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Variational bounds on some bulk properties of a two-phase composite material
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A variational principle due to Hashin and Shtrikman is used to obtain theoretical upper and lower bounds on
the effective bulk dielectric constant c, (or an analogous property such as magnetic permeability, electrical or
thermal conductivity, or a diffusivity} of a two-phase macroscopically homogeneous composite material from
information about another similar eA'ective bulk property. For the case of a composite whose macroscopic
symmetry under rotations is either isotropic or cubic, we obtain i new and rather simple pair of bounds that
are usually considerably better than any of those that are presently obtainable under these conditions.

I. INTRODUCTION

The problem of finding absolute bounds on the
effective bulk dielectric constant e, (or the mag-
netic permeability, or the electrical or thermal
conductivity, or the diffusivity of some agent) of a
macroscopically homogeneous composite material
has been approached by several different methods.
The simplest of these bounds is the mell-estab-
lished result'

( 1/&) «,&(e) ~

The averages introduced here are simple arith-
metic averages over the distribution of the pure
phases in the composite

where p; is the volume fraction of the phase i and

&, is its dielectric constant.
By assuming that the composite is macroscopi-

cally isotropic, in addition to being homogeneous,
Hashin and Shtrikman' obtained greatly improved
bounds on e, . For a two-phase medium, these
bounds are given by

&e,&&2+
l/(e2 — g)ep+g/ g3el/(Kg —tg)+pm/3e2

for &, & &,. These bounds were obtained by using a
variational principle. The authors were able to
show that, for the two-phase system, these are
also the best obtainable bounds if one assumes only
homogeneity and isotropy.

In order to obtain better bounds on &„ one must
have more information about the microscopic ge-
ometry of the mixture. If such additional informa-
tion is available in the form of correlation func-
tions of e(r), the local dielectric constant, then
one can construct improved trial functions for use
in various variational principles and thus derive

improved bounds. Several calculations of this
kind have been made in recent years. ' '

In a different approach, Prager' used the in-
equalities of Dirichlet and Thomson to incorporate
infoxmation from measurements of other effective
bulk properties of the sgme two-phase material in
order to improve the bounds on e,. This could be
done both for systems with macroscopic isotropy
and for systems without it. The x'eason why such
measured values can lead to improved hounds on
g, is that they provide implicit information about
the microscopic geometry of the material undex
investigation that goes beyond the inforxnation in-
cluded in the volume fractions and in the macro-
scopic rotational symmetry.

In yet another approach, an analysis of the con-
vexity properties of the function e, (e„z„.. . )
enabled the present author' to obtain improved
bounds for both two-phase and multiphase materi-
als by again using known values of other effective
bulk properties of the same material, as well as
the bounds of Hashin and Shtrikman or of Eg. (l).

In this paper, we will show that the variational
principle of Hashin and Shtrikman can also be ap-
plied to handle information about other bulk pro-
perties of the same two-phase composite. For
cases where there is just a single bulk property
whose value is known, we have been able to derive
explicit upper and lower bounds on f, which are
given analytically by simple rational expressions
involving the various e's of the problem. For the
particular case of a two-phase coxnposite whose
macroscopic rotati. onal symmetry is either iso-
tropic or cubic, these bounds were apparently
never obtained before. Moreover, they are always
better than the bounds provided by the methods of
either Ref. 6 or Ref. 7, and in most situations the
improvement is quite considerable.

The outline of this article is as follows. In Sec.
II we review the variational principle of Hashin
and Shtrikman in its two forms. In Secs. IIIA-IIIE
we apply this principle to get bpunds for &, in a.
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series of situations by choosing in each case an
appropriate trial function to be used in the varia-
tional calculation. The bounds obtained in these
subsections are mostly either not new, or not in-
teresting in themselves (note, however, the sim-
plified and symmetric form that we have obtained
for some previously established bounds in Sec. III E).
They are discussed partly for didactic reasons-
in preparation for the last subsection. In Sec.III F
we use the methods and the strategy developed
previously in order to construct bounds on &, for
a cubic or isotropic composite with one known
piece of information on some other bulk property.
We obtain a greatly improved set of one upper and
one lower bound on e, for this case [see Eqs. (69)
and (76)], and that is the main practical result of
this paper. In Sec. IV we discuss some of the lim-
itations of this paper —mainly our having to rely
so much on numerical experimentation in the de-
rivation of some of the analytical results. We
point out that if a better method of analyzing the
variational expressions can be found, then the
scope of our results might very well be consider-
ably expanded. In the Appendix we present a de-
tailed calculation of one of the terms in the varia-
tional integral, using the trial function of Hashin
and Shtrikman. We show that this term, which was
already evaluated in Ref. 2 for an isotropic system,
can be evaluated also for a cubic system, leading
to the same result. We also show that this result,
which is crucial for obtaining the bounds of that
reference, is only valid when the trial function of
Hashin and Shtrikman is used. When other trial
functions are used, the above-mentioned term must
be evaluated by a different method.

