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Lattice heat capacity of low-dimensional systems: A pseudoelastic approximation
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The lattice heat capacity of both layered and chainlike compounds has been inferred from an ap-
proximation of the vibrational spectrum, which is based upon a pseudoelastic approach. From
continuum elasticity theory three modes of vibration are obtained, which are modified by the in-
clusion of the most dominant dispersion effects. Manageable expressions for the heat capacity are
obtained, which were found to be of rather general applicability. They were used to describe the
heat capacity of the chainlike diamagnetic (CH3)4NCdC13, and were found to give an excellent de-
scription of the lattice contribution to the heat capacity of a variety of low-dimensional magneti. c
substances.

I. INTRODUCTION

In the past years, a considerable number of
compounds whose thermal behavior could be fairly
well described by one- or two-dimensional model
systems have been studied extensively. ' ' Es-
pecially in the field of magnetism, low-dimen-
sional characteristics have received much atten-
tion.

The analysis of the thermal properties of a
substance generally requires a separation of the
lattice heat capacity from the other contributions.
Although the lattice specific heat of low-dimen-
sional systems with a simple crystallographic
structure may be calculated rather straightfor-
wardly, the majority of the low-dimensional com-
pounds have rather complex chemical structures,
which precludes a rigorous calculation of the
frequency distribution of the lattice vibrations.

Fortunately, the lattice heat capacity appears
to be rather insensitive to the detailed structure
of the vibrational spectrum, and approximate
spectrum calculations may provide a very satis-
factory description in many cases. This is dem-
onstrated by the fact that the overall lattice heat
capacity of a large number of rather isotropic
compounds can be successfully described by a
linear superposition of suitably normalized three-
dimensional Debye functions. '

General and simple expressions for the lattice
heat capacity of layered and chainlike structures
have been proposed by Tarasov. ' Although his
theory, in which the heat capacity is expressed as
a linear combination of Debye functions of suit-
able dimensionality, contains a number of rather
drastic simplifications, it correctly predicts some
qualitative features of the overall heat capacity.
However, in general the accuracy is not sufficient
to enable a reliable separation of the magnetic and
the lattice contribution to the heat capacity. "'

In several cases the experimental data within a

limited temperature region can be represented by
a linear superposition of suitably normalized one-,
two-, and three-dimensional Debye functions. In
this kind of procedure, however, the Debye func-
tions are merely used as mathematical basis func-
tions, the normalization factors and 9 values be-
ing inferred from a least-squares fit to the ex-
perimental data. Apart from the fact that such a
procedure lacks a physical background, an accu-
rate description over a large temperature interval
requires a rather large number of adjustable
parameters. On the other hand, the experimental
data on several pseudo-low-dimensional systems' "
indicate that at lower temperatures the lattice
heat capacity should be represented by higher-
order terms than just T'. This behavior cannot be
described by a linear superposition of Debye func-
tions, unless one admits rather unphysical values
of the parameters.

Detailed calculations on the vibrational spectrum
and thermal properties of strongly anisotropic
compounds have been performed only in a few
special cases, mostly dealing with layered struc-
tures, particularly graphite. " Most of the results,
however, cannot be applied to other substances,
since they strongly depend on the characteristic
lattice structure and the ratio of the atomic force
constants. The purpose of this paper is to present
a rather general description of the lattice heat
capacity of both layered and chainlike compounds,
involving only a minimum of adjustable param-
eters. The theory will be based upon an elastic
approach, in which only the most dominant dis-
persion effects will be taken into account.

For a large variety of layered or chainlike com-
pounds, the elastic anisotropy within the layers
or perpendicular to the chains appears to be sma. ll
compared to the anisotropy in a plane perpendicu-
lar to the layers or parallel to the chains. A fair
integral description of the long-wavelength be-
havior of such compounds may therefore be pos-
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sible if they are approximated by a system with

purely uniaxial elastic anisotropy, such as a hexag-
onal 6/mmm structure.

The organization of the paper is as follows. The
dynamical behavior of media with uniaxial elastic
anisotropy will be considered in See. II, while in

Sec.III the frequency distribution funeti. on and the
heat capacity of layexed structures mill be calcula-
ted. Section IV will be devoted to the heat capacity
of chainlike structures. In Sec. V the inferred
expressions for the heat capacity will be confront-
ed with some experimental results.

