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Model dielectric function for semiconductors: Si
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A ~odel dielectric function for semiconductors based on the two-band tight-binding model of Chadi and
%hite is presented. The complex dielectric function includes transitions in the entire frequency range and
satisfies the Kramers-Kronig relations and the f-sum rule. A method of analyzing optical experiments is
discussed and applied to Si.

I. INTRODUCTION

The optical properties of semiconductors and the
relation between the observed optical spectra and
the electronic structure have been the subject of
intensive studies. " The fact that dielectric re-
sponse of semiconductors in the visible and uv

range originates from direct interband transitions'
has been utilized for the analysis of the optical re-
flectivities via. the use of the imaginary part e, of
the dielectric function which is related to the joint
density of states of the valence and conduction
bands. ' "' Detailed calculations provided under-
standing of the nature of the optical response of
the system and in several important cases an as-
signment of electronic transitions to prominent
features of the spectra was achieved. Among these
studies, those employing the empirical-pseudo-
potential method" and the critical-point analysis'
have achieved much popularity.

Another approach to the study of the optical
properties of semiconductors is via simple analyti-
cal model calculations. " This approach proved to
be useful in analyzing the explicit dependence of
the dielectric response of the system on the model
parameters, and in forming the basis for the
formulation of the theory of bonding and ionicity in
A. "8' "-type crystals. ' In addition, some of these
models provide a method for the analysis of ex-
perimental data. In the analytical-model approach,
a model of the electronic structure of the material
is constructed or postulated first, and the dielec-
tric function is then der ived. It has been recognized
that analytical-model dielectric functions which
have been proposed, exhibit some def ic ienc ies.
Thus, for example, a free-electron model' yields
a static dielectric function which diverges in the
long-wavelength limit, "and improvements of the
nearly-free-electron model' lead to dielectric
functions which do not satisfy the Kramers-Kronig
relation' and/or the f-sum rule. ' " In addition,
the previous suggested model dielectric functions
apply in restricted frequency ranges with limited
agreement to experiment.

Our objective in this study, is to construct a
model dielectric function in which the above prob-
lems are avoided and to apply it to the analysis of
experimental data. Our model is based on a local-
binding two-band Hamiltonian description of the
electronic structure for part of the spectrum (low
frequencies), and an approximate form of the
random-phase-approximation (RPA) dielectric
function for the rest of the spectrum. As will be
shown below, the dielectric function which we de-
rive satisfies the Kramers-Kronig relation by
construction, it applies to the entire frequency
range of measurements, and the consistent pro-
cedure for the determination of the model param-
eters via the analysis of experimental data de-
mands an exact sa, tisfaction of the f-sum rule and
yields results which are in very good agreement
with experimental observations. In Sec. II we
describe the construction of the dielectric function
and derive analytical formulas for the complex
dielectric function and the f-sum rule. In Sec. III
a method for analyzing optical experiments is pre-
sented and its application to the analysis of data
from Si is demonstrated and discussed.

II. MODEL DIELECTRIC FUNCTION

A. Construction of e2(~)

The formal expression for the complex dielectric
function within the RPA involves sums over wave
vectors and over all the energy bands between
which transitions occur. ' " The explicit calcula, -
tion of the dielectric function requires knowledge
of the band structure of the material, evaluated
according to some model. In our formulation we
divide the energy spectrum of the material into
two parts. The first part is described via, a two-
band scheme and accounts for contributions to the
dielectric function from electronic transitions
connecting the valence band and the conduction
band up to a certain energy (to be specified below).
The second part of the spectrum which accounts
for transitions to high-lying energy states is in-
corporated into the model via an approximation to
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the RPA dielectric function.
An expression for the dielectric function e(a),

based on a simple two-band Hamiltonian, has been
recently proposed by Chadi and White. ' They em-
ployed a Hamiltonian which in the tight-binding
(Wannier) representation (a natural choice for
covalently bonded materials) is given as

H=V, g lv, i)(v, i'l+(V, +V) g lc, f)(c, i'l
i Ail i~i'

