BAND

FIG. 2. Ep,„ the avex'age encl gy pex' paix' of chal ge
carriers within the droplet, is shown as a function of the
impurity concentration e~. The solid curve denotes the
theoretical result obtained in the present work, the
dashed line that of Ref. lo. The chained curve is ob-
tained using the ionization energy fox' E(@g,0)jmg. The
experimental results are shown as dots with error flags.

As explR1ned ln Sec. D fox' low 1mpurlty con-
centrations the calculation of the comparison ener-
gy E(n~, 0), i.e., the energy of the donor electrons
outside the droplet, is not reliable when obtained
1n the RPA Instead& below the density + t 1

18 I'e3,sonRble to descI'1be the 1mpurity bRnd ln R

tight-binding scheme such as the Hubbard model. '~

This model is particularly appropriate because
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it is known to exhibit a metal-insulator transition.
Apart from E(n~, 0), we shall also obtain the den-
sity of states of the impurity band —a quantity
which is directly related to the shape of the photo-
luminescent peak arising from the recombination
of impurity electrons with free holes. The phos-
phorus impurities will, of course, be randomly
distributed but we shall ignore this randomness
and following Berggren'4 assume that the impuri-
ties are distributed over a simple cubic lattice
in the host material. In the Hubbard model the
impurity electrons are described by the Hamil-
tonian

H =~ t)~ 9
g O Q~O +— Pl] OPl5

5)O 2 50

where a „(a,,) creates (destroys) an electron
with spin o in a Wannier state at site i, n, de-
notes the number operator for electrons of spin
0 at site i, t, , is the transfer matrix element
between sites i and&, and U is the Coulomb re-
pulsion energy if two donor electrons occupy the
same site. Two donor electrons are assumed
to interact only when on the same site. We further
assume that the transfer matrix element t, , is
nonvanishing only when i and) are nearest neigh-
bors.

The transfer matrix element is defined as

scribing the impurity electrons as

H = —
2

V2+Vo(r)+g U(r —Ri), (30)

(31)

Let 4(r) denote the ground-state wave function
of a donor at an isolated impurity. In principle
this is an eigenfunction of the Hamiltonian

Ii = —5 V /2mo+ Vo(r)+U(r) (32)

with an energy —&,. Since the impurities are
assumed to form a periodic lattice, we describe
the impurity band in terms of Bl.och functions

4-„(r) = ~ Q a-„e'" ' "' 4 (r —R; ) .

If we define

8)= d rC*r —R; 4 r —R, (34)

S(k) = —g S,, e
5

where V (r) is the periodic potential arising from
the host atoms and U(r -R,.) is the perturbing
potential due to an impurity ion at site i:

(29)E(k) eik ' iR -R )

N k

where E(k) is the band energy of the donor elec-
trons when correlations are ignored. We cal-
culate this unperturbed band in the tight-binding
scheme. For this we write the Hamiltonian de-

the Bloch functions are normalized provided

a- = [S (k)]

In the tight-binding scheme we have

E(k) =(4'T, (&)IHI @T,(&)),

which may be written approximately as

(36)

(37)

2

E(k) = —Q ~ai, ~'e '" ' '"i i'(4'(r —R, )( — V' + V,(r)+U(r —R;)~ 4(r —R, ))
5 0

+ —Q [ a k)'e "' '~ ~i'~ ( 4 (r —R, )[ U(r —R, )) 4 (r —R, )),
(i&i j

so that

E(k)=-E, + —p la&['e '" "' "«'(r-R;)IU(r-R )I4'(r-»)&.
5 yJ

(i ~i )

Since the overlap S;, is small in the range of
dopant concentrations of interest, we may set
~ai, ~'=I in (39). Comparing (29) and (39) we have

t, , =(4(r —R,. )i U(r —R, )i 4(r —R, )), (40)

with jWi. [In the treatment of Berggren, "the

nonorthogonality term given by (35) and (36) is
not treated consistentl. y, and his expression for
5,, is different from ours. ] Only the hopping
matrix element between nearest neighbors is
found to be significant. The intra-atomic Coulomb
repul. sion is given by
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2

U = d'rd'r' 4 r (41)

The wave function 4 (r) for the ground state of

an isolated impurity is obtained in the effeetive-
mass approximation. In this formalism C(r} is
written as a wave packet consisting of Bloch
waves, PT, (r), at the six minima (k„ l =1, . . . , 6)
in the conduction band of silicon:

4(r) = u, F, (r)43l, , (r).
=1

(42)

with the z axis oriented along the longitudinal
axis of the conduction valley at k, . Fol.lowing

Miller and Abrah3ms" Bnd Berggren, "we take

a = /I /(2m, E,)'/'; b = (m, /m, )'/'a, (44)

where &0 is the observed ionization energy. This
choice of a and b gives the correct asymptotic
form for F, (r), but does not yield (42) as a so-
lution to the effective-mass equation.