II. REVIEW OF THE VARIATIONAL PRINCIPLE

S-=Ep+E' . (8)

E,= E(r}dr—,

e,E,= — e (r)E(r)dr, (10)

1 8mU~e,E,'= — c(r)E'(r)dr =

A similar variational principle exists' for the
function

R = —(I/eo)T = -COT

where here and henceforth we denote reciprocal
dielectric constants by a tilde

In these equations, E(r) and D(r) are the local electric
field and displacement vector in the system, re-
spectively, e(r) is the local dielectric constant,
which varies from phase to phase in the composite
material, and Ep is an arbitrary constant. Assum-
ing that E(r) is produced by fixing the potential at
the surface of the system, then E,(r) is the field
that would result from the same surface potential
if the system were homogeneous rather than com-
posite. The stationary value of U~ for unrestricted
variations of T, denoted by U~, is equal to the
electrostatic energy stored in the volume V. Further-
more, Ur is always an upper (lower) bound on Uz
if e,& e(r) [0&&,&a(r)].

The effective bulk dielectric constant of the com-
posite E, is defined most conveniently by consider-
ing a situation where E, is a constant (e.g. , the
composite material fills a parallel-plate condenser
whose plates extend to infinity and are held at a
fixed potential difference). In that case we can
write

The variational principle of Hashin and Shtrik-
man" states that the following integral over the
entire volume V of the system (throughout this pa-
per, r denotes a three-dimensional vector, and dr
is the appropriate volume element)

1
Ur =—— dr aQ,' — +2T E,+ T E', (4)

p

subject to the subsidiary conditions

I = I/e .

The following integral,

R2
U =— dr f+,'— +2R D, ~ R'D')

8m & —Ep

subject to the subsidiary conditions

divD 0 Ep curlD' = —curlR,

(12')

(14)

E'= -VP', EpdivE'= -divT, (5)
and to the following boundary condition on the nor-
mal component of D',

and the boundary condition

P'=0 on all surfaces, (6}

is stationary with respect to arbitrary variations
of T for

DI =0 on all surfaces,

is stationary with respect to arbitrary variations
of R for

(16)
T = (f —eo)E = D —eoE,

where

(7) where

D=-Dp+ Dl (16')
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If we assume that the local electric displacement
vector D(r) is produced by a system of fixed
charges at the surface of the system, then D,(r) is
the displacement vector that would result from the
same charges if the system were homogeneous.
Again, the stationary value of U~ for unrestricted
variations of B is equal to the electrostatic energy
Uz stored in V, and Uz is always an upper (lower)
bound on U, if i,& C(r}[0&C, & g(r)].

Assuming that D, is a constant (e.g. , the compo-
site is inside an infinite parallel-plate condenser
with a fixed charge on each plate), the effective
reciprocal dielectric constant i, now satisfies

D, =- D(r) Cr,

dix, their evaluation of that term is in fact valid
even when the macroscopic rotational symmetry
of the system is only cubic. On the other hand, we
show that their result is not valid in general un-
less T(r) has a fixed value in each phase.

A stationary value of U~, found by varying the
parameters T, , leads to an approximation e*(e,)
for c,. Noting that & is a monotonic increasing
function of &„ the authors obtained the best upper
(lower) bound on e, by choosing e, equa1 to the
largest (smallest) of the pure-phase e, 's. For a
two-phase system these bounds are given by (3).

If the same kind of trial function is chosen for B
and the same procedure is followed, one again
produces these same bounds.

e, D, = — g(r)D(r) Cr,

1 -, B~U,
g,D,'= — e(r)D'(r)Cr =

III. VARIATIONAL BOUNDS ON e~ FROM VARIOUS
TRIAL FUNCTIONS

A. T = const (or R = const)

Taking a constant value as a trial function for T,
T =—TpEp, (20)

e*=e,+(I/(e —e,)) ' . (22)

Differentiation with respect to &p shows that this
stationary E ~ is a monotonic decreasing function
of &p. Hence we obtain the best upper and lower
bounds from (22) by choosing &0= ~ and @0=0, re-
spectively. In this way we regain the bounds of
Eq. {1).

If we choose a constant trial function B,

and using this in (4), we find the following trial
value for &,:

= eo —To( I/(6 —Ko) )+ 2T() .
The stationary value of this expression with respect
to variations of the parameter T, is

C. Trial function based on another measurement

A conceptually different kind of trial function is
obtained by taking

T(r) = Ta, (r ) = a[a,(r) —&',]E,(r), (24)

where a is a variational parameter and T+(r) is an
exact solution of the variational principle for the
same system {i.e. , a phase mixture with the same
microscopic geometry) but with a different local
dielectric constant e,(r} In pra. ctiee this usually
means that one is considering some other physical
property (e.g. , the electrical or thermal conduc-
tivity or the magnetic permeability or a diffusion
coefficient) for which the problem of finding the ef-
fective bulk value in the composite system is iden-
tical mathematically to the problem of finding the
effective dielectric constant. "%e assume that
in addition to knowing the value E', of e, in each of
the pure phases that make up the composite, we
also know the exact effective bulk value &,

' from a
measurement or a calculation. Note, however,
that we do not presume to know the exact form of
the local fields E,(r) or T,(r) (this is certainly the
case when e, is known from a, measurement). All
we know about T, and E. is some information about
their integrals

R:—TpDp, (23) e,'E,'= = — e,(r)E.'(r) dr,
and use this in (13), we reproduce Eqs. (21) and
(22) with all the e's replaced by the appropriate
Z s. The discussion is identical, and the bounds
of (1) are again produced.