40—

3

20

Si

+Eg c) s .c) $

where c (v) designates the conduction (valence)
band, i is an atomic site index, and only nearest-
neighbor interactions are included. The band
structure corresponding to the above Hamiltonian
for a z-fold atomically coordinated system (z =4
for Si), is characterized by a valence band and a
conduction band of widths l2z V, l

and l2z(V, +V,)l,
respectively, and an average gap E~. In the de-
rivation an integral form of the RPA dielectric
function written in the tight-binding representation
has been used with the dipole approximation, and

the site approximation, which states that the only
nonzero matrix elements of x are between two

sites on the same orbital, i.e.,

l&v, flxlc, )&l'= lx, l'6;, . (2)

In order to achieve a closed form expression, a
Bethe lattice topology'" has been used yielding
the following expression for c, (for four-fold co-
ordination):

e (v) = n [12V,' —(k(u Eg)']'~'[16V ,'-—(k(u -Eg)']

(3)

for E~ —~12V, ~ kw ~E'+v 12V„and e2cv(e) =0
otherwise. In the above a =8vne'lx„, l', n is the
electron density and x„, is determined by the site
approximation of the dipole matrix element [see
Eq (2)].

ec2", given in Eq. (2), exhibits a two-peak struc-
ture characteristic to elemental and III-V semi-
conductors (for example, 2.3 and 4.4 eV in" Ge;
3.4 and 4.3 eV in' Si; the split spin orbit peaks
at 2.88, 3.15, and 5.0 eV in" GaAs). In Fig. 1we show
the imaginary part of the dielectric function, e,
as given by Eq. (3) with parameters appropriate
for Si (see Sec. III. ) Although the above promin-
ent features are obtained from the above dielectric
function, it is important to recognize that by con-
struction, only transitions in the range 0 & h~ «E,
+ ~&2V, have been considered. Moreover, for
typical values of the model parameters a, E~, and

V, (which are determined as described in Sec.
III), only about 50/& of the f-sum rule'

0
hu) (eV)

IO

FIG~ 1 ~ ™ginarypart of the dielectric function,
e (cu) [see Eq. (3)j with parameters appropriate for
Si: E = 3.80, V& =O. i6 eV (see discussion in Sec. III of
the text) ~

l (ue, ((u) d(u =(-,'v)(u'
0

(4)
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and the use of the f-sum rule

~l
d'k ~ f T fu, —

4m

(5)

In the above, I isa, band index, f,g is the free
Fermi distribution function (either 1 or 0), f,"., is
the p, th component of the oscillator strength of
transitions between l and l', n is the electrons
number density, —,'rid is the damping parameter,

is exhausted by ec2w (R&'=16.6 eV for Si).
The optical constants for higher frequencies do

not exhibit sharp structure. ' For semiconductors
which have a single group of valence bands (like
Si, SiC, A1P) that is energetically isolated from the
core states (-80 eV for Si), asymptotic expressions
(of the Drude or Drude-like type) for the RPA di-
electric function were obtained by Philipp and
Ehrenre ich." The der ivation of the asymptotic
formulas by these authors is based on the explicit
expression for the complex dielectric function of
an insulator in the random phase approximation
which is given as'

e'
e(~) =I —

~ d''Z Akfl i'ii
7r 'm zs'
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related to the relaxation time v„i ( ~I'». ——I/q» ),
and the transition frequency co» is given by

h(d77 =E (i (k) E-g (k) . (7)

The term B» in Eq. (5) depends on the model
taken for the collisional damping of the elec-
trons. " For high frequencies z» co». , and as-
suming the same damping parameter for all va-
lence bands (I', —= I'}, the following results are ob-
ta, ined.

(a) For B„i=1, a "Drude-like" expression" is
obtained

&(~) =1 —&'/(~+a&i')', (8)

~,((u) = (u~ I'(u/(&u'+-, 'I')'. (9)

(b) For B» = 1+iI'/2~, the Drude formula is ob-
tained

where ~~ =4ve'Z„n„/m is the free-electron plasma
frequency of the valence bands (n„ is the valence
electron density). From Eq. (8),

the resulting function will be continuous both in
value and slope at the matching region. This is of
particular importance since discontinuities in

e, (&u) cause logarithmic singularities in the real
part of" e, (&u) which is derived from e, via the
Kramers-Kronig relation (see Sec. II 8). Thus,
we introduce a function L(u) defined as