With impurity wave functions of the chosen form

(45)

where

The F, (r) are "envelope" functions which are
solutions of a well. -known effective-mass equation.
In the ground state a, = I/V6 for all l. The en-
velope functions are hydrogenlike and, because
of the anisotropy in the effective mass, may be
taken to be of the form

I. x2 + y2 z2 1/2

F, (r)=, ,/, exp —,+ —, , (43)

of Berggren' corresponding to (49) contains an
algebraic error. ]

Finally, using integrals worked out by Miller
and Abrahams, "Berggren" h3s shown that the
intra-atomic Coulomb repulsion is given approxi-
mately by

U = 5e'/Sea. (5o)

The value of
~ t, , ~

for the donor concentration
1.8&&10' phosphorus cm ' is 1.2 meV. The mag-
nitude of the hopping integral rapidly increases
with dopant concentration. The intra-atomic
Coulomb repulsion U, which is clearly indepen-
dent of dopant concentration, is 37.5 meV. As
was mentioned earlier, the envelope function (43)
gives a reasonable asymptotic behavior but is not
accurate in the region close to the donor nucleus,
i.e., in the "central-cell" region. Since only the
asymptotic behavior of F(r) is important in the
evaluation of the hopping integral (which is a two-
center integral) we expect the values thus obtained
for

~ t, , ~
to be quite reasonable. In our calculation

of U there are two sources of error which have the
opposite effect. On the one hand, central-cell
corrections [not adequately taken into account
in (43)] would increase the magnitude of the wave
function close to the nucl. eus and so tend to in-
crease U. On the other hand, the isol. ated im-
purity wave functions would relax considerably
on placing two electrons at the same site and this
effect would tend to reduce U.

Recently Pantelides and Sah" have treated the
central-cell corrections to the isolated impurity
wave function by using the dielectric function
e(r) in (31) rather than the dielectric constant.
They assume a spherically symmetric envelope
function of the form

(46) F(r) (va 'c3)-1/2 e-r/a *
(51)

On squaring expression (45) and considering only
intravalley terms we get

(47)

Upon doing a spherical average over the orienta-
tions of R... we obtain

~ t, , ~'=(e'/6ea)'(A, + 2A, +A, },

where

(48)

dg l ~ -2Rg /a
4n ~ a

n

dx(I+ax')"/'e " /'~"'"* '+ 2 X/2

a

(49)

with n =a'/5' —I and R =
~ R, , ~. [The expression

Assuming spherical conduction valleys (with ef-
fective mass m*= 0.2987m3), on minimizing the
expectation value of the isolated impurity Ham-
iltonian (32), we obtain a*=21.4 a.u. and an ion-
ization energy 46.9 meV. Pantelides and Sah"
have used approximations (6) and (7) even for
intervalley terms. Consequently, the ground-
state wave function obtained is not necessarily
reliable in spite of the close agreement of the
calculated ionization energy with experiment.
Using this wave function we find that U = 70 meV
and for the donon concentration 1.8x10"phos-
phorus cm '

~
t

~
=0.26 meV. The hopping integral

is extremely small because the central-cell cor-
rection has greatly enhanced the magnitude of the
wave function in the neighborhood of the nucleus
at the expense of that in the asymptotic region.
The vat.ue of the intra-atomic Coulomb repulsion
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0, otherwise,

(52)

where 4(= 12~ t () is the unperturbed bandwidth.

