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The low-field electroreflectance (ER) spectra of Si in the energy range from 3.0 to 4.0 eV have been measured
and analyzed in the absence and in the presence of strain. In the absence of strain, the symmetry location I_('o
of a critical point can be deduced from both the polarization anisotropies and the line shape of a low-field ER
spectrum. Uniaxial-stress effects on a low-field ER spectrum are also described in the low-strain limit. These
results are used to reveal the 3.4-eV complexities. The structures of the low-field ER spectrum of Si from 3.0
to 4.0 eV may arise from two critical points with different symmetries. First, the main structure in the higher-
energy side is attributed conclusively to a high-symmetry critical point along the A axis (or at the L point)
in the Brillouin zone [A}— A{ (or L} —L{) in Si]. The experimentally determined band-edge parameters are as
follows: the critical-point energy E, = 3.412+0.005 eV (300 K); the phenomenological broadening energy
' = 0.060 + 0.005 eV (300 K); and the pair band deformation-potential parameters D} = —9.8 + 1.3 eV,
Di=65+14 eV, D} =47+05 eV, and D = 3.0= 1.7 eV (77 K). In addition, this critical point is three-
dimensional M, type and the relations between the assumed reduced masses pu; and p, are pup<<|pl
kr >0, and p; < 0. From the mass relation, py<<|p, |, the critical point may be nearly two-dimensional
(M, type). Second, for the weak structure in the lower-energy side the experimental results under uniaxial
stress can not be explained by any high-symmetry critical point except the degenerate critical point in the A
direction (A —Af{ near T in Si). If we assume that this structure is attributed to the A critical point, the
experimentally determined parameters are as follows: E, = 3.294 + 0.005 eV (300 K); ' = 0.060 =+ 0.005 eV (300
K); and this critical point is three-dimensional M, type (ur/p; = 1-3).

I. INTRODUCTION

It is very useful to obtain detailed information
about the optical-critical-point structures in or-
der to study the energy-band structures of solids.
In particular, the energy E., the location Ko in
the Brillouin zone (BZ), and the relation between
the assumed reduced masses of a critical point
are essential in describing the E(k - K,) topology
of interband energy surfaces.

Since the introduction of electroreflectance (ER)
technique by Seraphin,! various types of differ-
ential methods® 2 have been devised and applied to
make clear the optical-critical-point structures of
semiconductors. In recent years, it has been
shown by Aspnes® ® that the low-field ER technique
is suitable for the precise study of energy-band
structures, since this technique provides spectra
concerned directly with high-symmetry critical
points: A low-field ER spectrum is described by
the highly resonant function (the third derivative
of the unperturbed dielectric function €) in the
vicinity of a critical point. Values of band-edge
parameters, such as the energy E,, the pheno-
menological broadening energy I', and the type of
a critical point, may be obtained from the best-fit
analysis on low-field ER line shapes.® Symmetry
information about the location K, of the related
critical point may also be obtained from low-field
ER spectra.®’

It is the purpose of this paper to describe a sym-
metry analysis and uniaxial-stress effects on a
low-field ER spectrum and apply them to Si. The
location ﬁo of a critical point can be determined
from the polarization anisotropies and the line
shapes of a low-field ER spectrum. From these
two observations it may also be possible to obtain
the reduced-mass relations at a critical point.
Moreover, it is clear that the symmetry-breaking
perturbation of uniaxial stress is useful for the
symmetry study of critical-point structures. Pol-
lak and Cardona® have combined this perturbation
with ER technique for the first time, in order to
study Ge, GaAs, and Si using the electrolyte con-
figuration. Their analysis on the ER spectra of Si,
however, was insufficient in the sense that the
spectra under uniaxial stress were measured out
of the low-field conditions and quantitative com-
parison with the ER theory was unsatisfactory.

We show the results of uniaxial-stress effects
using the Schottky-barrier ER technique. The
availability of the Schottky-barrier ER technique
has been described in detail by Aspnes.” In addi-
tion, this technique is advantageous for applying
static uniaxial stress, because the evaporated
metal on a semiconductor surface may remain in
uniform contact with it when the sample is elasti-
cally deformed by the stress. The stress effects
observed in a low-field ER spectrum may be an-
alyzed according to Kane’s theory of piezore-
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flectance.®

In this paper, we shall concentrate on the 3.4-eV
optical structures of Si in order to reveal its com-
plexities. The 3.4-eV optical structures have been
the subject of controversy for a long time. A num-
ber of experimental and theoretical investigations
in this energy region have been performed as out-
lined by Pollak and Rubloff.'°® As for the ER mea-
surements of Si, the pioneering work has been
made in the MIS (metal-insulator-semiconductor)
configuration by Seraphin'!; later works have fol-
lowed in the electrolyte'?”'* and in the transverse-
electric-field'® configurations. Most of the results
suggest that the 3.4-eV optical structures arise
from at least two distinct critical points with dif-
ferent symmetries. For assignment of the main
structure, however, both experimental and theo-
retical evidence may be divided into two parts:
the Ay —~AS transition’® '°~22 and A} -A¢ transition
near the I point (including the I'j,,— I'j; transi-
tion).® 23733 Recent experiments support the A
assignment.!® 3 On the other hand, the existence
of an extremely complex nest of critical points in
this energy region has been predicted from de-
tailed band-structure calculations.?!: 3%:35. 36
Saravia and Brust3® have shown that the 3.4-eV
structures of €, come mainly from two regions
near the T point and A line (including the L point)
and that the relative position of the I';.~TI%5 and
L3,~ LS transitions in energy affect the shape of
€,

The outline of this paper is as follows: In Sec.
II A, a method of symmetry analysis of a low-field
ER spectrum is described; polarization depen-
dences of a longitudinal ER spectrum on the (110)
face are listed in Table I for high-symmetry T,
A,A(L), and T critical points in diamond-type
crystals with criteria for determining the location
Ko in the BZ. Uniaxial-stress effects on a low-
field ER spectrum are discussed in Sec. II B; and
the results for the degenerate A; - Aj(or L3, —L?)
and A7 - Af critical points are summarized in
Tables II and III, respectively. In Sec. III, ex-
perimental details of sample preparation, mea-
surement techniques, and stress arrangement are
described. The data are presented and analyzed
in Sec. IV. Finally, in Sec. V we compare our re-
sults to other measurements and calculations of
the energy-band parameters of Si.