II. LATTKE DYNAMICS IN UNIAXIAL COMPOUNDS

The rather unusual temperature dependence of

the specific heat of graphite was explained by
Komatsu'"" by considering it as asystemof loose-
ly coupled layers. His basic idea was that, since
the covalent binding forces within the honeycomb
net planes are very strong compared to the inter-
layer interactions, dispersion effects in a direc-
tion perpendicular to the layers might already be
important for a wide x'ange of frequencies, in
which waves propagating within the layers still
could be treated in the elastic or small-k approxi-
mation. In the calculation of the heat capacity,
dispex sion effects due to the discrete nature of
the layers would therefore be negligible, and the
substance might be treated as a system consisting
of thin elastic plates spaced at a distance d. He
described the restoring forces due to the intra-
layer interactions by the elastic constants c», e»,
and c«[=z (c» —c»)], and apart from these a bend-
ing modulus K. The xestoring forces due to the
interaction between the layers were represented
by a compressional constant c33 and a shearing
constant c«. For relatively small values of c,4,
the following dispersion relations were inferred:

p&@,
' = c» (k,'+ k~) + (c«/d') sin'(k, d), (la)

p&a,
' = c«(kz+ k,') + (c«/d') sin'(k, d), (lb)

puP, = c„(k,'+ k,') + (c„/d') sin'(kP) + IP(k2+ k,')',

(lc)
where z denotes the direction perpendicular to
the layers, and k= (2v/X)e„a wave number in the
direction of the unit propagation vector e„.

Because in graphite purely two-dimensional
layers are present, which have strong covalent
internal forces and hence a large resistance
against bending, the fourth-power term in Eq.
(lc) may give rise to dispersion effects al-
ready for acoustic frequencies. For most layered
struetuxes, homever, Komatsu's theoxy may not
be used without some serious modifications, since
the majority of these compounds do not display

A. Small-k approximation

The equations of motion of elastic waves in a
continuum with uniaxial anisotropy are given by

BR BQ BQ 2v

P f2 elle 2 66 2 ( 12 «I s sx 9$ X

8 Q 8 sv
+ c44 2+ (ci3+ c«) BxBz

v 92v 92v 8 8
66- 2+ ii s,2+ (ci2+ c66) s sBt Bx By BX8$

92v 8 Ml"
s "("""'ssBz 9$9g

(2a)

(2b)

such an extreme crystallographic anisotropy as
graphite. In fact, the constant c» may be of the
same order of magnitude as the constants c» and

c». On the other hand, the "layers" in the com-
pounds under investigation are often built up from
rather complicated clusters of atoms and hence
the influence of K may be relatively small at acous-
tic wavelengths.

In compounds with a large number of atoms per
unit cell (r), the acoustic modes of vibration only
account for a rather small fraction of the total
number of degrees of freedom. It has been sug-
gested to describe only the acoustic-mode spec-
trum by a Debye-like approximation and to de-
scribe the optical-mode spectrum by 3v —3 suitably
normalized 5 functions located at some "average"
optical-mode frequencies. However, apart from
the fact that a large number of unknown param-
eters would be introduced, experimental evidence
indicates that the optical-mode spectrum often
appears to be rather "smeared out."" Moreover,
the assignment of the different branches of the
dispersion relation of the lattice vibrations to
"optical" and "acoustical" modes is unimportant
for the calculation of the heat capacity. Therefore
we mill approximate the 3r branches of the dis-
persion relation within the first Brillouin zone by
three "pseudoelastic*' branches, which are located
within a modified Briflouin zone (MHZ).

The general problem will be treated as follows.
First, we will describe the system by continuum
elasticity theory, following a procedure somewhat
analogous to the treatment of Bowman and Krum-
hansl. " Next, the most dominating dispersion
effects will be included by some suitably chosen
MBZ boundaries. The dispersion at long wave-
lengths due to the intrinsic stiffness of layers or
chains will be briefly considered in See. II. For
the sake of clarity, the calculation below mill be
performed assuming a layered structure. The
majority of the results, however, may be applied
to chainlike compounds also, which will be pointed
out in Sec. IV.
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Consider waves propagating in an infinite medi-
um:

a'u 8'v
+ (c„+c„) +'4 axez eyez ' (2c) ek(p7 ~ g-~ t)