The pseudoparticle density of states in the Hub-

bard model when there is one electron per atomic
site is then approximately given by the imaginary
part of the propagator"

G(E) = (4/wti') [F(E)—[F'(E) —(~h)'] 't'), (53)

where the quantity F(E) is obtained as the ap-
propriate root of the cubic equation

EF~ —[-,E2 + —,'(~ti)' ——,U ']F'

+ [ 3E(E' —~U')+ ~E(2&) ]F
—3(E' ——'U')' —4E'(~2ti)' = o (54)

Depending on the values of
~
t

~
and U the density

of states may show a splitting. The quantity that
determines this is the ratio of the bandwidth to the
Coulomb repulsion 2Z

~
t ~/U, where Z is the coor-

dination number. If we use Hubbard's criterion"
that band splitting occurs when this ratio is &1.15,
we find that below a dopant concentration of about
6x10"phosphorous em ' one has two distinct
Hubbard subbands separated by an energy gap.
Since each phosphorus atom contributes exactly
one donor electron the lower subband is completely
filled while the upper one is entirely empty. Thus
in this model the semiconductor-metal transition
occurs at the donor concentration n „;,= 6 x 10"cm '.
The accepted experimental value of the donor
density at which Si(P) undergoes a semiconductor-
metal transition is 3x10"phosphorus cm '. We
attribute the discrepancy between the experimental
and theoretical critical densities to the random-
ness in the distribution of the impurities, which
we have ignored. This randomness produces band

U obtained using the wave function of Pantelides
and Sah"' is unphysically large. With U = 70 meV,
it would not be possible to bind two donor electrons
to the same phosphorus impurity to form a H—
like complex. Dean eI' al."have reported the
binding energy of such a complex in Si(P) to be
-4 meV. Since the ionization energy of the neu-
tral donor is 45.3 meV, it follows that U-41 meV.

If t and U are known, we can calculate the den-
sity of states within the Hubbard model. For the
details we refer the reader to Hubbard's original
papers. " With Hubbard, we approximate the
density of states of the original tight-binding band

(in the absence of correlations) by the semicircular
form

4 E E 2 &tt'2

, if ~E-EJ&-
iiti 2ti ' 2

tailing and as a result the two Hubbard bands would

begin to overlap at a lower impurity concentration
than that predicted by our model.

The calculated density of states of the impurity
band is of interest because experimentally one can
extract information about this from the photolu-
minescent spectra, as explained in Sec. V. The
intensity of the radiation arising from the recom-
bination of electrons in the impurity band and free
holes in the valence band is proportional to the
convolution of the density of states of the impurity
and valence bands. At low excitation levels only
those valence-band states within approximately
kT of the band maximum are unoccupied. There-
fore at low temperatures the measured luminescent
intensity due to recombination of impurity elec-
trons and free holes is directly proportional to
the density of states of the impurity band. In Fig.
4 we present a comparison between the experi-
mentally observed impurity band and the density of
states as calculated in the Hubbard model for the
donor concentration 1.8x 10" and 3.9x10"phos-
phorus cm '. As can be seen there is good agree-
ment between the calculated and observed density
of states, particularly for the concentration
1.8x10" cm '. We attribute the discrepancy close
to the band edges to band tailing which arises
from the randomness of the impurity atoms.

We have also calculated the density of states of
the impurity band assuming that the impurities
fall into isolated pairs, following the treatment of
Macek. " The donors are taken to be randomly
distributed and the distance R between the impurit-
ies forming the hydrogen like molecule is assumed
to follow the Chandrasekhar distribution. " The
Heitler-London method" is used to set up the
molecular wave functions in terms of the wave
function (32) of the isolated donor and the expecta-
tion value of the molecular Hamiltonian evaluated.
We take the envelope function to be spherically
symmetric like (51), but with the effective Bohr
radius a* adjusted to give the asymptotic solution
to the spherical-band effective-mass equation. "
If intervalley terms are ignored, one obtains an
expression for the energy which is identical to
that given by the Heitler-London model for the
hydrogen molecule. The density of states is then
easily calculated. The result is shown in Fig. 4(a)
for the donor concentration 1.8x 10"phosphorus
cm '. The width of the impurity band obtained in
this model is too narrow. If one of the donor
electrons in the impurity molecule recombines
with a free hole, then one is left with a dangling
bond since in this model the molecule is assumed
to be isolated. Thus the effect of correlation is
overestimated. In reality, of course, the electron
that is left behind would correlate with other elec-
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trons.
It has been suggested by Lukes eg g$."that the

density of states of the impurity band may be cal-
culated using the model of H, ' ion. We have also
calculated the density of states in this model
(again using the spherical-band approximation)
and the result is shown in Fig. 4(a). The bandwidth
obtained is far too broad and is a result of the
fact that here correlations are entirely ignored.