II. SYMMETRY ANALYSIS

A. In the absence of strain

A theoretical basis for ER symmetry analysis
has been reviewed by Seraphin®’and later by Rehn.®
In this section, we describe a method of symmetry
analysis on a low-field ER spectrum in diamond-

type crystals. At sufficiently low fields, the ER
spectrum can be represented with terms varying
linearly (linear ER) and quadratically (quadratic
ER) with electric field.* In diamond-type crystals,
there is only the quadratic term and the linear
term becomes zero due to inversion symmetry,
The quadratic term may be factored into line-
shape and symmetry parts if we make several
assumptions: The optical matrix element is

k independent and the applied electric field is
small enough not to change the selection rules of
the transition. Following Aspnes,® the relative re-
flectivity change AR/R, measured in a low-field
ER experiment, is given by

AT? (iw +iT)=Re {€| a (fw)-ifHEw)]i*3

x L(fiw +iT)} &F, (2.1a)
where
F=) 3 WwPRPPEI&M,™,  (2.1b)
v,a i,j,u,v
. 1 32 - -
[T 1=—ﬁ—zgk—5k—E(k—Ko), (2.1¢)
u v
P =(0]p; [¢a)- (2.1d)

Re {} and §2F give the line-shape and the sym-
metry parts, respectively. In the line-shape part,
C is the product of complex functions which re-
present the effect of a nonuniform modulating
field®® and the electron-hole effect in the contact
exciton approximation.®® The function [a (fw)

- if(Fw)] is the complex Seraphin coefficient.?”
The function i 3L(#w +iT") mainly determines the
line shape of an ER spectrum. One-,two-, and
three-dimensional forms of L(iw +¢I') are sum-
marized in Ref. 4. We can use these functions

for the best-fit analysis on the experimentally
obtained low-field ER line shapes. In addition,

1 is the number of negative reduced masses at a
critical point, which is said to be of type M,
(1=0,1, 2, 3); this number produces four typical
line shapes of a low-field ER spectrum for the
three-dimensional critical point. The symmetry
part represents the effects of polarization and
applied electric field on a low-field ER spectrum,
which determines polarization anisotropies of the
spectrum. This factor is written in detail in the
form of Eq. (2.1b), where # is the unit polariza-
tion vector of the incident light. P is the optical
matrix element of the momentum operator between
the ground state |0) and the excited state |¥),
which may be written in the form of Eq. (2.1d) if
dipole interaction is assumed. & is the unit vector
of the applied electric field; § is its magnitude.

U is the component of the second-rank interband
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reduced-mass tensor, which is defined in Eq.
(2.1c). 2., represents the sum over the order of
degeneracy of a critical point. 2, represents the
sum over all the equivalent critical-point set, in
which the superscript v of # or & shows that it is
the effective component at the vth equivalent cri-
tical point. Z,-,j. u,» Shows the sum over the cubic
components.

We wish to describe the ER form factor F in a
more convenient form for high-symmetry I, A,
A (L), and T critical points in diamond-type
crystals. The X point may not be a critical point
because of its k - K, linear term. We treat the
case that the effect of spin-orbit interaction is
negligibly small compared to the effect of lifetime
broadening. First, the k dependence of the inter-
band energy in the vicinity of a high-symmetry
critical point may be written in a parabolic form,
using the three principal reduced-mass param-
eters oy, Uy, and pp:

ki

E&-K,)2E, +
° £ 2y, 2“12 ZHL

; (2.2)

where kr,, Rr,,_and k, are the three principal
axes of the k— K, space, in which the longitudinal
axis k; is defined to be parallel to the represen-
tative vector K, of the critical point. Moreover,
we assume local rotational symmetry around -IZO
for the A or A (or L) critical point; whence the
interband reduced-mass tensor has two k-inde-
pendent diagonal components py (=, = (ir,) and
pr. For the I' critical point, we assume spheri-
cal symmetry; then the reduced-mass tensor has
all equal diagonal components u (= fr, = fr, = iy ).
These simple parabolic models of the effective-
mass approximation enable us to treat the transi-
tion between degenerate bands as the sum of
transitions between nondegenerate bands. This
assumption seems to be oversimplified and it is
probably accepted only in the case of optical transi-
tions with large broadening energy; the effect of
band degeneracy, such as band warping, may be
neglected in the low-field modulation limit. Se-
cond, according to Kane,® optical critical points
along (or at) the high-symmetry axes (or points)
in the BZ may be represented by the irreducible
pair states which transform in the same way as
the irreducible components of the momentum op-
erator under the group of _.KO, when only the ex-
cited states which couple strongly to light are
taken into consideration. Therefore, the ER form
factor F of Eq. (2.1b) may be written

oV U \2 v \2
PSS B 2<<é NEAAMNCA) )
;x(n 7a) Hry Mg * K, ™
(2.3)

F0=(0[byq l¥ya % (2.4)

where ﬁ,a is the unit vector transforming in the
same way as the palr state (4)7&) with symmetry
UyunderthegroupofKo B, =(1,0,0), B,,=(0,1,0),
and B‘,Z =(0,0, 1) for the r critical point with sym-
metry U,_; B, =(0,0, 1) for the A critical point with
symmetry U,, and B,z =(1,0,0) and B, =(0,1, 0)
for the A critical point with symmetry U,; B,
=(1/V3,1/3,1/V3) for the A critical point with
symmetry U,, Bsr,=(1/V2,-1/V2,0) and B, ,
=(1/V6,1/N'6,-2/V 6 ) for the A critical point with
symmetry Uy, B,=(1/V2,1/2,0) for the T criti-
cal point with symmetry U,, B, =(0,0, 1) for the

T critical point with symmetry U,, and B,

=(1/V2, -1/42,0) for the T critical point with sym-
metry U,. &87,, 8r,, and &, are defined in the
same form as the three principal axes k,, Ry,
and k;, respectively. f° is a unit of the ER form
factor defined in Eq. (2.4).

