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First-order optical and intervalley scattering in semiconductors
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The scattering rate and momentum relaxation time for nonpolar optical and intervalley scattering is

determined for the case in which the interaction matrix element is of first order in the wave vector of the
phonon. This process is expected to be important in many cases in which the zero-order interaction is

forbidden by symmetry selection rules. The results are applied to silicon where, for reasonable values of the
coupling constants, scattering via first-order coupling is comparable to the weakly coupled value that until
now has been improperly assumed for the zero-order low-energy phonon interaction, which is actually
forbidden.

I. INTRODUCTION

The scattering of electrons by zone-center opti-
cal and intervalley phonons in semiconductor crys-
tals has been treated rather extensively by many
authors. In particular, the polar optical-phonon
interaction was treated by Frohlich, ' Callen, ' and
Ehrenreich. ' Consideration of the nonpolar optical
interaction with electrons was carried out by Seitz'
and Harrison. ' The nonpolar optical interaction is
important for intravalley scattering as well as be-
ing utilized for scattering of electrons (or holes)
between different minima of the conduction (or va-
lence) band. This latter interaction is important
for scattering of carriers in semiconductors with
many-valley band structure, and also in the Gunn
effect, ' where scattering occurs between different
sets of equivalent minima. Harrison' pointed out
that the nonpolar optical matrix element may be
either of zero or higher order in the wave vector
of the phonon. In subsequent treatments of electron
transport in which the nonpolar interaction is im-
portant, only the zero-order term has been con-
sidered, generally owing to the impression that the
higher-order terms are much smaller. Although
this is usually the case, there arise many cases in
which the zero-order term is forbidden by the
symmetry of the states involved. "' In these
cases, the first-order term becomes the leading
term, and can become significant in many in-
stances.

In the present paper, the scattering rate and mo-
mentum relaxation time are calculated for the
first-order nonpolar optical and intervalley matrix
element in semiconductors. By way of example,
the results are applied to silicon and provide a
resolution of a dilemma that has been associated
with electron transport in silicon for some time.

Long" developed a model of transport in silicon
in which electron scattering occurring between the
six equivalent minima of the conduction band dom-

inated the mobility. In doing so, he used two ef-
fective phonons, with activation temperatures of
630 and 190 K, to represent the various phonons
involved in the scattering. In his treatment, he
found that the low-energy phonon (190 K) was weak-
ly coupled with respect to the higher-energy pho-
non. It was subsequently found, however, that the
symmetry properties of silicon are such that all of
the transitions which could occur via phonons which
would contribute to the effective low-energy phonon
are forbidden transitions. "" Yet most conduction
studies, even now, imply the presence of interac-
tions via these phonons, and calculations still in-
clude ad hoc interactions due to these phonons. "
In particular, magnetophonon resonance studies
explicitly demonstrate the occurrence of scattering
via these phonons, in about the strength deter-
mined by Long. As a result of the present calcu-
lation, it is found that for reasonable values of the
coupling constants, scattering via first-order in-
teractions is comparable to the weak zero-order
interaction improperly utilized by Long for the
190-K phonon. Long's results were fortuitous in
the sense that over the temperature range where
this phonon is expected to make a sizeable contri-
bution to the mobility, the forced inclusion of weak
zero-order processes roughly accounted for the
proper first-order interaction.

II. FIRST-ORDER SCATTERING

In scattering by nonpolar optical and intervalley
phonons, Seitz' pointed out that the part of the ma-
trix element arising from an integration over the
electron coordinates could be written as D, K,
where D, is an interaction constant, or deforma-
tion potential, having the units of energy, and K

is a vector of the reciprocal lattice. Harrison' and
Meyer" modif ied this to the form D d, where D is
now the energy shift per unit displacement and d

is the relative displacement of the sublattices. If
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the zero-order matrix element for the interaction
is forbidden by symmetry, then it is expected that
D and D, are identically equal to zero. In first-or-
der processes, this interaction gives rise to a
term of the form D,Q d, where D, is the energy
shift, or first-order deformation potential, and q
is the wave vector of the phonon. " As a result,
the absolute square of the first-order, nonpolar
optical matrix element can be written

where m is the effective mass of the carriers.
The integration over this function in turn sets the
limits on the integration over q. Thus,
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where the limits are
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where k is the electron wave vector, V is the vol-
ume of the crystal, p is the mass density, coo is
the phonon radian frequency, and N is the phonon
occupation factor, represented by the Bose-Ein-
stein distribution. The upper sign is for the emis-
sion of phonons and the lower sign is for the ab-
sorption of phonons by the electrons.