L(w) = I+C[k(&u —u, ) +D) (13)

where s&v, =E~ +v 12V, —A, with b, a cutoff param-
eter whose determination is discussed in Sec.
III (typically, a-0.05 eV), and C and D are con-
stants to be described below. The modified ex-
pression for e, in the range (d ~ cu is written

e, '(&u) =L((u)e,'((u), (14)

where e', is given by Eq. (12). It is noted that since
L (&u) tends to unity as u & &u„ the modified function
e, '-c', for these frequencies. The imaginary part
of the dielectric function for all frequencies (~ & 0)
can now be written

e ((u) = 1 —(u~/(o((g + ~f1'). (10) .( }=8(~. — ) .'"(~)+8(~ —~.) ". (~), (15)

These formulas show that for large frequencies
the valence electrons behave as free particles.
Since the frequency range in which we are inter-
ested (above the highest frequency of the "two-
band" portion of the spectrum, Rug& E~+~12V,)
may start at a value which is lower than the one
for which the asymptotic formulas [Eqs. (8) and

(10)] were originally derived, we modify the de-
rivation as follows: the electrons are regarded as
classical Lorentz oscillators tied to the lattice
sites with frequencies &» . Since we are dealing
with transitions from the valence band to high-ly-
ing states in the conduction bands, we replace uf f.
in Eq. (5) by a characteristic "mean" frequency

This approximation yields the following re-
sults.

(c) B» =1, the Lorentz-like expressions are
obtained

where 8(x) is the step function (which is equal to
1, —,', or 0 forx&0, x =0, orx &0, respectively).
The constants C and D in the function L [Eq. (13)]
are determined by demanding continuity of value
and slope of e, [Eq. (15)] at u„yielding

D =Ae', ((u, )[(A+i)e,"((u,) —e, "(ug)]

C =AD, A =[a,"((u,)/e,'((u. )] I,

(16a)

(16b)

where e,(~,} denotes the derivative evaluated at
(d~.

B. Construction of el (u) via the Kramers-Kronig relation

The real and imaginary parts of a causal dielec-
tric function are related to each other by the Kra-
mers-Kronig relations, ' given as

and

e'((u) = 1 —(u~/[(u' —((u,'+-,'I') +ir~]
e (v) —1=-p, ' d&u',

" (u'e, ((u')
1

1r CO —(d0
(17}

e', ((o) = (u~ r(u/([~' —((u,'+-,'I')]'+ r'(u'], (12)

which reduce to the corresponding Drude-like ex-
pressions [Eqs. (8) and (9)] when &u, =0.

Having obtained the expressions for the imagin-
ary part of the dielectric function in the two fre-
quency ranges [Eqs. (3) and (12)] we wish to com-
bine them into an e, function for all frequencies
(~- o).

In constructing the combined function, the two
parts, ec~ and c'„have to be matched such, that

where P designates that the integral is to be evalu-
ated in the principal value sense. In this context
we remark that discontinuities in value and/or
slope in e, result in logarithmic singularities in

the integration in Eq. (17). The continuity of e, (&u)

[Eq. (15)] achieved via the function (uL) [Eq. (13)]
avoids this problem. Substituting in Eq. (17), the
expression for the imaginary part e, given in Eq.
(15), and using the definition of the function L(&u),
the following expression is obtained:
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(d e 2(ld )
13 2

~a

+CP

=I, +I, +CJ» (18)

where t) =(h&u, —D)/@[see Eq. (13)]. The evaluation
of the integrals in Eq. (18) is given in Appendix A.

n J, +J2 = (27/) (dy,

where

(19)

x [16V ', —(h&u E~)'] ' d &u, — (20a)

(uL ((u) e ', (~)d(o,
(z +G-g)/h

(20b)

where, as before, G =2v 3 V„L(&u) is defined in

Eq. (13), and e2(u) is given in Eq. (12). Explicit
expressions for the integrals J, and J, are given
in Appendix B.