We will consider only a longitudinal ER geometry
in order to analyze the Schottky-barrier ER spec-
tra, in which the direction of the incident light and
the modulation field are normal to the plane of re-
flection. Moreover, we will choose the (110) face
for the plane of reflection, since this surface in-
cludes all four high-symmetry directions ([001],
[112], [111], and [110]) obtained in diamond-type
crystals. For A, A (or L), and T critical points,
we sum over the star of ko by summing over the
effective components of #" and §” in Eq. (2.3).%
The polarization dependences of the ER form fac-
tor on the (170) face in the low-field modulation
limit are listed in Table I. In Table I, we also
list conditions on the polarization anisotropy
7 =Foo11 /Frio) (Or $=Fy,,1/Fy,31) for all types
of critical point, which may be used as criteria
of symmetry analysis combined with the type of
critical point determined from the line-shape
analysis. Inthe case that the effect of spin-orbit
interaction is large compared to the lifetime
broadening, polarization dependences of the two
split-off structures in a low-field ER spectrum
may also be calculated. The results are the same
as listed in Table I for each of the two split-off
structures.

This method of symmetry analysis, however,
cannot lead us to the unique conclusion in some
cases, since the conditions for some critical
points listed in Table I are not exclusive of each
other. We can get rid of this difficulty with help
of the results of band-structure calculations.
Moreover, the three-dimensional ER line shapes
of M,, and M,,, or M,, and M,, critical points may
not be distinguished from each other in the low-
field modulation limit or in the large broadening
region. It may be useful to measure ER spectra
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TABLE [. Polarization dependences of a low-field electroreflectance form factor F for I', A, A (L), and X critical
points in diamond-type crystals. A longitudinal geometry is used and (110) face is preferred for the plane of reflection;
the electric field & =(1/v2,-1/v2,0). 6 is the polarization angle of the incident light measured with respect to the
crystallographic 2 direction. The polarization anisotropy is defined as » EF[001]/F[“0] (or s EF[M,/F“@]); the sub-

script of F denotes the polarization of the incident light.

Critical- Pair Polarization dependences of a
point state low-field electroreflectance Conditions of the polarization anisotropy
location symmetry form factor F 7 (or s) for all types of a critical point
r Uy- a/wre for all cases; My, M;
11(3 1 i i 0 4
A U —[ "—+—>+<—‘—— cosze} 0=r=2 (x=s=2); My, M;
! 2 (ur b/ \kr Ky 4 i o
r=0, 2=7r (s 5%, 2<=s); M{,M,
. 2 4 8y.
Us é[<5_+_3_> _(1__L cosze:lfo t=r=2 (d=s=8) M0
Hr b e H r=i, 257 (s=%, $=s); M, M
2 1 <3).
A (L) Uy (U, §[<5_+_1_>_<_1__L cosZG]fo Ly b=s=8) My M
Ky Hp Hp Hp 75%(35%,%59, My, My
2 410 38
0 (0 %[(7—+_5">+<—1———>00529Jf0 T=r=g (g Ss=7) Mo, My
Ky M br r=i, +sv(s=4, %ss), My, My
1 2 1 . 2
b U, = [ —=—+— }(3+2V2 sin26 + cos20) t=r=2 2 1 1 _
4L\ K1 K s\ "1 ) =0
(%sss%) 1 Hp/ P12

=L 2= 2 1\t
+<;—1—1->(7+2«/’2—sin26—3c0520)]f° r=g, 2=7 ;(—-—-+—>——50

T2 (s=4, d=g) ‘i Kz /br
U, 1[_2_(1_00529,+<_1_+_> 0sr=2 L+_1_>_1_20
2L upy Br2 (d=s=z) \Hrz Ko/ bm
wto-conto] re 2y (L L)L o
(s=4, 2=g) ‘12 HL/Hm
2 <4<
% l[("E-n*-—i'—>(3—2«/?—sin20+c0520) s=7=2 ;<L+_1__>_1_20
4 Hptr Hr (%SsS-g-) Hpt Hpo ) Hp
=% 2= 1
+(L>(7—2\/'2—sin29—SCOSZB)]fO r=5, 2=r ;<._2_+__)L50
e (s=4i, L=s) Ky Hr2 /KL

in the Franz-Keldysh range in order to determine
the type of critical point correctly.

B. In the presence of strain

The application of a uniaxial stress and the re-
lated strain produces a change in the lattice
parameter and the symmetry of solids, which re-
sults in significant changes in the electronic band
structures, suchas shifts of energy levels* ~** and
mixing of wave functions.®® Considering optical
transitions, strain induces changes of the inter-
band energy E(k - ﬁo) and variations of the optical
matrix element P including the selection rules.
These changes would be observed in the structures
of a low-field ER spectrum as (i) energy shifts

and splittings, (ii) dependences on polarization,
electric field direction, and stress configuration,
and (iii) amplitude changes with strain. The stress
effects on the low-field ER spectrum may easily
be treated theoretically, when the stress applied
to a solid is small enough and we can assume that
the k dependence of the interband energy E(k - -IEO)
in the vicinity of a critical point is still described
in the parabolic model shown in Eq. (2.2). In this
stress region, a low-field ER spectrum may be
factored into line-shape and symmetry parts in the
same form as shown in Eq. (2.1a) even in the pre-
sence of strain. In addition, we consider the
stress ettects in the linear-response region.

Thus, we can calculate the stress-induced changes
in the line-shape part (the energy shifts and split-
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tings) and in the symmetry part (the stress-de-
pendences of the ER form factor F) using the ef-
fective strain Hamiltonian and the pair wave
functions to first order in the strain defined by
Kane.® These treatments may be accepted when
the phenomenological broadening energy is large
compared to the stress-induced energy shifts; in
higher band transitions, the shifts are nearly al-
ways small compared to the broadening energy
even for large stress.