B. Hashin and Shtrikman's trial function (Ref. 2)

Hashin and Shtrikman chose a trial function T(r)
that had a constant value T,-E, in each of the pure
phases f. In order to evaluate the last term in (4)
it was necessary to assume that the system is mac-
roscopically isotropic. As we show in the Appen-

e',E,= — e, (r)E,(r) dr .

& p d lvE ' = -a d lvT,

Since E satisfies a similar equation,

EpdlvE» = -dlvT»

(26)

(2'I)

%e must therefore try to express the trial value
of Ur that follows from (24) in terms of the known
quantities e'„e';, &,'.

To this end, we consider the equation for E',
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as well as the same boundary conditions as E', we
can write

E' = a(e0/e0)E, '= (ae0/e0} (E, —E0) .
We also note that

(28)

1
T,dr = — (e, —&'0}E,dr

x —de+ a + 2a(e, —e0).
E, ', (e0)'

&o

(30)

= (a', —C'0)E0 . (29)

Using (24) and (28) to substitute for T and E' in

(4), and (29) to calculate the integral of T„we get
the following trial value for Eq

2a
0 y

then we can solve (36) and (31}for any c0 that is
either greater or smaller than both E, and &,.
From (33) we then get upper and lower bounds on

&, that depend on &„and we can look for the best
bounds by varying a, . We have not been able to do
this analytically, since the expressions for &o and
for b are quite complicated.

By contrast, it is very easy to make numerical
experiments by evaluating the bounds from (33)
for many different choices of E,. The results of
these experiments indicate that the best bounds
are obtained when E', is either 0 or ~, correspond-
ing to T o= D, and T O=E„respectively. In those
cases, both E, and b are uniquely determined, and
therefore also e* of (33). For e'0=0, we find

f0 = (eqe0 —f0' q)/(eq —f0),

(40)

(e~ —E0) /(E —f0)+ (E0) /e0= bE~ (31)

Since we do not know the exact form of E,(r}, we
cannot in general evaluate the integral in this equa-
tion. But if we can choose E', and a new parameter
b so as to satisfy

whereas for e'0= ~ (i.e. , e'0=0), we find

f 0
= (eqe0 —e0f q)/(E) —f '0)

p E~C

(e q
—P0) (t q

—e 0)

(41)

(42)

in every one of the pure phases, then the integral
reduces to E,', and we get

Note that (41) and (42) are exactly the sa,me as (39)
and (40) with all e's replaced by the appropriate
i's. Noting that (39) can be rewritten

8*=&0 —a [bE, —(e0) /E0]+ 2a(E, —e0) . (32)

Making this stationary with respect to the varia-
tional parameter g, we find

(e', —e',)'
0 b

+
( +}0/

Por a two-phase system we can write

e(0') = f& 8&(t)+ f08&('Y}

e,(r) = e;8,(0)+ a', 8,(r),

(33}

(35)

( i 0}( 0 0} ~| ~0 ~2 ~0

whose discriminant is
+ +

E~ 62 E~ ~E

e0(fq —e0)(E0 —E0) C0 Eq

Therefore, if

(37)

where 8, (r) is equal to 1 if x is in the phase i, and
zero otherwise. For that case, (31}represents
two coupled equations for &', and b. By eliminating
b, we get a single quadratic equation for &',

we see that Eo Ey and Ep E2 always have the
same sign. Therefore, if e0 of (39) is positive,
and hence 6& 0, then e* of (40) gives an upper or
lower bound on E, depending on whether &o is
greater or smaller than E] and E,. The same is
then true of e0 of (41) and e* of (42), which now

gives a bound on the other side of E,.
However, if (39) leads to a, negative value for

a„ the above procedure breaks down. In that case,
we switch the roles of &, e„E,with those of &„
E'„E'„acting as if we know e, and are trying to
calculate bounds on &',. It is easy to see that the
transformed version of (39) must now lead to a
positive value for e,'. On the other hand, the trans-
formed version of (40) is identical with the original
form. Under the assumption that &, is known, we
are thus led to an upper (lower) bound on e', . But
since we really know &'„ this result can obviously
be turned around to yield a lower (upper) bound on
e„given again by e*—the solution of (40). Some
careful consideration leads to the final conclusion
that this e* is an upper (lower) bound on e, when
the ratio

(+ (+ D )0 (38) (t ~
e 0

—e 0e ~ )/( t ~
—e 0) (44)
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(f(e 0
—e 0e()/(e( —e 0) (45)

is negative (positive), and that one can forget about
having to satisfy 4& 0 or «p& 0. A similar conclu-
sion holds regarding the role of e* of (42) as a
bound on e, : One finds that e* is an upper (lower)
bound on e, if the sign of (44) or of

where

«8E„Eadr, 0.4 P,

(e -E' ')(e —e' ') e' 'e( )
(r}— a 0 0 0 ~ 0 0

« —«() «p

(48)

(49)

is negative (positive). Between them, Eqs. (40)
and (42) thus always yield one upper and one lower
bound on «,.