0

where x= (x, y, z), and u, v, and w are the dis-
placements in the x, y, and z direction, respec-
tively.

w

Substitution into Eq. (2) yields the eigenvalue prob-
lem

(c»+ c«)k„k~

(c»+ c«)k„k,

(c»+ c«)k„k~

(c„+c«)k„kg

(c~~+ c«)k~kg

(c»+ c«)k,k,

c„(k„'+k,')+ c„k,' —p~'

=0. (4)

As a consequence of the hexagonal symmetry it is possible to separate out a solution corresponding to

p~2 = c«(k„+k ) + c«k (5)

This mode of vibration has a displacement in the xy plane "transverse" with respect to k. The remaining
eigenvalue problem is

(6)

$' is located in the xy plane at a direction perpen-
dicular to the eigenvector that corresponds to Eq.
(5).

If the off-diagonal elements in Eq. (6) are com-
pletely ignored, we obtain the approximate solu-
tions

p~,'= c„(k„'+k,')+ c«k,',
p&v,'= c«(k„'+ k,') + c»k2.

(7a)

(7b)

The mode of vibration denoted by co, has a dis-
placement in the plane "longitudinal" with respect
to k, while the mode denoted by ~, has a displace-
ment perpendicular to the xy plane. The constant
frequency contours of solutions (5) and (7) are
ellipsoids in the k space, which have rotational
symmetry around the 0, axis. For a large number
of layered compounds the constant c44 appears to
be relatively small, and hence the curves present-
ed in Fig. 1 may be fairly representative.

If the off-diagonal elements in Eq. (6) are taken
into account, a rigorous calculation of the eigen-
values and eigenvectors shows that the modes of
vibration given by Eq. (7) are coupled. The effect
of such a coupling is shown in Fig. 2 for some
representative values of the elastic constants. The
drawn curves denote the constant-frequency con-
tours in the diagonal approximation, while the dots
represent the results obtained from a numerical
calculation of the eigenvalues. The effect of the

coupling is rather pronounced in the region where
the drawn curves inter sect, which corre sponds to
a cone in the k space given by

(k2+ k2)/k~2= (c„—c„)/(c„—c„).
It can be seen from Fig. 2, however, that the cor-
rection is much smaller for most of the k space.
Qf course the direction of polarization is very
sensitive to the coupling between the two different
modes of vibration, but this has no consequence
for the calculation of the heat capacity, and we
feel that the diagonal approximation (7) provides
a fair description of the dynamical behavior of
the model.

B. Dispersion effects

As can be seen from Fig. 1 relatively small k
vectors are associated with the "in-plane" modes
propagating in the xy plane. In the neighborhood
of the z direction, where the k vector is relatively
large, the elastic continuum approximation may
very likely be incorrect, since the contours will
reach the MBZ boundary for moderate values of m,
which may give rise to rather drastic dispersion
effects. In order to describe these effects we
assert that for this mode of vibration, waves prop-
agating in the layers may be considered as purely
elastic, while dispersion effects near the z direc-
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FIG. 1. Constant-frequency contours in the k space,
which result from the diagonal approximation of the
eigenvalue problem describing the equhtions of motion
of elastic waves in a hexagonal layered structure. The
meaning of the different vibrational modes is explained
in the text.

kx/(PC)t) ~(d

FIG. 2. An example of the effect of the introduction of
the nondiagonal elements in the eigenvalue problem des-
cribing the elastic waves in a hexagonal medium.

tion may be taken into account by a MBZ parallel
to the xy plane located at k, = +n/2d. "Truncation"
at this boundary will occur if k, in Eq. (5) and (7a)
is modified to d sin(k, d), while k„and k, remain
unchanged. This modification yields the set of
equations

p~,'= c„(k„'+k,')+ (c«/d') sin'(k, d),

ptd', = c«(k„'+ k,')+ (c«/d') sin'(k, d).

(9a)

(9b)

Obviously these equations correspond exactly to
the set of equations (la) and (lb), which have been
derived from a "thin-plate" model.

