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A theory is presented in which the effect of the dynamical theory of diffraction on inelastic one-phonon peaks
is taken into account to the first order in neutron-phononinteraction. In this theory, the distorted-wave Born
approximation for the neutron-lattice Hamiltonian is used; the inelastic scattering amplitude for a phonon is

then shown to be a coherent sum of the inelastic amplitudes due to all the plane-wave components of the
Bloch waves that form the neutron wave function in the crystal under the stationary lattice condition. For this

purpose, all the plane-wave components of the dynamical theory of the elastic scattering are on equal footing
in determining the inelastic amplitude. The result is then a wavelength- and thickness-dependent structure in

one-phonon peaks. An experimental configuration is suggested for observing Pendellosung effects in one-

phonon peaks.

INTRODUCTION

Thermal neutrons, when used as probe particles,
differ from the other probe-particle beams, such
as x rays and electrons, in two important re-
spects. One is that the spinor nature of the neu-
trons facilitates the determination of the magnetic
structure of the target material. The other is that
the relative ease and accuracy with which one can
do the energy analysis of the scattered beam make
it possible to measure one-phonon cross sections
accurately and thus obtain excitation spectra of
the lattice. In' paper I we discussed the elastic
scattering (diffraction) of the spinor neutron from
a general magnetic lattice. In the following we
discuss the effect of the dynamical theory of dif-
fraction on the coherent inelastic scattering of a
neutron.

In the past, the effect of thermal vibrations on
the scattering from a solid has been investigated
from two different points of view. The investiga-
tors in one category' ' have aimed at determining
the effect of thermal vibrations on the elastic
peaks from a static lattice. The important fea-
tures of this approach have been rather nicely
elucidated by Yoshioka, ' who treated thermal vi-
brations as giving rise to an extra, complex peri-
odic potential on top of the periodic potential of
the static lattice. These complex potentials, then,
modify the profile of the elastic Bragg peaks, be-
sides introducing the Debye-Wailer factor. All of
these treatments neglect the correlation between
the displacements of different atoms that are
caused by thermal vibrations. From this point of
view the contribution of thermal vibrations as de-
tailed in these treatments can be described as an
incoherent contribution to the Bragg peaks.

The papers in the second category' ' deal with
the problem of explicitly determining the profile

of the inelastic peak. The interest of diffraction
theorists in this problem was stimulated by in-
vestigations of the plasmon peak in high-energy
electron diffraction. This peak appears in the
energy-loss spectrum of the transmitted primary
beam. Two slightly different methods of treating
this problem have been given by Howie' and by
Fujimoto and Kainuma. ' Both methods lead to the
same physical result; that is, they give a struc-
ture in the energy-loss profile of an inelastic
peaks, which is dependent on thickness or incident
wavelength. When electrons are the probe parti-
cles, however, the structure is somewhat washed
out because of integration over the energy window
of the detector. Only with thermal neutrons can
one obtain the precise energy-momentum resolu-
tion of a single phonon; there one can expect dra-
matic results.

In the following, we discuss the one-phonon co-
herent inelastic scattering of thermal neutrons
from a nuclear lattice. We seek to determine the
effect of dynamical diffraction on the inelastic
peak, and in particular to explore the situation in
which it might be possible to observe a Pendel-
losunI, phenomenon in the inelastic peak. We base
our treatment on the ideas given by Fujimoto and
Kainuma. ' Section I deals with the Hamiltonian of
the neutron-lattice system and a suitable time-de-
pendent wave function, which we use in computing
the transition rates. In Sec. II we determine the
intensity profile of an inelastic one-phonon peak.
Section III deals with an inelastic Pendellosung ef-
fect, and Sec. IV is the final discussion of the re-
sults.