To obtain the total transition rates, a sum over
the various phonon wave vectors must be carried
out. Then, the reciprocal scattering time, or
scattering rate, is. given by

r =-' =—g I& k+ qlH'Ik& I'8(E' —E~ k~.) (2)

where E is the carrier energy. Using Eq. (1) this
becomes
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The integration over q is straightforward and
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where uo is the unit step function, defined by
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Actually, N has a very weak dependence on q
through the dispersion of the optical phonon. How-
ever, in practice this dispersion is so weak that
this dependence can be neglected. The sum over
Q can be taken into an integral, with k taken as the
polar angle, via

Equation (9) can be rewritten interms of the energy
only, and

(2 m)l/2 2D2
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The integral over (II is readily carried out, and
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The integral over 0 involves the argument of the
5 function, since this argument can be written

E' —E+ k&2), =+ (k'kq/m) cos8+k'q'/2m+I&v„

x(2E —Add), )' ' u, (E —k&g, )

This result differs from the zero-order result
only through the additional energy terms (2E+ hu&, )
and the appropriate constants to make the term
dimensionless. These introduce just the factor

[(2k+ q)/K] (D1/Dq) (12)

as might be expected.
In order to calculate the momentum relaxation

time, the result in Eq. (11) must be averaged over
the distribution function. Rather than just comput-
ing (v&, for a true momentum relaxation time the
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rate of loss of crystal momentum by the carriers
to the lattice must be calculated. " This involves
just the scattering rate I' calculated above. For
the distribution function, a drifted Maxwellian is

utilized. Of course, the symmetrical part of the
distribution function f, makes no contribution to the
momentum average, and the leading term involves
the f1 portion of the distribution function. Then

(2m)'"m'D'
[N((E+h'(g, )' '(2E+h(u, )) + (V+ 1) ((E —h(o, )' '(2E —h(u0)u0(E —h(o, ))], (13)

where the averages follow from the f, term as

(14)

The integrals are somewhat tedious, but routine.
The result is
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where x=h&g, )ksT, and
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(15)

(16)

where K, and K, are modified Bessel functions of
the second kind. A similar procedure can be car-
ried out for the equivalent zero-order process,
and the ratio of the two is

III. APPLICATION TO SILICON

The conduction band of silicon is characterized
by six equivalent minima located along 6 approxi-
mately 83% of the way to X from the I' point. In-
tervalley scattering can proceed by two different
groups of phonons. One set, denoted g phonons,
couples one valley to its pa, rtner along the [100]
axis. The other set, denoted f phonons, couples
this valley to the four valleys lying on the [010]
and [001] axes. Because the valleys lie more than
half way to X, all of these processes involve um-

klapp processes. The net g-phonon wave vector
corresponds to 0.34X, while the f phonons arise
from phonons whose wave vector lies along Z ex-
tended along S in the plane perpendicular to the
[100] axis. These latter phonons possess Z sym-
metry, but they lie very near the X point so that
their energies are very near to those of the X
point. '" Because of the multitude of phonons pos-
sible, Long" used just two equivalent phonons to
treat transport in silicon over the temperature
range 30—350 K. One of these was high-energy
630-K phonon used to represent the effect of the

In addition to the dependence upon the phonon ener-
gy and coupling constants, the relative strengths
of the two orders are temperature dependent
through the modified Bessel functions.

LO+ TO intervalley processes and the LO intra-
valley process. The other was a 190-K phonon
used to represent the effect of the LA+ TA inter-
actions. Not considering the possibility that many
of these processes were forbidden, he determined
values for the coupling constants by fitting the ex-
perimental data for various transport measure-
ments. In doing so, he found that the low-energy
process was considerably weaker than the high-en-
ergy process, with the two contributing in the ratio
0.15/2. Subsequently, Streitwolf" and Lax and
Birman, " in considering the crystal symmetry of
silicon, pointed out that only the a,' (LO) phonon
was allowed for the g-phonon interaction, and the
Z, (LA, TO) was allowed for the f-phonon interac-
tion. Both of these processes would contribute to
Long's 630-K phonon. All of the processes which
could contribute to the low-energy 190-K phonon
are, in fact, forbidden by symmetry. Norton
et al. ,

"after noting the constraints introduced by
symmetry, recalculated the transport properties,
but they still were required to include ad hoc the
low-energy phonon in order to fit the experimental
data. The most explicit evidence for the presence
of the phonons is found in the magnetophonon res-
onance data of Portal et aI]'." Magnetophonon res-
onance occurs when the Landau-level separation is
a submultiple of the phonon energy, or Su, = neo„
where n is an integer and co, = eB/m is the cyclotron
resonance frequency. In the measurements of
magnetophonon resonance in silicon, oscillatory
series were observed which correspond to most of
the phonons mentioned at the start of this section,
and the relative strengths of the various phonons
were estimated to be near that assumed by Long.
Although the low-energy phonons are explicitly
forbidden in the zero-order interaction, their ob-
servation in experimental measurements suggests
that they are interacting via a first-order interac-
tion. The occurrence of this interaction via a
first-order process would also explain why the
low-energy process is found to be so weakly cou-
pled.