IV. EXPERIMENTAL DETAILS

Single crystals of vacuum float zone phosphorus-
doped silicon purchased from General Diode Corp.
and Ventron Electronic Corp. were used. The
impurity concentration was determined from
room-temperature resistivity measurements.
The samples were cut typically to 3x 5x 20 mm'

FIG. 4. Experimental and theoretical photolu~i~escent
lines shapes for an electron in the impurity band and a
free hole of phosphorus-doped silicon: (a) Sample con-
taining 1.8 x 10 cm . Impurity-band line shapes at ex-
citation levels of 5 Wcm 2 (long flags) and 0.1 lcm 2

(short Gags) are shown. The flags represent two stan-
dard deviations due to signal averaging and to the sub-
tracting process referred to in Sec. V. The curves are
the theoretical densities of states of the impurity band in
the Hubbard (—), the Heitler-I ondon (—-), and the H2+
(-.—-) models. They have been shifted in energy and
scaled for comparison. (b) Sample containing 3.9x10~8
cm 3. Impurity-band line shapes at excitation levels of
20 lcm 2 (short flags) and 200 Wcm 2 gong flags) are
shown. The solid curve is the density of states of the im-
purity band in the Hubbard model. It has been shifted in
energy and scaled for comparison with experiment.

and etched for 30 sec in a mixture of HNO, and
HF (5:1). The sample was immersed in liquid
helium in an optical cryostat and the temperature
could be varied by changing the helium vapor pres-
sure. The optical excitation of the sample was
varied over the range 0.1-200 W cm '.

To check that the sample wa, s in thermal equilib-
rium with the helium bath, photoluminescent
spectra were taken of intrinsic silicon under the
same experimental conditions used in the measure-
ment of the doped crystals. Analysis of the re-
combination emission attributed to free excitons"
showed that the sample temperature is that of the
helium bath for all optical excitation levels repor-
ted here.

For low excitation intensities a continuous He-Ne
0

laser with 5-m% power output at 6328-A wave-
length was used; for higher excitations a continu-
ous argon laser with a maximum power output of
2 W at 5145-A wavelength was used. The irradia-
ted area was a spot of 1-mm diameter. The re-
combination radiation was collected from the ex-
cited surface and analyzed with a 58-cm f/3. 5
monochromator of Czerny- Turner design. A
Bausch and Lomb Inc. grating blazed at 1.6 p, m
with 600 grooves/mm was used in the second
order. An R.C.A. (67-07-B) germanium photo-
diode detector-preamplifier system operated at
liquid-nitrogen temperature with detectivity
D*(1.268 p, m, 91 Hz, 1 Hz) =4.23x10" cm(Hz)' '/
(rms W) and a noise equivalent power NEP(1. 268

pm, 91 Hz, 1Hz) =1.056x 10 " rms W/(Hz)"' was
used for signal detection. Further amplification
was obtained with a, low-noise preamplifier (PAR-
113, Princeton Applied Research Corp. ). The
signal was then phase-sensitive detected (PAR-121
Lock-in, Princeton Applied Research Corp. ) and

integrated over times of typically 3 sec. - The
analog signal from the lock-in amplifier was elec-
tronically converted to a digital one and stored in
the memory of a mini-computer (Nova 2, Data
General Corp. ). The mini-computer was inter-
faced" with the monochromator drive. This al-
lowed programmable integration times as well as
automatic signal averaging. The data were finally
punched on paper tape at the end of the experi-
ment for future analysis.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In an indirect gap semiconductor such as sili-
con the radiative recombination must involve an
additional process to conserve crystal momen-
tum. ' " In phosphorus-doped silicon at 4.2 'K the
strongest recombination emission is assisted by
the simultaneous creation of a transverse-optical
(TO) phonon. ' For the purpose of clarity we will
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only show in this paper the TO-phonon-assisted
photoluminescent spectrum.

Figure 5(a} shows the spectrum of a sample
containing 1.2x 10"phosphorus cm '. The excita-
tion intensity is approximately 120 W cm '. The
spectrum shows two overlapping peaks: A broad
one at low energies attributed"' to the EHD and
a sharper one associated with an exciton bound to
a neutral phosphorus impurity. Since the relative
intensity of these peaks depends on the excitation
level, the two overlapping peaks can be separated.
The bound exciton (BE) peak strongly dominates
the spectrum at very low excitation level (0.1 W
cm ') and is used, properly scaled, to subtract
the BE peak from the spectra obtained at excita-
tion intensities in the range 10-200%em . In
this manner we obtain the EHD line shape, as
shown in Fig. 5(b). The EHD line shape does not
change in the range of excitation levels of interest.
The solid curve in Fig. 5(b) shows a EHD theoreti-
cal line shape obtained by a convolution integral of
the densities of state"