I. HAMILTONIAN OF THE SYSTEM
AND TIME-DEPENDENT WAVE FUNCTION

We write the Hamiltonian of the neutron-lattice
system as follows:
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We have written the crystal potential due to the
motion of ions in the harmonic approximation. We
have expressed the neutron potential energy in
Fermi-pseudopotential form. 'o Also, we have as-
sumed for simplicity that nuclei with identical
scattering amplitude b and mass M occupy the sites
of a Bravais lattice. If we write the lattice coor-
dinates as R, = l + u, and make the Taylor expan-
sion of 6(x- R,) for small u„ the Hamiltonian be-
comes

1 h 8 ~ 2wh'
H= —. —+ Q bb(x I)+Q-a, a,h+(q)

2m 't ~x
T

m

ed-wave Born approximation.
The eigenstates of H, are given by $„(x)IIÃ,]),

where p~;(x) is a Bloch wave function (eigenfunc-
tion of Ho„) and (N,}is a phonon occupation dis-
tribution. The eigenstates P~;(x}, however, do not
provide the most suitable basis for the expansion
of 4'(x, t), because they do not explicitly contain
boundary conditions at z =0 and z =D. Therefore,
we consider two orthonormal sets that satisfy
boundary conditions and are defined in the follow-
ing manner:

gn, ,U,'. =6„„

(6)

x[te ~ (q- g)e' a~

+ - ge (q+g)e III x t]

(2)

b' 8' 2wh'
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Ho +Ho

and its eigenstates as bases for expansion of the
wave function 4(x, t) of the total Hamiltoman, sat-
isfying

In formulating a dynamical theory, it is advanta-
geous to express the Hamiltonian in spatial coor-
dinates of the neutron. In the above, we have used
a rigid-ion approximation' in writing the interac-
tion of the neutron with the nuclei of the lattice.
This approximation is justified by the extremely
short-range nature of the neutron-nucleon interac-
tion.

Since we are interested in the inelastic transi-
tion rate, we use time-dependent perturbation
theory. We take the unperturbed Hamiltonian

0 "«(x)= Q 'ny;(x)

Parameters y, and I' are explained in Paper I.
The orthonormality of wave functions 4 and 4 "o&

kg~
can easily be proved by the procedure outlined in
the Appendix of Ref. 8 (the proof has been detailed
in Ref. 16). The subscript b, refers to the wave
vector, in vacuum, of the neutron for which the
Bloch waves p~; are solutions of Ho. Thus 4~o~

represents the wave function (in the crystal) which,
at the boundary z = D, matches the wave function
(plane wave) of the neutron scattered in the direc
tion k, +g, and satisfies the boundary condition.
In elastic diffraction theory (Paper I), it is the
amplitude of 4« that determines the intensity of
the diffracted wave i.n the g direction. In the in-
elastic case, however, the interaction Hamilto-
nian HI causes transitions between different states
represented by 4'~o~ and the initial state, chosen
appropriately from the set 4+ .

We write the wave function~4(x, t) as

@(x, t) = Q C~ nr (t)4a (x)(E,))

(H, + H, )4 (x, t) = ib —4'(x, t). x exp —— E~+E~ I,

The above division of the total Hamiltonian is dif-
ferent from the usual one. Usually the unperturbed
part includes only the kinetic-energy term of
the neutron. In our case, since we already know
the exact solution of elastic scattering from the
static lattice (Paper I), it is advantageous to make
this type of division along the lines of the distort-

y, g, SqXXq

x exp —= (Z„,+E„,)t, (8)
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The initial coaditions on the expansion coefficients
C are

C~ „(f=03 =1, C„,~'(f =0) =0.