For the "out of plane" mode of vibration, how-
ever, the situation is quite different. The con-
stant-frequency contour, given by Eq. (7b), ap-
pears to be more or less disc shaped, and hence
dispersion effects will be important near the xy
plane rather than along the z axis. These effects
may be described bya cylinder shaped MBZ bound-
ary located parallel to the z axis at a radius v/2d„
which transforms Eq. (7b) to

assumption that the layer might be considered as
a thin elastic plate. The validity of this assump-
tion may be suitably examined by the atomistic
model shown in Fig. 3, which represents a cross
section perpendicular to the layers.

The different atoms —denoted by n, m —are ar-
ranged in a rectangular array, the spacing between
adjacent atoms along the x and z axis being equal
to a and d, respectively. The array is assumed
to resist variations of both the bond lengths and
bond angles. Only nearest-neighbor interactions
will be considered. In Fig. 4 the elementary de-

paP, = (c«/d') sin [(k'+ k')' 'd ]+c k'.
n-1, m-2 n-1, rn-1 n-1, m n-l, m+1 n-1, m+2

C. Bending stiffness

Komatsu's treatment of the bond-bending prob-
lem of a monoatomic layer was based upon the

FIG. 3. A simple atomistic model used to describe the
various interactions in an arbitrary plane perpendicular
to the xy layers.
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formations are given together with the correspon-
ding increase in potential energy.

If both the kinetic energy T and the potential
energy V are expressed in u„and ao„, which
denote the atomic displacements along the x and
z axis, respectively, the equations of motion may

be found by applying Hamilton's principle

5 (T —V) dt = 0.

The result is

B u„C, 4Cq
M "; +—', (2u„-u„„-u„,)+,'(2u„-u~, , -u„„)

gd 1 g
$4 f d n ( nial, m-l +n bmol +ntlqm+1 +n I,m 1)+ f4 t(4un, m untl, m+1 n-bm 1 n+1, m i n 1,m+1)

4Cq
ef2 dn ( num ml ~ m n Rim) 2 ( nim onym+i num-1)

gd 1
fn I d n ( n+lym 1 n lym+1 Rlsm+1 n lym-1) Tn I ( n m wlem+l n Rim I n+1ym 1 n 1am+1

B Q 2g B'Q 4g'd' B'ZUM, = (C,+, C,),+ 4C,+, C,

2gd BR 2BQ
+ 4Cq+ 4 C, 2+C (13a)

B'N 2d B $0 4g2d2 B g

2g d PK B4gg
4C (13b)

As may be inferred from Eq. 2, continuum elas-
ticity theory yields for the corresponding two-di-
mensional case

BQ BR BSO BQ
P Sfn && S~n ( &n «Sgez «as~ '=c (14a)

B K B R
P n C» n + (Cyn+ C«) + C«n (14b)8 BxBz Bx

where M denotes the atomic mass.
For long wavelengths the relative differences

between the atomic displacements may be replaced
by the corresponding derivatives to x and z, and

we obtain

description of the long-wavelength limit of the
vibrational spectrum. lt appears, however, that
the stiffness of 180 bonds does not enter into the
elastic constants. If the corresponding bending
constants are extremely large, the influence of the
fourth-power terms in (13) may be important al-
ready for acoustic frequencies, although such a
drastic effect is likely to occur only for very an-
isotropic covalent substances like, for instance,
graphite and boron nitride. For a description of
the vibrational spectrum of these compounds, we
may generalize Eq. (13) to three dimensions, and
follow the procedure described in Sec. IIB to ob-
tain the dispersion relation

p 4&',= c«(k„'+ k,') + (c»/dn) sin'(kp)

+ Cna'(kn+ k,')'.
The prime at C~ is added to avoid confusion with
the purely two-dimensional atomistic case. Equa-
tion (16) appears to be completely analogous to
Eq. (lc) if we put IP= Cna'. Equation (13a) will
transform to Eq. (Qa), because for a layered struc-
ture the effect of C& is negligible.