As before, if we apply the above procedure to
the other variational integral U„, we arrive again
at the same bounds. Note also that all the equa-
tions from (36) to (45) are invariant under a per-
mutation of the two phases, so that no new bounds
can be obtained in this way.

In practice, the bounds of (40) and (42), although
they are apparently new, are not very useful,
since they are not very stringent. This is due to
the fact that they include no explicit information
about the geometry of the mixture —not even the
volume fractions. Since at least that much is
usually known, and in many cases the mixture is
also isotropic, we may expect that much better
bounds can be obtained by incorporating that geo-
metrical information too. The main reason why
we elaborated on the derivation of these bounds
was in order to show how experimental informa-
tion about «', could be included when using the vari-
ational principles of Sec. G. In Secs. IIID-III F,
we will use combinations of the trial functions
discussed up to now to obtain better bounds on «,.

c, (r)=A 0&0(r)+A0 e, (r) for n0p, (50)

where

e(a 8) e(a) ~(a B)ga)
8= «(8)«( ) E( )E(')

1 2 l 2
(51)

and the subscripts 1, 2 refer, as before, to the
two phases. Consequently, we find that

8E ~ Eadr= A 8«,' '+A8 «' ' E,', 52

and the trial value for «, can be written

(~(a))2
2 b «(0) P

p ~ e 0. e
«p

(0') (8)
&&&8 A&8«e +A8a«e(8) (0 ) p p

QA «p

+2+ (e' ' —e"') (53)

For two-phase systems, this can be evaluated by
using. a trick due to Prager: we write

D. Trial function based on more than one measurement

When there is more than one known value of a
bulk property, we shall denote the appropriate «'s
and other quantities by a Greek index: «, «~),

The trial function of (24) is then generalized to

T(r)=pa T (r)=pa [e (r) —e,' ']E (r) .
(46)

The trial value «* is now a quadratic form in p .
The diagonal terms of this form can be evaluated
in the case of a two-phase system, as in (32), by
solving a pair of equations, represented by

The stationary value of this quadratic form, which
still depends on e0, provides an upper (lower)
bound on e, when &0&e (0&&0&&}. Numerical ex-
periments indicate that when «, is chosen to give
the lowest upper bound or the highest lower bound,
the results for «p «p b and «* are all rational
functions of the various «'s entering the problem.
Moreover, the optimum values of «p «p, and b

are independent of «,' '. We have been unable,
however, to determine the analytical expression
for any of these quantities, and this remains an
open problem. In the following subsections we will
therefore restrict our discussion to cases where
there is information about only one bulk property

+«e.

(e —c ) /(6 6 ) + (e ) /e = I) (47) E. Combination of A- and C-type trial functions

to get b and «p
' for each of the known properties

Q.
The off-diagonal terms of the quadratic form in-

clude the integral

A trial function which takes advantage of the
known volume fractions of a two-phase system, as
well as the information about another effective
bulk coefficient «'„ is a combination of the func-
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tions from Secs. IIIA and III C

T(r) =aT, (r)+ T,E, , (54)

TpEp E dr = 0 (55)

where a and T, are now variational parameters.
When this form is substituted in (4), we get some
integrals that were already encountered in Secs.
IIIA-IIID, as well as a couple of new ones,
namely,

mentation and using both variational principles of
Sec. II, we have found that the best upper bound is
obtained when ep assumes some finite, nonzero
value, and likewise for the best lower bound. While
we have not been able to characterize these opti-
mum values analytically, we have found experi-
mentally that the bounds are then identical with
Prager's bounds for this case —Eqs. (27a)-(28b)
of Ref. 6. These bounds can be characterized in
the following way. We define an approximation &*
to E, by the following equation:

where the integral vanishes because of (6), and
E2 62 1 E~E2 —&2

e —«2 «e —f2 p~ («) —«2)(e~ —E2)
(61)

T,(r) dr 1

«(r) —«0 e~ —«~
T,(r) 8, (r) dr The solution of (61) for «* provides an upper (low-

er) bound on «, if

+
~2-&P

T, (r) 8,(r) dr . (56)

T, (r) dr = — («, —«0)E» dh' = («e —«~)Eo

(57)

E,(r)dr = — ', = E, .1 1 Tdh
E» —E'p

(58)

Expressing the T, integrals in these equations as
linear combinations of

(59)

we can solve the resulting equations to get

(e; —«', )(»; —«', )
+ 1 p ~+ ~»

2

(«', —«', )(«', —«', )
V 2 P

1 2

(60)

Even though we do not know the function T,(r),
we can determine the last two integrals in (56) ex-
actly. To that end we note that T, satisfies

+ +
&~&2 —62K~ (62)

is positive (negative). Note that if all the «s in
(61) and (62) are replaced by e's, one gets exactly
the same bound on &,. These equations are not in-
variant, however, under a permutation of the two
phases. In fact, if (61) and (62) lead to a lower
(upper) bound, then the permuted equations lead to
an upper (lower) bound. We are thus always led to
one upper and one lower bound in every case.