From first-order perturbation theory,

e-(i /h)h, Sg

C,o~ {f)= 0(fP%'~ffg,e, )

where
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Here V is the volume of the crystal, and V,~ is de-
fined by Eq. (2). In the following discussion we
limit ourselves to the measurement of the energy-
loss inelastic peak corresponding to the creation
of a phonon in the crystal. The energy-gain peak
can be considered on coInpletely analogous lines.
To proceed in computing the transition matrix
element {¹0"$1/4'&, we take our measurement
geometry as defined in Fig. 1. %'6 assume that
the amplitude of the incoming wave is unity and
therefore, in the incident-wave orthogonal set

the only nonzero men1ber is C~ . For the
)(,'0 0'

incident side, the choice of zero for the reciprocal
space is a natural one; for the exit side, however,

G~~
q

0/
g

Kinematical eave vectors—
Dynamical wave vectors

FIG. 1. Schematic illustration of weave vectors for
kinematical and dynamical theory in the inelastic cross-
section measurement for a phonon wave vector q. Dy-
namical effects are due to only hvo points, 0 and 6, on
the Ev aid sphere.

the choice is arbitrary. We take k,',. to be the
principal exit-side wave vector; others are de-
fined from g' as the reference. The vector g' is
the reciprocal-lattice point at which energy-mo-
Inentun1 conservRtlon colldltlons Rre sRtlsf led fol
the phonon wRve vector q under lnvestlgRtlon.
Thus, for example, if the inelastically scattered
wave (k —g' —q) is Bragg scattered by lattice
planes h', then in the expansion (5) g = g' and the
plane-wave amplitudes U', and U', ,„, are the only
important amplitudes in the Bloch wave Q~, rep-
resenting inelastic scattering at g'.

With the above considerations from Eq. (5), (I},
and (10),

&Wzl&= -D Q I',*,««(q) Q &;.U«a,'.« IP,.*,«,
M' ii'

5{ko+q —k,',,),
(2(()'

„exp(f~k,"'D) —1

i 4k,"D

Here 8 is the surface area of the crystal, which
we have assumed to be so large that the limits in
the integrals over the surface coordinates in the
matrix element are essentially -~ and+~. Also,
dk," =(y( —q„—y" ) in the notation of Ref. 1, and

q„ is the normal component of the phonon wave
vector q. The subscript t in the 6-function argu-
ment denotes the tangential component of the vec-
tor argument. From Eq. (11) the rema, rkable dis-
tinguishing features of dynamical theory should be
obvious: (a) We no longer have the conservation
of linear momentum in the direction normal to the
crystal surface; and (b) in the inelastic amplitude,
alE the plane-wave components, Ui and U", ,„„con-
tribute with their respective annplitudes a,- and
o', , «, . lt is the last factor in Eq. (11}that will give
the thickness- or wavelength-dependent structure
in the inelastic peak. If the crystal were thick
(nk,"D» 1), we would get a 6 function for the
conservation of the normal component of the mo-
mentum.

Equation (11), together with (5) and (7), deter-
mines the matrix element of interaction. There-
fore, the time-dependent amplitudes of various
sta'tes 111 the expansion of wave function 4(x f) ln

Eq. (8) become known.

II. INELASTIC PEAK INTENSITY

The rate of transition to a group of states be-
tween the neutron energy E+ and E& + ~ is

g«

given by
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xp„(E«i )dE„, . (12)

=
k Q Q i;*"« -«(q)o"ofi«ol', fJ,".«

q hh' ii'
n

1 exp(i&k,"D) —1 ' „
zD ~k,"'

(13)

In this equation the summation is over those val-
ues of q„ that satisfy the energy-conservation con-
dition and the conservation of the tangential com-
ponent of the momentum. Figure 2 explains the

q„s that are relevant at energy Eh, . The loci of
OE

various wave vectors have been denoted by their
energy. The circles in Fig 2 are in fact projec-

z=0

Here p„(E ) is the density of neutron states at
g

the wave vector k' .. We shall assume that our in-
elastic peak is very sharp in the energy variable,
and that we have set our detection equipment in
such a way that the energy-conservation condition
is satisfied for a given q. In our choice of q we
are guided by the kinematical approximation of
our dynamical theory. The transition rate is then
given by