It is obvious that

2g p 2d p
ll 0 $4 l & c33 Cff +

~4 Cl

2a d p~ 2g2d2 pl'M» c,4= 4C~+
&4

C, M,

and continuum elasticity theory gives a correct

III. CALCULATION OF THE HEAT CAPACITY

A. General

In the diagonal approximation, the three modes
of vibration are decoupled completely, and each
mode will account for one third of the total num-
ber of degrees of freedom. In the calculation of
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g(tu) = p» &uarcsin(ur/u&, ), for &u ~ &u, (19a)

g(&u) = p, (2n'/n'd)&u, for ~~ ~, (19b)

In these expressions u, is written for P/d, the
frequency at which "truncation" at the MBZ bound-
ary occurs. The frequency distribution function
is plotted in Fig. 5, where ~ denotes the "cutoff"
frequency at which the normalization condition

0 0 0 0„,, „6 0
d1

0.

p„g(&u) dto = rN«
Np

is satisfied. Substitution of Eq. (19) in (2o)
yields

p, (m'/n 'd)(&u' —,' (u2) = r—N„»,

from which it follows that

(20)

(21)

0 0 0
1C -~ha)2 (~ha )2a'a

+ 2Cg(&g)
1 2

d12 kd2 2

2 d d dCd(—) +(

+2 C tt) ( 6 y )
2

FIG. 4. Some contributions to the increase of the po-
tential energy, arising from variations of the bond

angles and bond lengths in the atomistic model presented
in Fig. 3.

the molar heat capacity, this number is assumed
to amount to S'N», where N„v is Avogadro's num-
ber and r is the number of vibrating units in a
formula unit. The total specific heat may be ob-
tained by a summation of the three properly nor-
malized contributions arising from the different
modes of vibration.

The dispersion relations (9) and (10) are of two

different types, given by

uP = n'(k', + k,')+ (P/d)' sin'(kP},
—x/2d ~ k, - m/2d, (17)

~2 (y/d )2 sin2[(k2 y k2)1l2d ) y 82k2

0 ~ (k„'+ k')' ~' ~ v/2d, . (18)

In these equations a. ', P', y', and 6' are combina-
tions of the various elastic constants c„,/p. Since
the sample size is normally very large compared
to atomic dimensions, we will define a uniform
density of states in the k space, denoted by p, . The
different contributions to the heat capacity may
then be evaluated rather straightforwardly. Let
us consider Eq. (17}first.

By differentiating the number of vibrations with
(d'& ~ with respect to (d, the frequency distribution
function g(ru) can be found as

g(u&) = 2, &uarcsin(u/to, ), fora~ &o„(22a)SrNAv

4rNAvg((u)=, "v, (u, for sr~ (u, .
2 (dm —(d~

(22b)

C(T)=k
""gg g((g)(jf~/kT)2e""~~r

(
tlta IRT I)2 t (23)

where ks is the Boltzmann constant. If Eq. (22) is

m

FIG. 5. The frequency distribution function g (~) aris-
ing from a mode of vibration, for which dispersion
effects near the z axis are dominant.

As can be seen from these equations, the frequen-
cy distribution function g(u) is determined com-
pletely by the magnitude of +, and (d, which will
be considered as independent parameters in the
calculation of the heat capacity.

In general, the molar heat capacity C(T) may be
inferred from a normalized frequency distribution
function g(&u) with the formula
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inserted in this expression, we obtain a contribu-
tion E,(B,B„T)to the heat capacity, given by

E,(B,B„T)

3(2B' e')

24R T2 ec~~ x'
},a resin(x T/e, ) dx

0 (e

+ 2B'Il, (e /T) 2e,'D-,(o,/T) .

p~ = 4dd, rN„»/v'. (26)

Of course, from a physical point of view, this
assumption is not quite compatible with Eq. (17),
since in this equation dispersion effects near the
xy plane are not taken into account, but in the
present derivation of an approximate relation
between e and n the resulting error in the cut-
off frequency of about a factor 2m is of no impor-
tance. Substitution of Eq. (26) in (21) yields the
relation

In this expression the usual substitutions

x= her/kT, e,=he, /0, B„=R'&u /0,

have been made, while D,(e/T) denotes the two-
dimensional Debye function, defined in the Appen-
dix.