The relation between (61) and (62) and Prager's
formulation of these bounds is as follows: Eqs.
(28a) and (27a) of Ref. 6 are equivalent to our Eq.
(61) with a positive and a negative sign, respec-
tively, for (62). Similarly, Eqs. (27b) and (28b) of
Ref. 6 are equivalent to the e version of (61) with a
positive and a negative sign, respectively, for the
e version of (62).

Prager's derivation of these bounds is of course
much more satisfactory than ours, since it does
not rely on any "numerical experimentation" but
is a true analytical proof. The main value of our
less rigorous derivation is to give us confidence in
our partly empirical approach for deriving bounds.
This approach becomes important for the case dis-
cussed in the following subsection, since at pre-
sent it is the only method by which we have been
able to arrive at any results.

Besides using these expressions, we must also
choose «', and b so as to satisfy (31) and (36) in or-
der that we may express U~ in terms of known
quantites. In this way we get a trial value for E,
that is a quadratic function of the variational pa-
rameters z, Tp. The stationary value of this func-
tion still depends on &„which must be varied with-
in certain limits [i.e. , 0&&,&mi ( n«e, ) or e, &max
(e, , «,)) in order to find the best lower or upper
bound on E,.

Carrying out this program by numerical experi-

T(r) = aT, (r)+ [T,8,(r)+ T, 8,(r)]E, . (63)

This form will enable us to take advantage of the
information about the known quantity E'„as well as

F. Combination of 8- and C-type trial functions

The trial function we shall be discussing here,
for an isotropic or a cubic two-phase system, is
a linear combination of the Hashin-Shtrikman func-
tion from Sec. III B and the function used in (24) of
Sec. III C:
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the explicit geometric information about the volume
fractions and the macroscopic rotational symmetry.
We will now describe in detail the derivation of
bounds on e, from the trial function of (63).

In order to evaluate the variational integral U~
of (4), we must use all the tricks of Hashin and
Shtrikman' as well as the tricks developed in Sec.
III C and E. In particular, we must use (60),
(A22), (36), and (31). In this way we get the fol-
lowing trial value for Ee..

q+b Q p2 P$ P JP
(e+)2

Q e I
~Q ~& —&P 3~Q

+2y T

&Q Ee —62 E~ —Ep

6P E~ E2 C~ &Q E'P

+ + + + + +
e 1 2 p p

A = -[(f —E1)/(e2 —f1) ](I/f+),
~+ ~+

2 + P~2 (g+ q+)2
(g g )3 q+e+ 2 1

f21 P2 (~2 —e1)+ + +3 E2E', —E,E2

(c, —e, )'

&1&2 ( 2 1)
3 (e2 —e1) (e2e1 —f1'2)

A'=—,1+ ' '(e'-e')'1

~1~2

3 (E2 —E1)(E2e1 —E1e2) e q

(,) 2, f2, f22 (.. .),
(e e )2 g+e+ 2 1

(68)

+ 2a(e', —eo)+ 2(p, T, +p2T2) . (64) C = —(e,)'/(e, —e, )'.

e3 = (e2t1 —e1E2)/(e2 —e1),

b = (e2'- e,')/(e2 —e, ) .

(65)

(66)

We substitute these results, as well as ep'=0, into
(64), and determine analytically the stationary
value of e* with respect to variations of T„T„a.
A tedious but straightforward calculation leads to
the following expression for that stationary value

e 2' = [A '(e,')' + B'e,'+ C ']/[A (e,')' + Be,'+ C], (67)

where

This is a quadratic form in a, T„T,whose sta-
tionary value can be found explicitly without any
difficulty. The stationary value of E* depends on

&Q in a very complicated way, partly through b and
e'„which are determined by (36) and (31) and
which turn out to be nonrational functions of Ep.
Since we were not able to analyze this dependence
analytically, we have resorted to numerical ex-
perimentation, as in some previous subsections of
Sec. III. We have thus concluded that the stationary
value of E ~ is not a monotonic function of Ep even
when &Q is restricted to be in one of the two regions
0& e, & min(e„e2), e,& max(e„e2). But these exper-
iments have also shown that the best bounds on E,
are obtained from the stationary value e *(e,) when

ap is chosen so that E'p= 0 or E', = ~, as we also found
in Sec. IIIC.