III. DETERMINATION OF MODEL PARAMETERS: Si

The model dielectric function constructed in Sec.
II contains the following parameters: the average
gap energy E~, the width parameter V„ the scale
parameter n [Eq. (3)], the damping parameter I'
[Eq. (12)], the frequency &u, [Eq. (12)], and the cut-
off 6 [and thus &u„Eq. (13)]. On first sight this
seems to be a multitude of parameters which would
hinder meaningful quantitative analysis. However,
a closer examination reveals that this is not the
case, due to the fact that the parameters deter-
mine distinct (and different) features of the spectra.
and all but the last one have clear physical signif-
icance. The values of the parameters are deter-
rnined by inspection of the data and a consistent
variation of I', b, , and u, dictated by the f-sum
rule. Clearly, the values of the parameters de-
pend on the extent of data used. Our analysis

C. Evaluation of the f-sum rule

The f-sum rule [Eq. (4)], relates the imaginary
part of the dielectric function a,nd the plasma fre-
quency (d~. An analytical expression for the sum
rule, which enables its evaluation and an examina-
tion of the dependence on the model parameters
can be derived by substituting e, (&u) given by Eq.
(15) in Eq. (4). Using the definition of ec2& given in

Eq. (3), the following expression is obtained:

l

I

I
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20
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FIG. 2. e2(cu) for Si. Experimental data after Ref.
2(d) (solid line), present calculation (dots), and empiri-
cal pseudopotential results after Ref. 19 (dashed line).

employs optical data over the entire frequency
range of measurement, hence the resulting values
are expected to be more accurate than those ob-
tained on the basis of a limited range.

The value of the parameter V, is obtained by
fitting the width of e, in the vicinity of the local
minimum between the two peaks mentioned pre-
viously. This determines the positions of the
maxima in g, and the average gap E~, which is
taken at midwidth. The scaling parameter e,
which is related to the strength of the dipole ma-
trix element [Eqs. (2) and (3)], is determined by
aligning the height of the maximum in the model

&, with the average height of the experimental
maxima. An initial value for the damping I is ob-
tained by fitting the model and experimental e, in
the frequency range k~ ~ 7.5 eV (approximately,
frequency region 2 in the notation of Ref. 2d).
Subsequently, initial values for the cutoff A and the
"Lorentz frequency" &, are determined through
fitting in the region k&~ E~ +v12V, —A. Finally,
the f-sum rule is evaluated and a. va. riation of I'
and w, is performed to satisfy the sum rule [right-
hand side of Eq. (4)]. Using the analytical formula
for e,(u) derived from the Kramers-Kronig rela-
tion, with the above parameters, the complex di-
electric function [e(u) =e, (&u) +is,(u)] is obtained.

In the following, we apply our model to the an-
alysis of optical properties of Si. Using the data
of Philipp and Ehrenreich, ' we obtain the imagin-
ary and real part of the dielectric function shown
in Figs. 2 and 3, respectively (dotted curves).
For comparison we include in the figures the re-
sults of some previous studies. The degrees of
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FIG. 3. e&(cu) for Si obtained from e&(cu) via analytical
Kramers-Kronig relation. Data, Ref. 2(d) (solid). Pres-
ent calculation (dots), nearly-free-electron model
(after Ref. 10, dash-dotted line), and empirical pseudo-
potential calculation (after Ref. 19, dashed line).

3,0 L (cu) = ) + c [ h (cu- m~)+ o]
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I.O -h(v& = 4.3eV
I I I I I I
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FIG. 4. Matching function L(cu) [see Eqs. (13) and (i6)]
for Si. Note the rapid approach to unity.

agreement achieved in the present study clearly
exceed those of other calculations. Values of the
best-fit parameters used in the calculation were
E~ = 3.80, V, =0.16, h 1 =4.86, and h =0.04 eV and

&uo =0.0. The sum rule was satisfied exactly and
the value of the resulting static dielectric function
e, (0) is 11.0, in good agreement with experiment.
It is of interest to note that the value of the "mean"
frequency in the "Lorentz-like" expression for the
dielectric function [Eqs. (11) and (12)], which was
determined by best fitting to the data, is zero, in-
dicating that for excitation frequencies in the
range km ~ E~ +v12V, the valence electrons of Si
behave as "freelike" particles. We also remark
on the rapid approach of the function L(&u) [Eq. (13)]
to unity as illustrated in Fig. 4. This demon-
strates that the operation of this function is limited
to the matching region (the purpose for which it
was introduced).