Before we proceed with the evaluation of Eq.
(18), we would like to make some remarks about
the interpretation of the numerical values of ~,
and &() . While ((), has been defined as P/d [cf. Eq.
(19)], there is no direct relation between u and
the constant n. Although it is not basically impor-
tant for the calculation of the heat capacity, the
value of ~ may, to a certain extent, be associated
with the magnitude of a, which can be seen as
follows. If we assume a cylinder shaped MBZ with
height x/d and radius»/2d„ the volume of the
MBZ will amount to w'/4dd, ', and the correspond-
ing density of states in the k space, p~, is found
as

b=-,'n for ~~ ~,. Since an analytical evaluation
of the integral in this equation is not possible, the
frequency distribution function has been computed
numerically, and the result is plotted in Fig. 6.
The dashed line denotes the limit for cv-~, in
which case Eq. (28) reduces to

r/2 2m3
(~} P))

g dg Pk
Qd1 0 1

(29)

BrNAv«)=, . (. 8f,),
b

f[l —(((),/2(())' sin'g] '~'d&,
0

(32a)

with

In order to obtain a rather simple and manageable
expression for the heat capacity involving only
linear combinations of Debye functions, similar
to Eq. (24), Eq. (28) will be used for ~& 2&v„and
the limiting behavior (29) in the frequency range
~~ 2~,. It may be shown that this approximation
produces only a small error in the magnitude of
the heat capacity. For +& co, the number of vibra-
tions 1(e) with &u'«u is equal to

j.6np v
I(&u) = ~, ' t'[(u/&u )' — isnf]'~'dl,

0

(30)

and hence the normalization condition (20) yields
ff/2 g r2

y2
(4 — i )U" (d*8( *( ~— .))Q4 0 2

=rN„», (31}

in which expression co, has been substituted for
2~, . If we denote the integral in Eq. (31) by I„
the frequency distribution function

2P2y2
1

p2~ 2/2 (27)

Given the fact that e &P and that d, and d are of
the same order of magnitude, Eq. (27) shows that
the value of ~„may be used as an indication of
the ratio n/d, .

Next we will consider Eq. (18). Following the
same procedure as described above the frequency
distribution function g(&u) may be found as

g(co)=,' &[1 —(~,/&o)' sin'0] '~'dg, (28)
1 0

with ((), =y/d„b=arcsin(u/u&, ) for (() ~ (()„and

2 ()()C

FIG. 6. The frequency distribution function g(~) aris-
ing from a mode of vibration, for which dispersion ef-
fects near the xy plane are dominant. The dashed line
denotes the limiting behavior for ~
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b = arcsin(2&v/m, ), for m ~ —,
'

u&,

1 1= pw for g (d «+ (tp «+ (08,

is obtained. Again, g(&u) is completely determined
by the magnitude of e and v . The same argu-
ments that were applied in the evaluation of Eq.
(17) may be used to show that the value of ~ may
now be associated with the ratio 3/d.

If Eq. (32) is substituted in Eq. (23), we obta. in a
contribution E,(9„,9„T)to the heat capacity given

y
2(

illa'

st ) 3[ gP (v2 Sf )0 )

x [ HIP), G,(T /9, )+n'8+, (9 /T)

—~'O, D, (9, /T)], (33)

where D, (0/T) denotes the one-dimensional Debye
function, defined in the Appendix, where the func-
tion G,(T/0) will be treated also.

B. Layered structures

As has been pointed out above, the lattice heat
capacity C~(T) may be found by a summation of
the three contributions arising from the different
modes of vibration which may be written as

C, (T)= Z, (9„9„T)+S,'(9„9„T)+F,(9„9„T).
(34)

In this expression e„e„and 8 are associated
with the cutoff frequencies of the "longitudinal in-
plane, " the "transverse in-plane, " and the "out
of plane" mode of vibration, respectively. The
number of adjustable parameters in Eq. (34)
amounts to 5, but in order to keep this expression
manageable in numerical fitting procedures, a
further reduction of this number is generally im-
perative. Fortunately, such a reduction is often
possible.

Firstly, the majority of the investigations on
low-dimensional magnetic systems have been per-
formed at rather low temperatures, in which case
one "average" characteristic temperature may be
used to describe the cutoff frequency of both the
longitudinal and transverse in-plane modes of
vibration. If the high-temperature region should
be described more accurately, one might use the
fact that the ratio 8,/8, is roughly equal to
v, /v„where v, and v, denote the propagation
velocities of the longitudinal and transverse waves
in the xy plane, which are proportional to (c»)'h
and (c«)'~', respectively. Since for a wide variety
of substances'6 the ratio c„/c«appears to range

between 3 and 6, the additional condition O, = ge„
with 1.5&g&2.5, seems rather realistic.