tions of the spheres on the plane of observation,
i.e. , the scattering plane. The only phonon wave
vectors that satisfy the conservation of the tan-
gential component of the momentum as well as the
conservation of energy are +q„and -q„ in Fig. 2.
All other phonon wave vectors give a nonzero out-
of-scattering-plane component to the exit-region
neutron wave vector. The contribution of q„enters
in the exponential factor in Eq. (14). The values of
y' and y' differ by very small amounts (5, and 5I, )
from their kinematical counterparts I', and I'p,
Therefore, unless the q„values (determined un-
ambiguously by the setting of the detector) a.re
close to F, —I'o, (i.e., almost satisfying the con-
servation of the normal component of momentum),
the transition rate would be essentially zero, be-
cause of the exponential factor and the associated
denominator. In other words, violation of the con-
servation of the normal components of the wave
vectors is tolerated only to the order of splitting
of the neutron wave vectors caused by elastic in-
teraction with the static lattice. In particular, if
the detector is oriented to receive the sharp peak
of a certain phonon Q, and there is no Bragg scat-
tering of the wave vector ko,, from any set of lat-
tice planes, then exp(iiik," D) becomes simply
e"i, where 0,- =y,. —I'o. The angle of orientation
of the detector is determined by kinematical con-
siderations; in Fig. 2, for the given energy Eh;, ,
the proper direction is shown by a dash-dot line.
The exponential factor is the same as in the dy-
namical theory for elastic diffraction (Paper I).

From the above considerations, the intensity of
the sharp inelastic peak, when the narrow energy
window of the detector receives all the peak, is
given by

2w ~,, exp(iAk,"D) —1 '
Sk Dii' q

(14)

B,', , = V*+h -h q n'oU„'n';, , U",,„*„
hh'

—y yf q P Pl
q s g' n c g'

(15)

z 0

FIG. 2. Geometrical construction for determining the
phonon wave vectors + q„and -q„ that contribute to the
inelastic dynamic effects at a given angular setting of the
detector.

Equation (14), together with Eq. (15), makes up
the most general expression for the intensity of
the inelastic peak. It leads to a complicated struc-
ture in the inelastic peak if the U factors —i.e.,
amplitudes of the plane-wave components in the
Bloch waves —are non-negligible for more than
two reciprocal-lattice vectors in the incident side
as well as the exit side. For the two-beam ap-
proximation, various factors of Eq. (15) are easily
determined; they are tabulated in the Appendix.

III. INELASTIC I'ENDELLOSUNG

In the following we specialize the general ex-
pression (14) to a particular situation that shows
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some interesting features.
There are two configurations of experimental

geometry in which the thickness dependence of the
peak intensity takes a comparatively simple form:
(a) The incident wave vector satisfies the Bragg
condition only for the set of planes denoted by H;
the inelastieally scattered wave vector k,', does
not satisfy the Bragg condition for any plane. (b)
The incident wave vector does not satisfy the
Bragg condition, but the scattered wave vector
satisfies the Bragg condition for the reciprocal
vector H'.

The two cases are completely analogous. %e
discuss case (a) first. We further simplify mat-
ters by assuming that the crystal is oriented so
that the reciprocal-lattice vector H in question is
parallel to the incident-side boundary z =0, and
we define the scattering plane by y = 0. Then the
inelastic intensity around the reciprocal-lattice
vector g' is given by

2 ei6~D y e462D

Equation (17) shows clearly the physical effect of
dynamical diffraction on inelastic scattering. The
inelastic amplitude consists of four terms, each
of which represents the role of one of the four
plane-wave components (with their proper ampli-
tudes) that make up the two Bloch waves (k' and k')
of the elastic diffraction from the set of lattice
planes H. There are two distinct I'endellosung
periods, corresponding to 5, and 52. This situa-
tion is different from the Pende/losing in the elas-
tic theory. There, the period is proportional to
6, —52=4 and depends only on V„. Here, the mean
lattice potential V, of the neutron-lattice interac-
tion is also important. The neutron-phonon inter-
action terms V(q) that enter into Eq. (17) are con-
sistent with this physical picture of inelastic scat-
tering.