Using this hindsight, we can now assume Ep 0
from the outset. As a result of this our equations
simplify considerably, and we now get the follow-
ing explicit expressions for both cp and b from
(36) and (31):

or
e, & max(e„e2)

0& e, & min(e„e, ),

(70)

(71)

respectively. Using (43), we can write [note that
(65) and (39) are identical expressions for e,]

e( —@3=A; (e2 —e1)/(e2 —e1), 2=1, 2. (72)

Therefore, E'p E'y and E'p E' always have the same
sign, equal to the sign of

(73)

However, if op&0, we cannot use this argument to
show that e* provides a bound because (71) is vio-
lated. In that case, it is easy to see from (72)
that E'2 fy and e,' —e,' must have the same sign.
Consequently, if we switch the roles of c and e,
we find that the transformed version of (65) satis-

Further numerical experiments, using these ex-
pressions, indicated that the numerator and the
denominator of (67) have a common factor —a fact
which is not at all obvious from (68). Subsequently,
this factor was identified as e,' —I/(e, ). When it
was cancelled out we obtained, after tedious
manipulations, the following equation that is
equivalent to (6'I)

+ + + +
2 1 2 1 2 1 ~1 2 (69)

~e -(e+) e*-(~) Pl P2 (e2 —el')(e2 —~i)

From the properties of the variational integral
U~, one can expect that the approximation e* de-
rived for e, from this equation is an upper or a
lower bound on e, if e, of (65) satisfies
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fles

(E2E~ —E~e2)/(E~ —f2)

is positive (negative). This result, as well as
(69), is invariant under a, permutation of the two

phases, and we thus get a single upper or lower
bound.

In order to obtain the other bound we have to go
to the other extreme in e,', namely, e,'=, and
make our way through a similarly tedious calcula-
tion. Alternatively, we can use the other varia-
tional principle of Sec. II—the one built around
U~ of (13)—with a form for the trial function ft
that is similar to (63). This leads to similar cal-
culations and to bounds which are identical to the
ones obtained from Uz. The bound we are looking
for is now obtained by assuming co=0 from the
outset. The whole procedure for U„ then exactly
reproduces all of the equations of this subsection,
except that T is replaced by R, every e is re-
placed by e =—I/e, and every factor —,

' is replaced
by —, [this is explained in the Appendix following
Eq (A33)].. This symmetry thus allows us to get
the other bound on e, from a simple transforma-
tion of (69) and (75)

+ + ~V +~ ~ +%hi

E2 C1 3
e:-(~,) ~*-(e) 3P P. (~:-&;)("-&.)

(t2E~ —e~e2)/(E ~
—E2) . '

(76)

(77)

The solution of (76) for i* yields an upper (lower)
bound on e, when (77) or (75) is positive (negative).

In order to demonstrate the quality of the bounds
produced by (69) and (76), we have computed them
for a series of examples characterized by

(76)

and values of e2 ranging between 0 and 10. These
bounds are listed in Table I, along with the bounds
produced for the same examples by three other
methods:

(a) the Hashin and Shtrikman bounds, "de-
scribed in Sec. IIIB and given explicitly in Eq.

+ + + + + +
162 f261 —C1f2 62 —E1

+ +—E2 1 2 1 2 1

Since (69) is invariant under the permutation of e

and e+, we can look upon it as an equation for c,+
given e*, and use the transformed versions of
(70) and (71) to decide whether e,' is an upper or a
lower bound on e*.

Similarly to what we found earlier in Sec. III C,
the approximation e* obtained from (69) thus al-
ways provides a bound on e, . This bound is an

upper (lower) bound on e, if
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(3) (recall that these bounds do not include infor-
mation about e,' j;

(b) the best bounds of Ref. 6 [Eqs. (51), (52a),
and (52b) of that reference]. These bounds include
information about the known value e,', as well as
about the volume fractions and the rotational sym-
metry. Note that these bounds are different (i.e.,

more stringent) from the other bounds obtained in
that reference, which were described in Sec ~ III E
and which do not assume any rotational symmetry;

(c) the best bounds of Ref. 7 [Eqs. (48)-(51) of
that reference]. These bounds also include infor-
mation about e,', as well as about volume fractions
and rotational symmetry.

From this table, and in particular from the col-
umns that give the difference ~e between the up-
per and lower bounds obtained with each method,
it is clear that (69) and (76) always lead to better
bounds than any of the other methods, and that in
most cases the improvement is a major one.

IV. CONCLUDING REMARKS

We have shown that the variational principle of
Hashin and Shtrikman' can be used effectively for
a two-phase system with tria. l functions that in-
clude information on one other effective bulk coef-
ficient of the same material. This necessitates an
evaluation of some terms in the variational inte-
gral by methods that are different from those that
were used for the trial function of Ref. 2. In this
way, various bounds on e, were obtained which de-
pend on the variational parameters of the trial
function and on e„ the free parameter of the varia-
tional integral. All of these parameters were then
adjusted in order to obtain the highest lower bound
and the lowes t upper bound in each case.