Secondly, when the dimensions of the MBZ in
the x, y, and z direction are not too different, the
problem will be simplified by the fact that "trun-
cation" of the "cigar-shaped" contours in the k
space occurs at the same frequency as the trunca-
tion of the "disc-shaped" contour, because for all
contours the maximum 0 value is proportional to
(c«) '@. This yields the additiona1 relation 8,
= 2e„which leaves only 3 independent parameters.

For extremely anisotropic substances, like
graphite, boron nitride, and perhaps (CH,NH, )2

CdC14, ' a bending modulus K should be included
[cf. Eq. (16)]. We will, however, not consider this
rather special case in the present treatment. For
a calculation of the frequency spectrum for the
out of plane mode of vibration and a discussion
of the contribution to the heat capacity, the reader
is referred to the literature. '""

Finally, we would like to make some remarks
about the application of Eq. (34) to the interpreta-
tion of experimental data. Both the integral on
the right-hand side of Eq. (24) and the function

G,(T/8), which has been substituted in Eq. (33),
cannot be evaluated analytically. With the aid of
a high-speed computer they may be approximated
with a very high degree of accuracy, but, espe-
cially when the functions E, and I'2 are used in
numerical fitting procedures, the time involved
with such a procedure is very large, since the
various integrals have to be computed for each
iteration and for all temperatures that correspond
to the data points. Given the fact that the accuracy
of most specific heat measurements is in the or-
der of 1%, we found it useful to deduce some
rather simple expressions, which describe the
various integrals with an accuracy of a few parts
in 10' for all values of T/8. The derivation of
these expressions will be given in the Appendix.

It should be noted that the functions E, and F,
are only physically meaningful when the ratio
8,/9 and the ratio 9,/9 are small compared to
unity. If the anisotropy for a particular mode of
vibration accidentally appears to be very small,
a description of the corresponding contribution
with a suitably normalized three-dimensional
Debye function is preferred.

IV. CHAINLIKE STRUCTURES

In principle, the evaluation of the lattice dynam-
ics of a chainlike structure is completely analo-
gous to the problem treated in Sees. II and III, if
the direction of the chains is chosen along the z
axis. Some modifications may arise from the fact
that the relative magnitude of the elastic constants
may be different from those of a layered structure.
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For a variety of anisotropic chainlike compounds,
however, the shearing constant c44 appears to be
small compared to c» c«and c33 Therefore
the contours presented in Fig. 1 will still be
representative, except for the fact that the con-
stant c33 which now represents the compressional
stiffness of the chains, will generally be larger
than c» and c«. As can easily be seen, this has
no drastic consequence for the description of the
dynamical behavior, given by continuum elasticity
theory, and the expressions (9) and (10) are still
valid. The dispersion relations denoted by (Jo] cop,

and ~3 are now associated with the "out of chain
longitudinal, " the "out of chain transverse, " and
the "in chain" mode of vibration, respectively.

In general, the lattice heat capacity of chainlike
substances may be described by Eq. (34) with 5

independent parameters. For these compounds,
however, it is not obvious that both 8, and 0, are
high compared to the temperature region in which
the expression will be applied, and hence the ad-
ditional condition 8, = a8, may produce some inac-
curacies in the description of the heat capacity.
However, if the dimensions of the MBZ are not
too different, the number of parameters can be
reduced by the relation 8,=20„as has been
pointed out in Sec. III.

To our knowledge, no heat capacity measure-
ments have been reported on substances which are
built up from very covalently bound purely one-
dimensional chains. Therefore the bending con-
stant C~ [cf. Eq. (13)] has not been included in the
present treatment.

V. DISCUSSION

In the preceding sections an approximation has
been presented, which provides a rather general
description of the lattice heat capacity of both
layered and chainlike compounds. Since the
inferred expressions involve only a few adjustable
parameters, they are expected to be very useful
in the interpretation of the heat capacity of low-
dimensional magnetic substances. This is demon-
strated by applying the theory to the description
of the lattice contribution to the heat capacity of
the series of isomorphic antiferromagnetic sub-
stances CsMnC1, .2H,O, nRbMnCl, ' 2H,O, and
CsMnBr, 2H,O. These compounds may be con-
sidered as systems built up from layers of heavy
ions, which are mainly held together by hydrogen
bonds. " Because in the paramagnetic region the
magnetic properties of the different isomorphs are
rather well established and the lattice contribution
varies considerably, this series should offer a
good indication of the applicability of the theory.
Moreover, accurate experimental data were avail-

able below 52 K. We found that the lattice heat
capacity for this series could be described very
well between 9 and 52 K by Eq. (34) with 3 inde-
pendent parameters. In fact, the errors were
within the experimental uncertainty (1%). The
fitting procedure itself was found to be numeri-
cally stable, in contrast to a first attack on the
problem, which was based upon a modification of
the theory of Tarasov. '