In conclusion, it is instructive to compare our

4.0

FIG. 5. Energy-loss spectrum for Si. Data after Ref.
2(d) (solid line), present calculation (dots), and empiri-
cal pseudopotential with no local-field corrections (Ref.
19, dashed line).

results with some previous studies. In a recent
calculation" using an isotropic nearly-free-elec-
tron band approximation, the sum rule was obeyed
to only -83'/0, a value of E, =3.92 eV was found,
and the quantitative agreement with experiment
was rather limited. Most recently, in calcula-
tions based on the empirical pseudopotential meth-
od, "an approximate satisfaction of the sum rule
was achieved and a value of 10.1 (compared to the
experimental value' of -11.8) for e( )0was ob-
tained'0 (see dashed curve in Fig. 3). Further-
more, a high value for E~ (5.36 eV) was obtained
by Chadi and White. ' This originates from their
analysis of a restricted range of low-frequency
(0.1-1.2-eV) data.

Finally, we have used our results for the com-
plex dielectric function in calculations of the re-
flectivity and the energy-loss spectrum (-1m[1/
e(u) P of Si, obtaining good agreement with experi-
ment. For illustration we show in Fig. 5 the loss
spectra for Si (dotted line) obtained from the di-
electric functions shown in Figs. 2 and 3, and com-
pare it with the observed spectra (solid line) and
with the results of a recent study. " We are cur-
rently using the method for the analysis of data
from other semiconductors and will report our re-
sults in due course.
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In this appendix we evaluate the integrals appear-
ing in the Kramers-Kronig expression for «, ((u)

[Eq. (18)].
{i) The integral I) ln Eq ~ (18) is given by

' (u'«c" ((u')

4P

Substituting for «c2))( the expression given by Eq. (3)
and expanding the denominator in partial fractions,
the integral can be written

Z((u) =v ' ', d(u'.
' «', ((u')

Ct) —4P
(ABc)

It can be shown that the integral g((u) in the above
equation is +Qual 'to

Z((u) =«t((u)ln ' +v '{p,-y, ) ln
QPi2 + K (u() +A ~ +A 2

,
( p) «„,(«. +(), .,(.-(),

)
(A9)

x[(16V', -x')(x —y)]-'d x,

(A2)

(AS a)

A =Ql +SQ2 =
QPO + PgI ~

P ~
+ iP2 i(u~/[4—(uo((u -A )],

y) +i+2 —i(up/[4(uo((u+Q)j.

(iii) The integral I, is given by

(A10a)

(A10b)

(A10c)

I+=3-' (c2 x')'~'
~Q

x[(16V', -x')(x+y+2E, )] 'dx,
(ASb)

where G =2&SV, and y =)I (u ,EE-xpan. ding the
denominators in Eqs. (ASa) and (ASb) in partial
fractions we obtain

(All)
((u' —q)((u"- (u')

where ti = ()I(u, -D)/k. Using a, partial fraction ex-
pansion, a direct integration yields

jg ='F c3 ln A + 531n QPII
—(AP

+I)' ln((u, +(u) —(c „+c',,)In[((u -Q,) +Qg

I, =a I„+5 I~~+c I~,
I,' =@+I~ +6+I,+~ +a+I ~,

with the coefficients

(16V2 y2)-1

b =[8v,(4v, -y)j-',
c =-[8V,(4V, +y)]-'

(A5a)

(A5b)

(A5c}

a, =[16V', —(y+2E, )']

b =[8V,(y+2E +4V,)]

c, =[8V,(y+2E~ -4V,)] '.