I I I I I I & I I

Sl (P)
d

= l.2 x !0 em

I-
Mz (&)
Lad

1 ~

0 e
I-

e ~
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FIG. 5. {a) Photoluminescent spectrum of silicon con-
tamI~ 1.2x10 phosphorus cm 3 at T =4.2 K and 120
W cm 2 excitation level. The strong broad peak is attrib-
uted to the electron-hole drop {EHD), the weaker to the
bound exciton {BE). {b) Solid circles show the experi-
mental EHD line shape obtained by subtracting the BE
line shape from the spectrum shown in {a). The errors
in subtraction are shown. The solid curve is the theo-
retical fit to the EHD line shape.

t )„)v) J )i)E.)))(z,)j(E.)f(E )

x 5(hv E-„,;„+E~+Ef E-,

E)—, + hvT„) dE,dE)„ (55)

where E, and EI, are, respectively, the electron
and hole energies in the conduction and valence
bands; N(E, ) and N(E„}are the respective densities
of state; f(E,} and f(E„) are the Fermi-Dirac dis-
tribution functions taken at the helium bath temper-
ature; EF and E~ are the Fermi energies for the
electrons and holes; E„.;, , as defined in Sec. II,
is the energy required to add one more electron-
hole pair to the EHD and is determined by the high-
energy threshold of the luminescent peak. A theo-
retical fit has been perfoxmed by assuming the
EHD to be charge neutral (n, =n), +n„see Sec. II)
and by neglecting the nonparabolicity of the bands.
The effective masses are assumed to be indepen-
dent of doping and are given in Sec. II. We use
57.8 meV for the energy' of the TO phonon. As
discussed in See. IV the sample temperature is
that of the helium bath. The fit is performed by
varying two parameters: E~«, which fixes the
energy position and nI, which changes the line
shape and width for a given impurity density (n,).
The parameters giving the best fit are shown in
Figs. 2and 3 as a function of impurity concentra-
tion.

The spectrum shown in Fig. 6 was obtained from
a sample containing 5.7 x 10"phosphorus cm '.
The excitation intensity is approximately 160 %
cm '. The line shape of the EHD peak centered at
1.0835 eV is independent of excitation intensity in
the range 1-200 Wem ' used in this experiment.
The solid curve in Fig. 6 shows the theoretical
fit. The BE peak (1.09 eV) is not observed. The
peak appearing at low energy (1.051 eV) is attribu-
ted to the recombination of an electron in the im-
purity states with a free hole. Study of this peak
at low excitation level is obscured by the appear-
ance of a broad peak (- 25 meV at half-intensity)
at 1.042 eV which dominates the spectrum. We
attribute this broad peak to donor-acceptor re-
combination because we observe a similar peak
in samples doubly doped with boron and phosphorus.
We have also studied samples with 3.1x 10" and
3.7~ 10"phosphorus cm ' intermediate to the im-
purity concentrations of samples discussed above.
Our observations as a function of excitation level
are in close agx cement with those of Martin and
Sauer" for a sample containing 1.8x10"phos-
phorus cm '. A single recombination band is ob-
served at high excitation intensity. With decreas-
ing excitation level this band changes line shape
and exhibits evidence of structure at low excita-
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FIG. 6. The photolu~~~escent spectrum of silicon con-

taining 5.7x10~ phosphorus cm at T =4.2 'K and 160
Wcm 2 excitation level is given by solid circles. The
solid curve shows the theoretical fit to the EHD line
shape.

tion intensity. Martin and Sauer" argue that these
changes in line shape were indicative of a profound
change in the electronic states. We think that an
alternative explanation is that the BE peak is very
broad and overlaps the EHD peak to form a single
broad band. The changes in this band with excita-
tion level can be attributed to the change in the
relative intensities of the EHD and BE emissions
with excitation level.

In our previously published experimental work'
we have shown spectra for samples containing
1.8x10", 3.0x10", and 3.9x10"cm '. A detailed
analysis of those data will be presented here.
Each spectrum shows two peaks. As previously
reported the peak at high photon energy is attribu-
ted to recombination within the EHD. The other
peak is attributed to recombination of an electron
in the "impurity band"" with a free hole. The
impurity band (IB) peak shifts to higher energy as
the impurity concentration increases. The rela-
tive intensities of the two peaks depends on the
excitation level. The EHD peak dominates the
spectrum at high excitation level; the IB peak
dominates at low level.