To investigate the role of first-order optical and
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intervalley phonon interactions, the mobility of
silicon is calculated utilizing acoustic intravalley
scattering and intervalley scattering by two equiva-
lent phonons. A 630-K high-energy phonon is in-
cluded via a zero-order process, and a low-energy
190-K phonon is included via the above-calculated
first-order process. The mass involved is the den-
sity-of-states effective mass, ""m= (m, m, ')'~'
=0.5'7m, . Murase et al."determined values for
the two deformation-potential constants ~ (dilata-
tion) and =„(shear) for the acoustic interaction.
The values found were —6.0 and 9.0 eV, respec-
tively. Krowne and Holm-Kennedy" used these
values to estimate the values of the intervalley
coupling constants appropriate to Long's calcula-
tions from the above values for the deformation
potentials. These yielded a value for the zero-or-
der coupling constant of 7.6 x10' eV/cm, after cor-
rection for the number of equivalent values, for
the high-energy phonon. If this value of D is used
to get a value for Seitz's' optical deformation po-
tential, D„a value of 13 eV is found. The near-
ness of this number to the acoustic deformation

potentials suggests that a value for D, near the
acoustic value is appropriate, especially since this
latter process is also a first-order interaction.
The effective acoustic deformation potential ob-
tained from Murase et al."is about 3.0 eV. A

good fit to the experimental mobility data is ob-
tained by using a value of 3.0 eV for the acoustic
deformation potential, 9.0 x 10' eV(cm for the
zero-order high-energy phonon, and 5.6 eV for the
low-energy first-order phonon interaction. This is
shown in Fig. 1. In Fig. 2, the relative contribu-
tions to the mobility of the three phonon processes
is illustrated over the same temperature range.

As a further consideration, the relative strength
of the first-order interaction to the &c/ hoc zero-
order interaction introduced by Long can be de-
termined by using Eq. (17) above. The assumed
value utilized by Long in the low-energy zero-or-
der process was shown by Krowne and Holm-Ken-
nedy" to give a deformation coupling constant of
2.4x10' eV/cm. Using this value and the 14.3-eV
value for B„ the coefficient of the third term on

the right-hand side of Eq. (17) is 1.33x10 '. For
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FIG. 1. Mobility as calculated for acoustic intra-
valley scattering and intervalley scattering via a high-
energy (630-K) zero-order phonon and a low-energy
(190-K) first-order coupled phonon. Solid curve is the
experimental data taken from Refs. 10 and 13, and the
circles arise from the present calculation.

FIG. 2. Relative contributions to the mobility from the
three phonon processes. Curves labeled 630 and 190
represent the mobility of the high-energy zero-order
coupled phonon and the low-energy first-order coupled
phonon, respectively. Curve labeled A is the acoustic-
phonon contribution.
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the 190-K phonon, the third term is a slowly vary-
ing function of temperature, varying from 16.4 at
100 K to 125 at 500 K. As a result, the right-hand
side of Eg. (17) takes on values of 0.22, 0.62, O. VV

and 1.07 at temperatures of 100, 150, 200, and
300 K, respectively. Thus, in this range of tem-
perature, and for these values of the coupling con-
stants, the improperly assumed zero-order inter-
action gives a contribution to the mobility that ef-
fectively approximates the true first-order inter-
action„although a slightly stronger-coupled high-
energy phonon must be used to fit the mobility.

IV. CONCLUSIONS

The first-order optical and intervalley scattering
rate and momentum relaxation time have been cal-
culated. This process is expected to be important
in many cases whexe the zero-order interaction
is forbidden by symmetry selection x'ules. This is
the case for many of the semiconductors such as
silicon and germanium. Other semiconductors ex-
ist such as the lead salts in which all intervalley
scattering processes are forbidden to zero ox'der,
It may well be expected that the first-order inter-
action will be important in these materials, es-
pecially to equilibriate the electron population in
the various valleys of the multivalley band struc-
ture.

In the case of silicon, consideration of the ratio
of first-order to zero-order processes, in which
the latter was included by Long, "shows that fox
reasonable values of the coupling constants, cal-
culations of the mobility contribution of these two
processes yield comparable results in some tem-

perature ranges. The low-energy 190-K phonon
can be expected to have its major contribution be-
low 200 K. At highex temperatures, the high-en-
ergy phonon will dominate the mobility. In this
low-temperature range, the x'ight-hand side of Eq.
(17) takes on values near to unity. As a result,
although the zero-order px'ocess is explicitly for-
bidden and the coupling constant should be zero,
the &d Ized inclusion of this process with a coupling
constant as used by Long" and. by Norton e& al
does in fact give a fair approximation to the actual
inclusion of this first-order interaction. This re-
sult is fortuitous, though since the detailed tem-
perature variations are different for the two or-
ders. This effect is masked by the strong high-en-
ergy interaction in this case, a result that will not
in general occur in other semiconductors.

The choice of silicon in which to illustrate this
first-order interaction is not the best choice owing
to the much higher scattering rates that arise from
the high-energy phonons. However, it is important
due to the large amount of work on high-electric-
field transport that is still going on. The propex
inclusion of the low-energy phonon in the transport
process via a first-order interaction will greatly
affect the results of such wox'k. The role of this
interaction in other semiconductors as well as in
inversion layers in silicon will be treated else-
where.
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uscript.
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