The results we got were always in the form of

absolute bounds on e,—this follows rigorously
from the variational principle. However, we do
not know whether these bounds are optimum
bounds, namely, whether with the given informa-
tion it is possible to have a system whose e, is
equal to one of the bounds. (This property was
demonstrated for the Hashin-Shtrikman bounds in
the case of a two-phase system. ')

Moreover, we were not even able to prove rigor-
ously (i.e., analytically) that our choice for eo was
the best choice in any of the cases discussed in
Secs. IIIC, IIIE, and IIIF. We made our choice
in these cases purely on the basis of the empirical
evidence provided by numerical experimentation.
Even when we made this "best choice, " our analyt-
ical derivations did not lead in any natural way to
the highly symmetric form of the expressions for
the various bounds that we eventually managed to
obtain by laborious manipulations.
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APPENDIX: EVALUATION OF U~ AND U~ FOR HASHIN
AND SHTRIKMAN'S TRIAL FUNCTION

The crucial step in evaluating U~ or U„with the
Hashin-Shtrikman trial function is to calculate the
last term in (4) or (13), i.e. ,

T ~ E' dr
V

(A1)

and

1
R ~ D'dr .

V
(A2)

The evaluation of both of these integrals involves
similar calculations, and we will therefore con-
tinue to discuss them in parallel: We will often
list side by side a pair of corresponding equations
arising from the two discussions.

We represent the trial function by imagining each
phase of the composite to be made up of a large
number of finite, bounded portions, which we will
call grains. We will assume that these grains are

These difficulties, when contrasted with the
beautiful symmetry and simplicity of the final re-
sults, lead us to suspect that there must exist a
different, perhaps more sophisticated, mathemat-
ical approach to this problem. Such an approach
might be expected to lead to the same results but
in a more natural way, and also be able to provide
rigorous proofs for those points that we had to es-
tablish empirically.

As we showed in Sec. IIID, our methods can be
applied also to two-phase systems where more
than one bulk property is known. However, we
were unable to characterize the resulting best
bounds analytically. The main difficulty here is
our inability to obta, in an analytical expression for
the best choice of e, . Qnce we know the correct
choice of e„ then the best bound may be calculated
by simply finding the stationary value of a quad-
ratic form [Eq. (53) of Sec. III D, or an appropri-
ate generalization of (64)]. But even though nu-
merical experiments have indicated that the best
bound is a rational function of all the e's in the
problem, and that the best value for e, is a simi-
lar kind of rational function but is independent of
any of the e, 's, we have not been able to determine
the analytical form of either the bound itself or of
the appropriate c,. It seems that progress in these
matters too will require a more powerful analytical
approach to the discussion of the variational prin-
ciple.
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distributed over the total volume in such a way
that, on the average, the system is not only homo-
geneous but possesses a high degree of rotational
symmetry as well: either complete isotropy or at
least cubic symmetry. Obviously, this kind of
description in terms of bounded grains can always
be applied, even if some of the phases stretch con-
tinuously over the system from end to end. If
8, (r) denotes a function equal to 1 for r inside the

grain i and equal to 0 for r outside that grain,
then the trial functions T and R can be written

T(r) = P T, g, (r), R(r) = g R;8;(r), (AS)

where all the T& or R& belonging to a single pure
phase are equal.

We now represent the curl-free vector fields E'
and D'+R/e, as gradients of scalar fields P and y,
where g and y are each represented as a sum of
contributions whose source is a single grain

a uniform electric polarization Pr (or P„) given

by [see (A6)]

Pr = — T(r) dr = (T);
4@co V 4m',

(A 9)

The average used here and elsewhere in this Ap-
pendix has the same meaning as the average de-
fined in (2) since we are taking all of the T; (or
R, ) belonging to a single pha. se to be equal.

Using (AS) to substitute in (Al) and (A2), we

evaluate these integrals grain by grain. In each
grain, we separate the fields E' and D' into a
"near-field contribution, " corresponding to (a) and

(b), and a "far-field contribution, " corresponding
to (c).

The near-field contribution to (A1) is given by

dr T;6); r) ~ -&g r) „„,
E' = —Vg, D'+R/e, =Vy, (A4)

(A5)

V'f& -—1/e T& ~ Vg, , V'y& -—1/e R,. ~ Vg, , (A6)

g, =0 on the surface

=R,„6); on the surface.Bp.
' Bn

(A7)

Note that the boundary condition on y; is in fact
usually By;/Bn =0, except for cases where the
grain f is at the surface. A solution to (A6) is
given by

( )
T, Vg(r')d

4ae, [r -r'[

( )
R; 8(r')d,

4a&, lr -r'I

(A8)

Although these solutions do not satisfy the bound-

ary conditions of (AV), the correction we would
have to add to each of them in order to repair that
fault would be of order O(1/V) if both r and r' are
well away from the surface. We can therefore
use (A8) to represent g; and y; inside the grain i
and also in its vicinity, but not over the entire
system.