As a specific case we will show the stress ef-
fects for the degenerate Aj — A (or L}~ LY)
critical point. The optical properties of this criti-
cal point are represented by the U, (or U,_) pair
band in the A direction (or at the L point). On the
other hand, the A critical point is contributed by
the eight equivalent components along the (111)
lines in the BZ. Since uniaxial stress does not re-
move the inversion symmetry of the crystal, we
need not consider all eight components but four
along the [111], [111], [T11], and [111] lines.

We sum over the effects of these four equivalent
components. The results for stresses along the
[001] and [111] directions are presented in Table
II, where the factor F is given for polarizations
along the [100], [010], [001], [170], and [110]
directions with [001] stress and for polarizations
along the [170], [112], and [111] directions with
[111] stress. In Table II, s,,, S, and s, are the
elastic compliance constants. T is the magnitude
of the applied stress T; its sign is minus for
compression. The D’s and D’s are “band-edge”
deformation-potential parameters; in detail, D!}
is the hydrostatic parameter, D$ is the interband
parameter for [111] stress, and D¢ and D are the
intraband parameters for [001] and [111] stresses,
respectively. f° is a unit of the ER form factor in
the unstrained crystal defined by Eq. (2.4) and f°
is a change due to admixture of first-order wave
function y;, under stress. The uniaxial-stress
effects on a low-field ER spectrum for the de-
generate A} — A{ critical point are presented in
Table III. The optical properties of this critical
point are represented by the U, pair band in the

A direction. In Table I, D? is the interband
parameter for [001] stress, and D, and D, are the
intraband parameters for [001] and [111] stresses,
respectively. f° is a change due to admixture of
first-order wave function y;, under stress.

III. EXPERIMENTAL

A. Sample construction

The Si single-crystal samples used in the experi-
ment were all n-type and had a room-temperature
resistivity of about 0.5 @ cm. The epitaxial layer
on n* base was used in the measurements of ER

at room temperature. The reflecting surface of
the sample is the optically flat (170) face and the
crystal axes on the surface were determined by
cleavage lines. In the ER measurements under
uniaxial stress, the single-crystal rods were
used. The crystal orientation of the samples was
determined from x-ray diffraction with an accur-
acy of 1 deg. These samples were cut into rect-
angular parallelepipeds to dimensions of 12.0
%x1.0x1,0 mm® such that the long axis was in either
the [001] or [111] direction. The surfaces of the
samples were polished and chemically etched in
order to remove surface damages. The Schottky
barrier was formed on the reflecting front surface
by evaporating a semitransparent Ni film. The
thickness of the Ni film is estimated to be 10.0-
20.0 nm from the reflectivity measurements of
the Ni-Si system. A thick In film was obtained by
evaporation onto the back surface of the sample

in order to make a nonrectifying contact.

B. Measurement techniques

Electroreflectance spectra were measured with
standard optical and phase-sensitive electronic
detection techniques. The optical system con-
sisted of 2 500-W Ushio model UXL500D xenon
lamp, a JASCO model CT-50 0.5-m grating mono-
chromator with a 1200-line/mm grating blazed at
300 nm, a cryotip refrigerator on a cryostat in a
stress apparatus, and a Hamamatsu TV model R376
photomultiplier. The polarization measurements
were made with a Glan-Thompson polarizer. The
samples used in the stress experiment were moun-
ted in a sample cell of the stress apparatus such
that the long axis of the sample was parallel to the
pushing rod. A paper sheet was placed between
the pushing rod and the top of the sample in order
to reduce the effects of imperfect alignment. A
static load was applied to the sample by a lever
system. The dc bias and 400-Hz square-wave ac
modulation voltage were applied to the metal layer
by means of a thin copper wire attached to the
metal film with a dot of silver paint. The detec-
tion system was as follows: The ratio AR/R was
measured by electronically varying the photo-
multiplier gain such that the dc signal of the photo-
multiplier, which is proportional to R, was held
constant.® The ac signal of the photomultiplier by
the electric field modulation, which is then a di-
rect measure of AR/R, was detected with a PAR
HR-8 lock-in amplifier and recorded by a x-f re-
corder. We checked the observed ER spectra to
be actually in the low-field modulation limit by the
method shown in Ref. 5. The energy shifts of the
peak positions with ac modulating field were not
observed in the measurements.
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TABLE II. Energy shift AE and electroreflectance form factor F for the degenerate U; band in the A direction. Spin-
orbit interaction is neglected. The factor F has been summed over the eight equivalent components. The subscript of

F denotes the polarization of the light.

Energy shift?

Electroreflectance form factor

[001] stress

Di
AE4 =75 (su+2sp)T+ VED](syy — spo)T

1
D
A EB=7—§-(S11 +2519)T — \/;é_ﬂ)g(sn -s)T

1 5
E'a _D_l +2 )7‘+.—D_1_ T
AE® =7 (811 280) T+ 57 su

1 5
D D; V2
AE? =7—1§ (sy1+ 2512)T*7—§'S44T +§\/.—3——5)§s44T

4( 2 1
F ooy =F o =§<;;+E>f3

Floy=0

2 2 1 1 i
[112]=§[<-‘;+H—L>_2<“—T-H—L)(8,8y +6,8,+8,8, )]fo

[(Z—+-1— )+2<—1—— 3—) &&]fﬁ
Ky Hgp Hy Hrp

SN S (P S W PN U SN _ _ 5
Ff’112]-27[3(u1+%> Z(ur #L>(6,8y 28,8, 2528,,)]f+

i6] (2 1 i i
a3 ) 2 s o6 s ]

1 5
Dy Dy V2
8BS = ou 2su)T = g7y suT = 5 Disul

f§=f°+"‘/1§—‘(5u = s)TF°

ff=f°+§"i/'§—'5447f5

i
s_p0_ 1 5
2=f 3‘/5‘544Tf

L S A T U W :
Fﬁ“’]_3[3<#r+n> 2<ur—#L>(g"8” 26,6. 2825*)}f'

2 1 it 5
[(#fﬁ >+2<“T 153 )gxgy]f‘

i
ri=f° —F(Su - sp) T

5 =201p30 9300 @5alp3al0); s=3 for [001] stress,

s=5 for [111] stress,
a=(x-y)/vZ and (x+y-—22)/V6

2 These energy shifts have been calculated by E. O. Kane.

IV. RESULTS
A. In the absence of strain
Figure 1 shows a Schottky-barrier ER spectrum

of Si in the energy range from 3.2 to 3.6 eV at
room temperature. The spectrum shown in Fig. 1

See Table VII of Ref. 9.

is rather complicated but it is reasonable to con-
sider that two different structures are found in
this spectrum. One is a dominant structure (S;)
and the other is a weak one (Sy) which is super-
imposed on the low-energy negative peak of the
S| structure. We have determined the band-edge
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TABLE III. Energy shift AE and electroreflectance form factor F for the degenerate Us band in the A direction.
Spin-orbit interaction is neglected. The factor F has been summed over the six equivalent components. The subscript

of F denotes the polarization of the light.