(A6a)

(A6b)

(AGc)

The integrals I,'~, are evaluated in Appendix C.
(ii) The integral I, in Eq. (18) is given by

[(u' —((uo+41')]'+ I"(u' '

(A7
m

where «', is given by Eq. (12). The above integral
can be written

I.=«', ((u) —1-~((u),

—(d, „+d', ,) ln[((u, +Q,) +A,']

-'(&*.i'~'. , ) « '( ' ') --1, (~(2)

a, =2)i«2(q)/((u'-t)'),

5, = «2(q)/()I —(u),

I) l = «2(ti)/(t}-+(u)

c, „+ic,, = —i((u~2/4(u, )[{Q—)1)(A —(u}j

c', „+ic', g =-i((/u~2(4)[u( Qq)(Q+(u)]

d, „+id, g
= —i((u~/4(u, )[(A+@)(Q +(u)] ',

d', „+id', , = —i((/ u~24)([u( +Qti)(Q —(u)]
"

and Q is defined in Eq. (A10a).

(A13a)

(A13b)

(A13c)

(A13d)

(A13e)

(A13f)

(A13g)

APPENDIX 8

In this appendix we evaluate the integrals which
occur in the expression for the f-sum rule [Eqs.
{19), (20a), and (20b)]. The integral J', [Eq. (20a)]
can be decomposed in the following way:

I'J, =Z', (E,/4V, 1)+Z;(Z,/4V, +1), —

where
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C-h,
(G'-x')'I'(4V, +x) 'dx,

2 «Q

Z;= — (G'-x')" («,-x) 'd .
2 «Q

These integra. ls can be evaluated vrith the help of
the formulas in Appendix C yielding

J'a = (ks) itic

where I~ 1s given bp EQ. (C5c), and

J-, =(v/2)i

and I~ given by Eg. (C5b). UslIlg the deflIlitlon of
the function I.(&o) given in Eq. (13), the integral J,
[Eq. (20b)] is written

APPENDIX c
In this appendix we evaluate the Hilbert trans-

form of a function f(x), defined as

f(x) =
(G'-x')'I' for -G~x ~G n-,

)0 otherwise,

and G &4 &0. The Hilbert transform of this function
is given by

" f(x)
F(y) =s-'P

X —g
6-4 (G2 x2)1/2

=m 'P — ch'.
{ X-g

Z2 = &de 2 ((d) d(d +C d(c7
(de 2 ((0)

0 I

(B4)

In evaluating the above integral, @re distinguish
several cases depending on the value of the vari-
able y, Using the folio&ring definitions,

where g
= (I&u, -D)/k. Using the sum rule for

the Lorentzian dielectric function, J2 ~ can be
vrritten

Z2 g
—(2 'W)(dp —(dp Mg ~

Q=G -4,
e(x) =(G'-")'",
R=-,'a+sin '(5/G),

(C3a)

(C3b)

(C3c)

and Kg ls given by

(&u, —n, )'+n',
( .n)"n

—25 tan ' ' ' +tan '

(sea)

n, and n, are given by Eg. (A10a), and

5, +i 5, = 1/8&so —i/4I' .
The integral j~ 2 is given by

J, , =(a~ I' —o. 1n(cu, -q) —X, ln [((u, -», )'+»,']
—p. , in[{(o,+n, )'+n,']

6 —5z
S(z) =-,'n'+sin '

G(5 -z)
T, (x) =I@(x)V(5) G'-«]/[+G(5-. )] (C3e)

the integral F(y) [(Eq. (C2)] is given by

F.(y) =v '[Q(5) -Ity -3(y) (y'-G')'"];

{C3d)

(C4b)

~-y-G, F.(y)=v '[Q(5)-Ity-Q(y)h T' (y)];

(C4c)

y -G, F,(y) =v '[Q(5) -Ity+3(y) (y'-G')'"].

-G-y-G-&, F.b) =& '[Q(5) -sty-Q(y)», {y)];

+2A.,tan '

—2p. 2 tan + 5'
1LI. 2

—A, 2

where n, and n, are given in Eq. (A10a) and

(C4d)

I,",=F& (j=1,2, 3, 4 for the

corresponding values of y). (C5a)

(cR)I;,=-F, (4V, ),

Using these results the integrals in Eels. (A4a) and

(A4b) can be written

o =n'/[(n'-»') (q'-»")],
~, +il, =in/an, n, (q -n),
p, +ip, = in/Bn, n, (q-+n) .

(88a)

(88b)

(BBc)

I;,=F, (-4V, ),
I;,=F,[-(y+2Z, )],
I~~ =I~q and I~c =I~~.

(C5c)

(c5d)

(C5e)
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