Figure 7 shows the spectra of a sample contain-
ing 1.8x10"phosphorus cm '. Figure 7(a) shows
the spectrum at high excitation level (200 W cm ').
The solid curve shows the theoretical fit to the
EHD line shape. Figure 7(b) shows the spectra at

FIG. 7. Photoluminescent spectra of silicon containing
1.8 x10 phosphorus cm at 4.2 'K. (a) Solid circles
show the spectrum at high excitation level (200 Wcm ~}.
The peak is attributed to the EHD. The solid curve shows
the theoretical fit to the EHD line shape. (b) The flags
(two standard deviations from 6 scans) show the spec-
trum at intermediate excitation level (20 Wcm ) and
the solid dots (50 scans) the spectrum at low level (0.1
Wcm 2). The peak at high energies is attributed to the
EHD, the other to the impurity band. The spectra have
been scaled for comparison.

intermediate (20 Wcm ') and low (0.1 W cm ') ex-
citation levels. The spectra in this figure have
been scaled so that the low-energy tails of the IB
peaks are superimposed. The line shape of the
EHD peak obtained by subtracting these two spectra
is the same as the one obtained at high excitation
intensities shown in Fig. 7(a). The line shape of
the IB peak is obtained by subtracting the EHD
line shape [Fig. 7(a) j from the low excitation level
(0.1 Wcm ') spectrum. As shown in Fig. 4(a) the
same IB line shape is obtained by subtracting the
EHD line shape from an intermediate excitation
(5 Wcm ') spectrum. We assume that the recom-
bination emission of electrons in the impurity band
and free holes in the valence band is proportional
to the convolution of the densities of state of the
two bands. Since only those states of the valence
band within approximately kT of the band maximum
are unoccupied at 4.2 oK and this energy is negligible
compared to the width of the observed IB peak, the
experimental IB line shape gives directly the den-
sity of states in the impurity band. In Sec. III the
impurity band has been discussed in terms of the
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Hubbard model. The calculated density of states
of the completely filled lower Hubbard band is
shown by the solid curve in Fig. 4(a). Also shown
in Fig. 4(a) are the calculated densities of state in
the Heitler-London and H,' models. The theoret-
ical bands have been shifted in energy and scaled.

Figure 8(a) shows two spectra of a sample con-
taining 3.9x10"phosphorus cm '. The high ex-
citation-level spectrum (200 W cm ') shows both
the EHD and the IB peaks. In the low-level spec-
trum (0.2 W cm ') the IB peak strongly dominates
the spectrum. The line shape of the EHD peak
obtained by subtracting these two spectra is shown
in Fig. 8(b). We have also obtained the EHD line
shape as a function of excitation levels in the
range 10-200 Wcm '. The EHD line shape is not
observed to change with excitation level. The
solid curve in Fig. 8(b) shows the theoretical fit
to the EHD peak. The two superimposed IB peaks
shown in Fig. 4(b) were obtained by subtracting the
EHD line shape [Fig. 8(b) J from intermediate (20
W cm ') and high-excitation-level (200 W cm ')
spectra. The line shape is not observed to change
in this range of excitation intensities and is very
nearly that observed in the low-level excitation
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FIG. 8. (a} Photoluminescent spectra of silicon con-
taining 3.9 x10 8 phosphorus cm 3 at T =4.2 'K are shown
at two excitation levels. At high excitation level /00
W em 2, 1 scan) both the impurity band QB) and the EHD
peaks are observed and at low level (0.2 Ncm, 60
scans) the IB peak strongly do~i»tes. (b) The solid
circles give the EHD line shape obtained by subtracting
the two spectra in (a). The solid curve shows the theoret-
ical fit to the EHD line shape.

spectrum. As discussed 1n Sec. III the solid curve
in Fig. 4(b) is the density of states in the Hubbard
model.

The spectrum of the sample containing 1.8x10"
cm ' shown in Fig. 4(a) has been shifted by 8 meV
with respect to the spectrum of the sample contain-
ing 3.9 x10" cm ' shown in Fig. 4(b) for compari-
son. Little change is observed in the low-energy
tail of the IB line shape. A larger half-width is
observed for the higher concentration. The line
shape of the IB peak for the low impurity concen-
tration shows a high-energy tail. This tail is not
observed at high impurity concentration; in fact
an edge is observed. The data of samples contain-
ing 2.45 x 10' cm and the previously reported
3.0x10" cm ' are intermediate to the ones under
discussion and will not be shown here. The EHD
and the IB peaks have been separated and the re-
sults of the analysis are intermediate to those
found above.