The total potential field tt) or y inside the grain
i is made up of three contributions: (a) the in-
ternal self-field of that grain, (b) the field pro-
duced by all other grains situated within a finite
spherical region S, centered around the grain i,
and (c) the field produced by the rest of the sys-
tem outside S;. If S, is large enough, the latter
contr ibution can be taken as the field pr oduced by

1 P T;~TJs — dr dr'8, (r)g, (r').1

i fE$& ot 8
1

s

(A11)

The function gI~(r, r') is a truncated correlation
function which is equal to 0 for large separations
~r -r'~. For separations somewhat below the
radius of S;, this correlation function tends to the
probability for finding r in the phase I and r' in
the phase J, and for r =r' it satisfies

rrz(r, r) =Pi6r, , (A12)

where pz is the volume fraction of the phase I.
Finally, for arbitrary x and r', gI~ has the same
rotational symmetry as the multiphase mixture.
When that symmetry is either cubic or isotropic,
then the double integral

1 1lr'gIJ (Y, Y')+ +g (A13)

which must yield a constant second rank tensor,
must be proportional to 5~&. Consequently, we
can rewrite (A13) as

(A10)

where we have used the near-field restriction
jHh; in performing a partial integration over r'.
If one restricts the sums on i and j to a particular
phase or pair of phases I and J then, since T~ and

T,. are constant, one can sum first over the prod-
uct of 6) functions
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Q plT2I= -(I/3e, )- (T') . (A15)
360

Similar considerations lead to the following ex-
pression for the near-field contribution to (A2):

dr P R;6;(y) ~ &y(r)—
1 R(r )
V 0 neart

(II') ——&R') = —
3

&R') . (A15)

In order to evaluate the far-field contribution to
(Al), we note that the far field at the center of S,
is just the usual internal Lorentz field intensity
E,„,+4vPr/3. Because of the boundary condition
on g, the external field E,„,vanishes in this case,
and we have

(E')„=-',(4vPr) =&T)/3e, . (A17)

Consequently, the far-field contribution to (Al) is

T( )
&T) &T)'

(A18)
V

The far-field contribution to D' is due entirely to
&&p, since R(r) contributes only to the self-field
in any grain. At the center of S;, this is again an
internal Lorentz field but now the external field
does not vanish: Because of the boundary condi-
tion on y, which merely reflects the existence of
a uniform average polarization P„, there is a sur-
face charge distribution which produces a uniform
field far away in the interior whose magnitude is

(-&q),„,= -4~P, = -&R)/~, . (A19)

The Lorentz field is therefore given by

(-~y)„„=-4vP„+ y vP „=-(2/3i, ) (R) . (A20)

Consequently, the far-field contribution to (A2) is

1
dr dr' gz (r, r')&' = ——vPrbr3V J 1 )r ri[ 3

(A14)

Using this result in (A10), and summing now over
the phases I and J, we get the following result for
the near-field contribution to (AI)

+T E' dr. (A24)

By using the methods of Sec. III C [in particular,
Eqs. (30)-(37)], (A24) is transformed into

-[bE+ —(E+) /e ]E (A25)

Alternatively, we could try to use (A22) to eval-
uate the second term in (A24). Using this method,
as well as the fact that T, = (e, —eo)E„we get the

following form for (A24):

leads to great simplifications in many equations of
this article: An equation derived from the varia-
tional integral U~ can usually be transformed to
the corresponding equation resulting from U„by
replacing all e's by i's (i.e., reciprocal e's), and
all factors of —', by factors of 3.

Although (A22) was a.lready obta. ined by Hashin
and Shtrikman, ' we have produced here a some-
what more detailed derivation, which also obtains
the analogous result (A23) for the corresponding
term in the other variational integral. We have
also shown that these results hold not only for an
isotropic system, but also for a system with a
macroscopic cubic symmetry (in fact, the system
can be ordered rather than random, such as a
cubic lattice of identical, homogeneous spheres
embedded in some other homogeneous material).

Finally, we wish to emphasize that it is impor-
tant to have T equal to a constant in each of the
phases in order for these results to hold. Although
it should always be possible to partition any com-
posite system into grains in such a way that T(r)
is effectively constant over each grain, it is in
general impossible to ensure that T(y) will remain
effectively constant over an entire phase.

We will now demonstrate this caveat in the case
T(r) = T, (r), where T, is the exact solution of the
variational equations with a given different set of
dielectric constants E'o E'g f, E This case is of
practical importance since we have shown in Secs.
IIIC-III F that this type of trial function can be
used to incorporate the information about e,' in the
generation of bounds on c, .

Consider the following portion from the varia-
tional integral Ur of (4):

R (y) ~ (R) dr = (R)' .
36() 3f0

(A21) 1 (26p+ E)(&+ E'p) 2 (cp &o)

Combining the near- and far-field contributions
to (Al) and (A2), we finally get (A26)

1 - - 1
T ~ E'ch = — (&T') —&T)'),Vg 3e,

1 - - 2
R ~ D' dr = — ((II') —

& R )') .
V 3Ep

(A22)

(A23) (2f o + f )(f ~
—eo) /Eo(E —eq) = ct ~ (A27)

In order to reduce this to an expression in terms
of known quantities, we must choose e,' and a new

parameter c so as to satisfy

Note the close similarity of the two results —it in both phases ~ This leads to the following result,
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supposedly equivalent to (A24) and hence to (A25):

(A28)

However, since both b and c are independent of

e+, this result is clearly inconsistent with (A25),
which is only linear in e,'. Therefore, (A28) must
be in error and the fault can only be in the unjusti-
fied use of (A 22) .

*On leave of absence from Tel-Aviv University, Tel-
Aviv, Israel.
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