Energy shift 2

Electroreflectance form factor

[001] stress

|
A D 3
AE =ﬁ(s11+2512)T+‘/§_D1(s“—slz)T

5 D% D:% :D3
AE Z:fsf(su + zslz)T—ﬁ(Su - 312)T+—f‘2—(311 =sp)T

1
C__Dl D% D'&
AE" == (s11+280)T = 7= (1 = s2) T = 5= (511 = s1)T

1

D D
AE“=F;(>3“+2512)T+-——4

6 S44T

D Dy
AE? = (s11+282)T =5 s T

1 i ! 1 1 ,
Fo- (1 L), (L _L gz] 4
(110 =2 <l"r #L) (“T “L) /-

1[ 5 1 ) (1 1 ) 2:} .
F ==|{—+— )-8l —=— )&
fllf] 6 hy Ky br  Hg z f+
4f2
Ff‘uu=g(;+y—) H
1tf/s5 1t 1\,
F3 =—[<—+—->—3<———>6’2J 4
010 =3\, g ur np) e f
3[ 1 > (1 1 ) 2} s
P =2 (AL ) (-2 ez |
fnz] 2 <#T ML bur M) f s
Fpyy=0

i
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a2 These energy shifts have been calculated by E. O. Kane. See Table III of Ref. 9.

parameters by performing a least-squares fit of
the three- and two-dimensional low-field resonant
functions to the spectra. The determined param-
eters are listed in Table IV with values quoted
from other modulation measurements in the litera-
ture. The calculated line shapes are also il-
lustrated in Fig. 1. In the best-fit procedures,
the field inhomogeneity effect was neglected in

our samples and the coefficient of the contact
exciton effect was considered as an adjustable
parameter. The Seraphin coefficients of the
air-Ni-Si three-phase system were used.*® The
values of the Seraphin coefficients calculated
from the reflectivity of Si and Ni are plotted in
Fig. 2 as a parameter of the thickness of the Ni
film. As shown in Fig. 2, a and B both decrease
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FIG. 1. Schottky-barrier electroreflectance spectrum
of Si at room temperature (RT). Open circles are the
experimental results taken on (170) face for [001] polar-
ization in the low-field modulation limit. Short-dashed
and long-dashed lines are the calculated three-dimen-
sional (L3™) and two-dimensional (L) line shapes, res-
pectively. Solid line is the sum of the two.

and become rather structureless upon increasing
the thickness of the Ni film. When we use the
estimated thickness of the Ni film (10 nm) in our
samples, o =3>0 at 3.3 eV and |a|<|B],B>0
around 3.4 eV. Therefore, the Sy structure of
AR/R is affected by Ae, and A€, in almost the
same amount and the S| structure is nearly Ae,
dominant. We discuss the results obtained from
the line shape analysis. As shown in Fig. 1 the S
structure was fitted by the two-dimensional reso-
nant function only because of the fact that it gives
better-fitted results than the three-dimensional
function. Almost the same values of the critical-
point energy are obtained for both line-shape func-
tions. Note, however, that it is necessary to de-
termine the type of a critical point and the broad-
ening energy with the three-dimensional function.
Then, the critical points related to the S; and Sy
structures are determined to be three-dimensional
M, and M, types, respectively.

Next we consider the symmetry assignment for
the critical points related to the S; and Sy struc-
tures. The polarization anisotropies of the
Schottky-barrier ER spectra of Si are shown in
Fig. 3. Data were taken on (170) face at 77K. The
top pair of curves was obtained at a low-field con-
dition with two principal orthogonal polarizations,
# |1 [001] (dashed line) and # || [110] (solid line).
The bottom pair of curves was obtained at a low-
field condition with two principal orthogonal polari-
zations, # ||[111] (dashed line) and 7 ||[117]
(solid line). The line shapes of these spectra are
analogous to that obtained by Forman et al.'® in the
transverse ER measurements. As seen in Fig. 3,
the S| and S structures, especially the latter one,

T T T [ T T T T 1 T T T T |

Si:Ni —— Oonm--—10.0nm
- RT. —-— 5.0nM-—-15.0NM -
10
2
3 0
N
o
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35 40 45
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FIG. 2. Seraphin coefficients of air-Ni-Si three-phase
system calculated from the reflectivity spectra of Ni and
Si. The results are shown with the thickness of Ni film
as a parameter.
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FIG. 3. Polarization anisotropies of the Schottky-bar-
rier electroreflectance of Si. Data are taken on (110)
face at 77 K in the low-field modulation limit.
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TABLE IV. Critical-point parameters of Si determined from electroreflectance (ER), wavelength-modulated reflec-
tance (WMR), and thermoreflectance (TR) measurements. RT stands for room temperature.