We can rewrite Eq. (17) as follows:

I„=—,
"

IV;.(q)l'

8~6,D s62D g 2

+v;. „(q)( „rr'„., + „U',
z5,D

(18)
sin((), D/2) sin(()2D/2)

((),D/2)(8, D/2)

If we write V„=(V &)*=~V/&' ", then I) =-e
and w, =+e ""(see Appendix). The intensity is
then given by

2v 1 ~ ~;(,n/, ) sin(8, D/2)

(18)

&
S(ll(5 ((/2))

(,D/2

V~ (q)
i() ((6 D/~) sm(5)D/2)

(),D/2

+ i(eD ()))/s2m(~2D/2)
|)j7/2

(17)

~=8, 8, = ~V„~/r, .
Equation (18) shows that the structure in the in-
elastic peak, which is dependent on thickness or
incident wavelength, is much more complicated
than that in the elastic peak. However, there are
certain situations in which some simplifications
occur. If V, =

~ V„~, then 5, =0 and there is only
one Pendell'osung period. The intensity is then

I,= —~V (q)~' x — ~1 —p~
' + ~1+p~ +2 (1 —~p~) cos ' +21m sin

Fortunately this restriction, V, =
~ V„~, can be

re~.I~ed in many cases. For a diamond-type
structure (e.g. , Si and Ge), the requirement trans-
lates into hkl unmixed and 0+ 0+ l =4n, where n

is an integer. For such a structure, (220) is the
lowest-order peak that would satisfy the above
restriction.

In Eq. (20), if p =0 the intensity is given by
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FIG. 3. Intensity variation of the one-phonon peak.
Here x=DA. /48cos0& for Si(220);D is in p, ; A is the inci-

Q

dent neutron wavelength, in A; and 9~ is the Bragg angle.

(21)

where x=—~5,D. The function within the brackets
has been plotted in Fig. 3. Although the intensity
variation with respect to thickness is somemkat
similar to the Pendell'osung phenomenon, the first
extinction distance is given by t),D(2 =2.39, com-
pared to 3.14 (v) for the elastic Pendellosung ex-
tinction distance. The function, however, assumes
the value 1 at x =nv, the zeroes of (sin@/x)'.

For a diamond-type lattice, the realization of

P =0 is demonstrated in Fig. 4. The figure, though
schematic, has been drawn approximately to scale.
The figure indicates the projection of the reciprocal
lattice of Si on the (110) plane. H=(2, 2, 0) and

g = (1,1,1). In order to get p =0, we find tl such
that &„ the polarization vector, is perpendicular
to the scattering vector q+ g' —H. This can be done
done, for example, by drawing the "scattering
surface"'2 a,round (ill) for a suitable incident
wave vector and then finding the intersection of
this surface with a sphere drawn on the vector
g —H. The point of intersection gives the desired
q for longitudinal phonons. For illustration, we

have taken the approximate dispersion curves of
LA phonons for Si from Ref. 13 and shown the
trace of the scattering surface on the (110) plane.
Also shown is the first Brillouin zone. For the
TA phonons, the geometrical construction mould
require determination of the intersection of the
scattering surface trace with the vector g' —H

itself.
From the above considerations, the following

experiment can be suggested for the observation
of the Pendellosung phenomenon in the inelastic
peak. Si or Ge crystals in the form of thin paral-
lel plates of different thicknesses should be cut for
the observation of the (220) elastic peak in the
symmetrical Laue configuration. The requirement
can be satisfied with a crystal grown in the [100]
direction and sliced along the length of the axis.
The incident wavelength should be so chosen that
no other elastic peak is excited. In order to ap-
proximate our theoretical formulation as closely
as possible, the energy-momentum window of the
detector must be narrowly centered around the
maximum of the inelastic peak of the phonon, de-
termined from a construction like that in Fig. 4.
The same experimental configuration mould also
give the excitation distance of the elastic (220)
peak; therefore the two extinction distances can
be compared easily. For the incident-neutron
wavelength used in our example, 1.25 A, the ex-
tinction distance is 19',m; for the elastic peak it
is 25' m.