The half-width increase with concentration is
theoretically expected" in the Hubbard model. As
discussed in Sec. III this model predicts the semi-
conductor-metal transition when the completely
filled Hubbard band starts to overlap the empty up-
per Hubbard band. For donor concentrations above
n ., (3x10"cm ') a single half-filled band is ex-
pected and the high-energy edge of the impurity
band peak of the sample containing 3.9x 10"cm '
is evidence of this partial filling.

The data and analys1s of a sample conta1n1ng
5.0x10" cm ' will not be shown here since they
may be inferred from those of the previously dis-
cussed sample containing 3.9x10"cm ' and those
of the 1.1x10"cm ' to be discussed below.

For samples containing impurity concentrations
above 5x10'8 cm ' n„ is significantly less than n,
and consequently the theoretical half-width of the
EHD line shape is not sensitive to changes in n„.
The fit to the high-energy edge of the EHD line
shape is essential. Mahler and Birman" have
chosen to compare their theoretical calculations
with the experimental half-widths obtained by Hall-
iwell and Parsons. ' In the region where their ap-
proach is valid (n~ = 5x10" cm ') the present ex-
perimental data show that the half-widths of the
EHD line shape are less than those previously pub-
lished' due to the fact that we are now able to re-
solve the EHD and IB peaks.

Figure 9 shows the spectra of a sample contain-
ing 1.1x10"cm '. The excitation intensities are
(a) high (150 Wcm '), (b) intermediate
(20 Wcm '), and (c) low (2 Wcm '). The EHD
peak very strongly dominates the high-excitation-
level spectrum. The IB peak very strongly domin-
ates the low-level one. The photoluminescent in-
tensity for samples with impurity concentrations
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FIG. 9. Photoluminescent spectra of silicon containing

1.1x10ie phosphorus cm 3 at & =4.2 'K are shown at
three excitation levels. (a) At high excitation level (150
Wcm 2, 5 scans) the EHD peak dominates the spectrum.
The solid curve shows the theoretical f'it to the EHD line
shape. (b) At intermediate level (20 Wcm 2, 15 scans)
both the IB and EHD peaks are observed. (c) At low
level (2 Wcm 2, 35 scans) the IB peak dominates the
spectrum.

above n,„, decreases strongly with increasing con-
centration and in addition the relative intensity of
the EHD and IB peaks becomes more strongly de-
pendent on excitation level. As shown in Fig.
9(c), only the IB peak is observed at low ex-
citation level. Except for a slightly steeper
high-energy edge the IB line shape in Fig. 9(c)
is the same as that obtained for samples contain-
ing 3.9x10" cm ' [shown in Fig. 4(b)] and 5.0x10"
cm ' (not shown). The solid curve in Fig. 9(a)
shows the theoretical fit to the EHD peak. The EHD
line shape is independent of excitation level in the
range 80-200% cm '. The spectxum at intermedi-
ate excitation intensity [Fig. 9(b)] can be repro-
duced by adding the high-excitation-level spectrum
[Fig. 9(a)] to the low-level one [Fig. 9(c)], proper-
ly scaled.

For phosphorus-doped silicon a second charac-
teristic concentration, "n,~

= 2 x 10" cm ', is ev-
idenced in the measurement of the Knight shift of
the NMR absorption peak for ' SI as a function of
impurity concentration. Alexander and Holcomb"
axgue that the Fermi level is above the conduction
band edge for impurity concentrations greater than

ncaa'
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Figure 10 shows two spectra of a sample contain-
ing 4.0x10" cm '. High (150 Wcm ') and low

(5 W cm ') excitation intensities have been used.
The line shape of the observed peak depends on the
excitation intensity within the range 5-200 W em
The line shape of the peak shows a decrease in the
slope of the low- and high-energy side with in-
creasing excitation level. These changes in line
shape with excitation level could be interpreted in
terms of unresolved broad EHD and IB peaks; how-
ever, one cannot make firm conclusions because of
the absence of structure in the photoluminescent
spectrum for 4,0x10" cm '. We were unable to fit
a theoretical EHD line shape to any of the spectra.
obtained at this concentration.