This work Grover and Handler 2 LukeS et al.P Serapin and Bottka ¢
ER (RT) ER (RT) ER (90 K) ER (95 K)
E, (eV) 3.412 +0.005 3.360+0.016 3.44+0.05 3.41
T (eV) 0.060 +0.005 0.05322 +£0.002 36 0.035
Symmetry AY (LYY —~ AV (LS) A — Af
Type MiP MiP MmiP miP
(reduced-mass
relations) (wp<<lpgl, up>0, pg<0)
E, (eV) 3.294 +0.005 3.281 +0.007 3.34+0.05 3.33
T (eV) 0.060 £0.005 0.05177+0.012 86 0.035
Symmetry A3 —Af near T’ T — I'fs
Type MtP miP mgP mgP
Forman et al. ¢ Zucca et al. ¢ Braunstein and Welkowsky f Matatagui e al. &
ER WMR (5 K) WMR (80 K) TR (77 K)
E, (eV) 3.485+0.015 3.45+0.004 3.41 3.43
T (eV)
Symmetry AY — Af A} — Af AY —~Af
Type M:fD MfD M13D
(reduced-mass
relations)
E, (eV) 3.370 +0.030 3.40+0.008 3.36 3.32
T (eV)
Symmetry s — I'fs Ay —Af TYs— Tl
Type M3P M3P

3 Reference 14.
bReference 46.
¢Reference 11.
dReference 15; see also Ref. 47.

become sharper at 77 K than at room temperature.
The lower-energy side of the S and the higher-
energy side of the S;; structures interfere with
each other considerably at 77 K. Therefore, the
exact best-fit analysis is difficult. We discuss
the S| structure first. From the results shown in
Fig. 3, we obtain polarization anisotropies |7 |

= (AR/R)[OOI] /(AR/R)[HO] =1.35+0.05 and ISI
=(AR/R)y,;,1/(AR/R);31=0.86 £ 0.05 at the positive
peak of the structure. The experimental results
can be compared to the theoretical criteria for
high-symmetry critical points listed in Table I.
First, the T critical point may be ruled out, since
it gives the isotropic polarization effect. Second,
the A critical point maybe ruled out, since the com-

€Reference 16; see also Ref. 36.
f Reference 27.
gReference 48.

binations of the observed polarization anisotropies
and the critical point type (M) conflict with the con-
ditions of the A critical point with U, and U, symmetry.
Third, the A (or L) critical point with U, (or U,_)
symmetry may be ruled out because of the same
reasons as in the case of the A critical point. For
the A (or L) critical point with U, (or U,_) sym-
metry, the calculated polarization anisotropies
become » =% and s =} if we assume the reduced-
mass relations to be | pp|<<[p.|, pr>0, and
<0, In this case, the experimental results are
well explained. Finally, the T critical point may
be ruled out, since it cannot explain the stress
effects, as will be shown in Sec. IVB. Thus, we
conclude that the S; structure is attributed to the
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A (or L) critical point with U, (or U,_) symmetry
[AY=AS (or L:»~L%) in Si]. In addition, we con-
clude from the mass relation, wp,<<|u;|, that the
critical point is rather two-dimensional M, type
(ur>0). We consider the Sy structure next. In
Fig. 3, the polarization anisotropies are found to
be |7]|=1.4+0.1 and |s|=1.0+0.1 at the positive
peak of the structure. The results can also be
compared to the theoretical criteria listed in
Table I. In this case, however, we cannot de-
termine the location K, of the critical point uni-
quely from the above method of symmetry analy-
sis. The transitions I’y —I'j; and A7 -A¢ near the
T point may be possible from the results of band-
structure calculations.’® The symmetry location
of the Sy structure will be discussed further in

Sec. IV B.
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FIG. 4. Schottky-barrier electroreflectance spectra
of Si under uniaxial stress (compression) along the [001]
direction: (a) 7=—3.84x10° dyn/cm?; (b) T=-5.35
x10° dyn/em?; (c) T =— 6.97x 10° dyn/cm?. Data are
taken on (170) face at 77 K in the low-field modulation

limit. Solid lines are the spectra fors L T and the dashed

lines for || T. Sy, (or Siy, ), Syu for Sm), etc., are
the split-off structures of S| and Sy under [001] stress
with perpendicular (or parallel) polarization.

B. In the presence of strain

Schottky-barrier ER spectra of Si for compres-
sion stresses along the [001] and [111] directions
are shown in Figs. 4 and 5, respectively, with
light polarized parallel and perpendicular to the
stress axis. The stress-induced energy shifts and
amplitude changes are apparent in both cases. The
spectra without stress are shown in Fig. 3, where
the top and bottom pair of curves correspond to
the [001] and [111] stress configurations, respec-
tively.

First we discuss the S| structure. The depend-
ences of the peak energies of the structure for the
[001] and [111] stresses are shown in Figs. 6(a) and
6(b), respectively, where the energy positions of
positive and negative peaks are plotted together.
In the case of [001] stress, the S, structure splits
into two parts for transverse polarization, i.e.,
one shifts to higher energy and the other to lower
energy; and for parallel polarization the structure
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FIG. 5. Schottky-barrier electroreflectance spectra of
Si under uniaxial stress (compression) along the [111)
direction: (@) 7=-1.87x10° dyn/cm?; (b) T =—5.65
x10° dyn/em?; (c) T =—8.78x 10° dyn/cm?, Data are
taken on (1T0) face at 77 K in a low-field modulation
limit. Solid lines are the spectra for#L T and dashed
lines for & | T. Sigu, Sip,» ete., are the split-off
structures of S; under [111] stress with perpendicular
and parallel polarizations.
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shifts to lower energy without any splitting. In

the case of [111] stress, the polarization-depend-
ent splittings and shifts of the structure are also
observed, though the shifts are smaller: For
perpendicular polarization the structure splits

into two parts, i.e., one shifts to higher energy
and the other to lower energy; for parallel polari-
zation the structure shifts to higher energy without
any splitting. These energy shifts and splittings
of the S; structure are well explained by the stress
effects of the degenerate Aj-AS (or L3,-LY) critical
point in the following way. In the case of [001]
stress, we find from Table II that the U, (or U,.)
pair band splits into two parts due to intraband
splitting; one component labeled A is allowed for
both 7 || T and # LT, while the other component B
is allowed only for # LT, Moreover, the intensity
ratios of the split bands for parallel and perpen-
dicular polarization with zero stress are FA:F?
=8:0 and F{:F®=3:3 in our experimental configura-
tion; the unit vector of the applied electric field
&=(1/vZ, -1/VZ,0) and the effective mass rela-
tion is << |, |. In the case of [111] stress, we
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FIG. 6. Stress dependences of the peak energies of the
S| structure. The energy positions of positive and nega-
tive peaks are plotted together. (a) T][001] and (b)
f”[lll] . Solid lines are obtained for #.L T and dashed
lines for#|| T .