In the above we have discussed the energy-loss
peak. The treatment of the energy-gain peak is
completely analogous, and gives the same extinc-
tion thickness if the restrictions described in the
preceding paragraphs are met; the proper q at
which the Pendell'osung mould be observed, how-
ever, mill be different. Similar treatment applies
to case (b), in which the inelastically scattered
beam satisfies the Bragg condition for H' planes.

IV. CONCLUSION AND DISCUSSION

FIG. 4. Projection of reciprocal lattice of Si on (110)
plane. See text for details.

We have presented a simple picutre of the first-
order effects of the dynamical theory of diffraction
on one-phonon inelastic scattering. The amplitude
of this scattering is the coherent sum of the am-
plitudes due to all the plane-wave components
that form the exact mave function of the neutron
in the static lattice. This wave function depends
on the incident mavelength and other parameters
of the experimental geometry. The amplitude of
the inelastically scattered wave is further subject
to dynamical effects of the static lattice under
favorable experimental situations. We have taken
into account the scattering of the neutron from
the static lattice to all orders by suitable par-
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titioning the Hamiltonian of the neutron-lattice
system, but we have treated the inelastic scat-
tering to the first order in the neutron-phonon
interaction. This approximation can be justified
on the ground that neutron-phonon interaction
is of the order of 1/N'~' times the interaction of
neutrons with the static lattice. Thus our ap-
proximation becomes quite good if the multiphonon
contribution to the inelastic peak is negligibly
small.

The formulation we have given shows the ad-
vantage of the distorted-wave Born approximation
(DWBA) over the simple Born approximation. The
latter considers all. of the interaction as a pertur-
bation over the kinetic energy. Therefore, if one
uses the field-theoretic language to describe the
ine lastic s catter ing, and starts with 0r een's
function for the unperturbed Hamiltonian as due
only to the kinetic energy of the neutron, one has
to sum an infinite order of diagrams to arrive
at the result that the Bloeh wave function com-
pletely describes the interaction in the static
lattice. In DWBA we start with the Bloch wave
function and the associated Hamiltonian as un-
perturbed quantities, and avoid the summation
of diagrams. '4 In our case, we bel. ieve, this is
the central advantage of DWBA over the usual.
perturbation theory.

The Pendellosung phenomenon in the inelastic
one-phonon peak, which we suggested in Sec. III,
cannot be observed in conventional x-ray and
electron diffraction arrangements. This is so
either because the energy resolution of the de-
tection equipment is not fine enough to measure
accurately the one-phonon peak in the inelastically
scattered beam (x rays), or because the mag-
nitude of the incident wave vector is such that the
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APPENDIX

Factors in the transition matrix element cor-
responding to the incident side:

1
1 0 0 (1+ Iw, l')"

w, Iw, j'
(1+jw I')'~' 1+Iw, j' '

2=+2,0Uo =
2

W2 W2

(1+ jw I')" (1+ Iw I')" 1+ Iw. l' '

1a, 0U =
(1+ Iw, I')"

1 W+1

(1+ Iw, j')'~' 1+ jw, j' '

w,* 1 w~

(1+ jw, j')' ' (1+ jw I')' ' 1+ jw I' '

For the symmetrical Laue configuration at ex-
actly Bragg incidence,

2rs, , + v, ~jv~

We have assumed real scattering amplitudes for
the nucleons of the lattice.

two-beam diffraction conditions cannot be satisfied
exclusively for high-energy electron diffraction.
For low-energy electron diffraction, they can
be satisfied exclusively, but transmission-type
experiments are ruled out by a very low depth of
penetration of electrons. The experimental con-
figuration that ShulV' used for his elastic Pen-
de/Eosuug could perhaps be used to investigate
the feasibil. ity of the experiment suggested here.
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