We have studied the photolumineseent spectrum
of Si(P) over a wide range oi impurity concentra. —

tion. The spectrum is a sum of two components:
one arising from electron-hole recombination
events within the droplet, and the other arising
from the recombination of electrons in the impurity
band with holes in the valence band. The former
type of events dominates the spectrum at high ex-
citation intensities and the latter at low excitation
levels. By studying the photoluminescence spectrum
at various excitation intensities, we have been able
to disentangle the two contributions and extract the

PHOTON ENERGY (eV)
I"IG. 10. Photolu~i~escent spectra of silicon contain-

ing 4x10 phosphorus cm at T =4.2'K are shown at
two excitation levels. The solid points show a high exci-
tation level (150 W cm 2, 10 scans) spectrum. The flags
correspond to low level (5 Wcm 2, 110 scans).
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density of states of the impurity band.
%e have extended the theory of electron-hole

droplets in heavily doped Si. The calculated values
of the average energy per charge-carrier pair
within the droplet are in good agreement with the
experimental values obtained from the high-ener-
gy edge of the EHD recombination peak, We have
calculated the impurity-band density of states be-
low the critical density for the semiconductor-
metal transition in the Hubbard model. Again,
good agreement was found with experiment.

The effect of randomness of the distribution of
donor atoms on the density of states of the impur-
ity band has been ignored in this paper. Also a
reliable theoretical determination of the minority
carrier density n„ in the intermediate density re-
gion would require a more accurate determination
of the impurity and correlation energies than we
have been able to present here. We plan to come
back to these questions elsewhere.
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APPENDIX: DEPENDENCE OF THE MINORITY-CARRIER
DENSITY ON DONOR IMPURITY CONCENTRATION

IN THE HARTREE-POCK APPROXIMATION

d, =,/, ,
)

=1.106x10 "erg cm. (A3)

2/3 5/3 — 5/3$
d C — 1+ — 1+ +1 +

'g3 n, 33, n,
' n,

(A4)

We note from (A4) that its solutions will behave
qualitatively differently depending on whether
n,' 'c, or n~ 'c, is much smaller or much greater
than d, and d, . The critical region is around n~-10"cm '. For low impurity concentrations
(n„«10" cm ') n„»n~, while for high concentra-
tions n„«n„. By Taylor expanding both sides of
(A4) we get in the two regimes

1 d~ + d'~ 8d]+n '+
8 c|+c3 d|+d3 2(cg+ c3)

(for n, »1 "0cm ')

=0.88x10" em ' —2.4n„

Here v is the number of conduction-band val-
leys (v = 6 for Si) and the functions C and ( are
given explicitly in Ref. 3. Substitution of (Al) into
expression (11) for Z and differentiation with re-
spect to n„gives

E333 c|(n3 + 53) + c3333
5/3 5/3

E33~ = —d3(333+ n3) —d3n3
4/3 4/3

Here
4/335/3@2

cg 10/ yl /3 2/3 0 331 x 10 erg cm
10(m) mg J

(A1)

&4/335/ y2
c3 10 3/3 3/3)3/3 0.649 x 10 "erg cm

10{m,„+m„„
34/3 2C

z/& = 0.773 x 10 erg em, (A2)

In order to understand better the physical origin
of the dip in the equilibrium density of holes inside
the electron-hole liquid at intermediate dopant con-
centration, we consider the energetics of the situa-
tion in the Hartree-Fock approximation. The kin-
etic and exchange contributions to the energy per
unit volume are, respectively,

3 4/3
ny — — ng ~

for n~ && 10 em
d2 5&~ -1/ 3 18

2+2/ 21"~ 2+2

=6.2xl0" cm ' —6.7x10"n„' 'em '. (A6)

On the whole the exchange contribution favors con-
densation while the kinetic-energy contribution has
the opposite effect. Both effects are weakened
when the impurities are present. At low impurity
concentration it turns out that it is the exchange
energy that is most affected. The net effect is a
lowering of the quasiequilibrium minority-carrier
density. At very high impurity concentration the
energetics of droplet formation is dominated by the
valence-hole contributions and the quasiequilibrium
hole density approaches a constant value. If now
the impurity concentration is reduced the kinetic-
energy "cost" and exchange-energy "gain" assoc-
iated with the conduction electrons both increase in
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importance. However, this time it turns out that
the change in the kinetic energy is most important.

It should be emphasized that the minimum in Z
at the quasiequilibrium is quite shallow in the in-

termediate impurity-density regime. The density
is therefore quite sensitive to correction terms
that go beyond the Hartree-Fock approximation.
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