find from Table II that the U, (or U,.) pair band
splits into three parts due to interband and intra-
band splittings: Two components labeled ¢ and ¢
are allowed only for A LT and the other component
b is allowed for both 7 || T and #LT. The intensity
ratios of the split bands for parallel and perpendic-
ular polarization with zero stress are F:‘I:Fﬁ:F_fL
=0:80:0 and F:F%:F$=54:7:27. Then, for 21 T

the structure due to the intermediate component

b is negligibly small and the two components a

and ¢ will be observed. We have calculated the
deformation-potential parameters from the stress-
induced energy shifts using the compliance con-
stants at 77 K (in units of 107 ¢cm?/dyn)%’; s,,
=0.762, s,,=-0.213, and s,,=1.249. The results
are listed in Table V. The stress-induced amp-
litude changes of AR/R are also explained by the
stress effects of the degenerate A3-A¢ (or L3,-LY)
critical point. Plotted in Figs. 7(a) and 7(b) are the
amplitude changes of AR/R as a function of [001]
and [111] stresses, respectively. In general, the
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FIG. 7. Amplitude changes of the positive peak of the
S structure as a function of uniaxial stresses along (a)
the [001] direction and (b) the [111] direction. Solid lines
are obtained for# L T and dashed lines for#| T .
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TABLE V. Deformation potentials of the A¥(L%)— Af(L{) critical point of Si. The previously reported values of Si
and Ge and some pressure coefficients of Si are also listed for comparison. RT stands for room temperature.

This work 2 Pollak and Rubloff " Sell and Kane © Pressure coefficients
Si (77 K) Si (77 K) Ge (RT) Experiment Calculated
Si Si
D} (eV) -9.8+1.3 —8+1 —9.7 %1
D} (eV) 6.5+1.4 10 +2 7.5+0.8
DI(D3) (eV) 4.740.5 5+1 2.235
DD (eV) 3.0 1.7 431 1.55:8
%%’ 5.7+0.8 5.220,59 5.3 (RT)f
6.220.4¢ 448
5.7h
(107 ev/bar) 5.6 +0.6 (RT)!
4.87
5.9 k

2See Ref. 58.

b Reference 10.
¢ Reference 59.
dReference 60.
€Reference 17.

f Reference 20. The conversion from their units to ours is based on the identity —1.00 eV/(unit dilatation)=1.02 x107%

eV/bar for Si at room temperature.

gReference 19. The conversion from their units to ours is based on the identity 1.00 eV/atm=10.987 eV/bar.

hReference 61.

I Reference 62. See Ref. f for the conversion from their units to ours.

i Reference 22.

kReference 63. The conversion from their units to ours is based on the identity 1.00 eV cm?/kg=1.02 eV/bar.

observed amplitude changes consist of substantial
stress-induced change and unsubstantial change
due to the splitting of the structure. We find in
Fig. 7(a) a large and nonlinear change in the amp-
litude of AR/R for [001] stress and perpendicular
polarization. It seems to be due mainly to the
separation of the structure, because the energy
shifts AE4 and AE® are relatively large in this
configuration [as shown in Fig. 6(a)]. The theore-
tical expressions of the ER form factor F for [001]
stress are presented in Table II and, therefore,
the substantial changes of AR/R in this case may
be shown with solid lines in Fig. 7(a); the optical-
matrix-element ratio was estimated to be f°/10%°
=0. This ratio shows the admixture of wave func-
tions from the symmetry multiplet® under [001]

stress, and in this case the bands are well separat-

ed and the admixture of wave functions between the
split bands is very small. On the other hand, the
amplitude changes of AR/R for [111] stress shown
in Fig. 7(b) seem to represent the substantial
changes of the optical matrix element, because the
energy shifts of the structure shown in Fig. 6(b)
are relatively small. The observed amplitude
changes are also explained by the equations given

in TableII, and we can estimate the optical-matrix-
element ratio, f5/10%°=-0.20+0.02. In this case,
the admixture of wave functions between the split
bands is relatively large.

The observed uniaxial-stress effects of the S,
structure described above cannot be explained by
the behaviors of any T critical point under stress.
Since all the irreducible pair bands U,, U,, and U,
in the T direction are nondegenerate, the ER form
factor F is not changed with stress,® ignoring the
mixing between pair bands with different symme-
tries. This is apparently incompatible with the ob-
served amplitude changes of AR/R with stress.

Next, we consider the S;; structure. Figures
8(a) and 8(b) show the dependences of positive peak
energy for [001] and [111] stresses, respectively.
As seen in Fig. 8, the structure splits into two
parts for both stress directions: The structure
shifts to higher energy for parallel polarization
and to lower energy for perpendicular polarization,
though these shifts are very small. We also show
the amplitude changes as a function of stress in
Fig. 9. It is interesting that the amplitude of
AR/R for parallel polarization decreases as the
stress increases in the [001] direction and the
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L
N

structure disappears at about 7 x 10° dyn/cm?,
while the amplitude for perpendicular polarization
does not change with stress. From these results,
we can obtain information about the location KO of
the critical point related to the S;; structure if we
assume the high-symmetry critical point. First,
the A critical point with U, symmetry, the A (or

L) critical point with U, (or U,.) symmetry, and the
Z critical pointwith U,, U,, and U, symmetry maybe
ruled out, since these critical points are strainde-
coupled and, therefore, the optical matrix elements
will not be changed by strain.’ Second, the A

(or L) critical point with U, (or U,.) symmetry may
be ruled out, since the observed energy shifts and
amplitude changes of the S;; structure are much
different from those of the S; structure, which is
attributed to the critical point of this symmetry.
Third, the I' critical point with U,. symmetry

(T'Y, - ¢ in Si) may be ruled out, since the theo-
retical equations for the I transition cannot explain
the amplitude changes for [001] stress. From Eq.
(3.49) in Ref. 9, the ER form factor F for [001]
stress and parallel polarization may be written
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FIG. 9. Amplitude changes of the positive peak of the
Syi structure as a function of uniaxial stresses along (a)

the [001] direction and (b) the [111] direction. Solid lines
are obtained for #L T and dashed lines for#|| T .

1
F,|=F[wn=z(f°+ 2\/\—/3—7(81,—312)Tf3>, (4.1)

and for perpendicular polarization,

Flemolz'ﬁ'<f0‘\\//_-2_3-'(311"512)Tf3>- (4.2)

Thus, (AR/R), for [001] stress should increase by
% times less than (AR/R), if (AR/R), decreases.
The remaining high-symmetry critical points along
the A axis with U; symmetry (A%~ A¢ near I in Si)
are now more likely to explain the experimental
results due to the manifold splittings for [001)
stress as shown in Table III. The more detailed
analysis, however, is difficult, since the observed
energy shifts and amplitude changes under stress
are quite small. We may conclude at the present
stage that the S;; structure is due to the A critical
point with U, symmetry if we assume high-sym-
metry critical points. This assignment does not
conflict with the results of the symmetry analysis
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in the absence of strain. The effective mass re-
lations are pp/p; =1-3, pr>0, and p; >0 in this
case.

V. DISCUSSION

The experimental results of this paper obtained
from the line-shape analysis in the absence of
strain are summarized in Table IV, together with
the data previously obtained with other modulation
techniques. The critical-point energy andthe phen-
omenological broadening energy can now be ob-
tained very accurately from ER line shapes; these
values are estimated by Aspnes’s three-point
method® and more precisely by a method of least-
squares fit. When two or more structures inter-
fere with each other, however, which is usually
seen in the higher-energy region, the best-fit
analysis becomes more complicated. Our results
of the 3.4-eV structures of Si disagree in some
points with the results obtained by Grover and
Handler'* using the electrolyte ER technique in the
flatband condition. The values of the critical-point
energies determined in this work are somewhat
larger than those delrermined by Grover and Hand-
ler. This is probably due to the difference be-
tween the line-shape functions used in the best-fit
analysis (the two-dimensional electro-optic F and
G functions®® in their analysis and the low-field
resonant functions® in this analysis), and also due
to the broadening effects in such a high-energy
region. Moreover, Grover and Handler have shown
that the main structure was contributed to the two-
dimensional M, critical point, and the weak structure
in the lower-energy side to the three-dimensional
M, critical point from the best-fit analysis on the
ER line shapes. The former result is consistent
with our result, i.e., the three-dimensional M, or
rather two-dimensional M, critical point, but
the latter one is not. The results of other authors
listed in Table IV are in agreement with our re-
sults.

The 3.4-eV complexities of Si have been the ori-
gin of some controversy for a long time, as de-
scribed in Sec. I. In this paper, the main structure
in the higher-energy side is attributed conclusive-
ly to the AY— A¢ (or LY, - L¢) transition from the
symmetry analysis described in Sec. IV A and from
the uniaxial-stress effects on the low-field ER
spectra described in Sec. IVB. On the other hand,
the weak structure in the lower-energy side is not
determined conclusively, although at the present
stage it is considered to be attributed to the AZ
-~ Af transition near the I point. These results are
in agreement with that obtained by Pollak and
Rubloff'® from the uniaxial-stress effects on the
wavelength-modulated reflectance spectra. The
above assignments are also supported by the re-

sults of the composition dependence of the Ge-Si
alloy system reported by Kline et al.® They have
found that the E, and E{ doublets of Ge merge into
the 3.4-eV structures of Si, indicating that both
the A and A transitions may be responsible for this
energy region.

Our measurements can also be compared to the
energy-band-structure calculations of Si. In the
theoretical calculations, the relative position of
the energy levels rather than their precise values
may be important, and the results calculated by
Herman et al.,?° Dresselhaus and Dresselhaus,?!
Saravia and Brust,* Van Vechten,” Zucca et al.,*®
Kane,’® and Van Dyke (orthogonalized plane wave)®®
may be consistent with our experimental results
for the structures in the energy region around
3.4-eV. It has been pointed out by Kane,*® and by
Saravia and Brust,” that the A, valence and the A,
conduction bands of Si are nearly parallel from the
T’ point to the L point in the BZ. The reduced-
mass relations p,<<|u,|, wy>0, and p, <0 at
the A3-Af (or LY,-L¢) critical point obtained from
the polarization anisotropies of the low-field ER
spectra verify these situations.

The deformation-potential parameters determined
from the stress effects of the AY-A¢ (or L%,-L?)
critical point are summarized in Table V together
with other experimental results of Si and Ge. The
values of the deformation parameters D} and D3
determined from measurements under [001] stress
are in good agreement with those determined by
Pollak and Rubloff.'® However, the values of D}
and D] determined from measurements under [111]
stress are smaller than those determined by them.
It is probably due to the fact that the values in this
work were obtained in a relatively low-stress re-
gion, while the values in their work were obtained
in a high-stress region. These four values are in
agreement with those determined by Sell and
Kane®® for the E, structure of Ge, which may be
due to the analogy of the crystal structure between
Si and Ge. The pressure coefficient dE /dP is cal-
culated from the pair band hydrostatic deformation
parameter D] in the form

%;—\/’5 Di(s,, +2s,,), (5.1)
and the value determined in this work is also listed
in Table V, together with previously reported ex-
perimental and calculated results for comparison.
We find good agreement between our value and the
other experimental and calculated values within
the limit of our experimental errors.

Finally, we wish to point out the possibility that
the weak S;; structure is contributed by the critical
point located off the high-symmetry points and axes
or by some critical-point set located at differ-
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ent points in the BZ. With respect to this point,
Saravia®® has shown in his calculations that

the weak structure is produced by some critical
points surrounding the I" point rather than the
high-symmetry one and that the piezo-optical prop-
erties, especially the changes for [001] stress and
parallel polarization, are explained by this crit-
ical-point set.
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