Of course, a more direct check on the correct-
ness of the description may be obtained by con-
fronting the inferred expressions with the low-
temperature heat capacity of an anisotropic dia-
magnetic substance. Therefore we will briefly
consider the heat capacity of (CH, ),NCdC1, (TMCC).
Since detailed results of the measurements have
been published elsewhere, "we will confine our-
selves to a discussion of the fitting procedure.
In the interpretation of the heat capacity of TMCC
one should note that this compound has been re-
ported" to consist of chains of the form-Cd-C13-
Cd-, which are separated by N(CH, ), complexes.
Because at low temperatures the CH, molecules
will vibrate as a whole, the number of vibrating
units in a formula unit was assumed to amount to
9. As a first attempt, the experimental data were
described with the full Eq. (34), involving 5 inde-
pendent parameters. The fitting procedure, how-
ever, revealed strong correlations between the
parameters 0, , 8, , and 6„which is caused by
the fact that the fit was performed at relatively low
temperatures (4& T&52 K) where accurate ex-
perimental data were available. Because espe-
cially 8„reflecting the in-chain stiffness, showed
a large standard deviation, we imposed the

additional condition 0,= 20, . With the simplifica-
tion 8,= 26, the experimental data could be de-
scribed withanaccuracy better than - 2'Po. Only a
slight improvement was obtained by considering
8, and 8, as independent variables, and hence the
expression with three parameters was preferred.
The result was

442+ 4 K, o-, = 154+1 K, O™c=

The same simplified form of Eq. (34) has been
used to describe the lattice heat capacity of the
isomorphic (CH, ),NMnCl, (TMMC)." An excellent
agreement with the experimental data was found,
yielding 0 values which are about 8% higher than
those for TMCC. This is consistent with the mass
difference between the Cd" and the Mn" ion, if we
assume that the binding forces are almost equal
for both compounds.

Finally, we would like to make some concluding
remarks. In the treatment of more complicated
structures, one has to assume an "effective" num-
ber of vibrating units in a formula unit, denoted
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by r. In general, r can be taken equal to the num-
ber of heavy atoms plus the number of molecular
groups that are assumed to vibrate as a whole,
at least within the temperature region that is of
interest in the description of the heat capacity.
The number of these groups —like H,O, CH3 or
NH 3 may often be found from inspe etion of the
crystallographic structure. Especially when the
expressions are used in the description of the low-
temperature heat capacity, the quality of the fit
appeared to be rather insensitive to small varia-
tions of the value of x. In the case of TMMC and

TMCC, this value was assumed to be equal to 9.
Specific-heat measurements which have been per-
formed on TMMC up till room temperature' re-
veal that even at 300 K the total number of degrees
of freedom hardly exceeds 27K„v, which strongly
indicates that the conjectured value of r is correct.

It has become common practice to describe ex-
perimental results with an apparent g, value, i.e. ,
the value of Q that should be inserted in a correct-
ly normalized three-dimensional Debye function
to predict the observed magnitude of the heat ca-
pacity at a given temperature T. The contribution
I'2 can be described by an apparent 8, value defined

by the equality

—,'D, (6./T) = Z,(B,B„T).
The result is presented in Fig. 7, where the ratio
6,/6 has been normalized to unity at T =0. A
similar behavior is found for the contribution E,.
It should be noted that even for small values of
the anisotropy our theory predicts a minimum of

6, in the temperature region 0.02& T/6 &0.2,
which has also been observed in a considerable
number of experimental investigations. " Hence

it appears that the most essential shortcoming of
the purely elastic Debye model in the description
of the low-temperature heat capacity may already
be removed by the inclusion of only the most dom-
inant dispersion effects. The limiting T depen-
dence of the heat capacity appears to occur only at
temperatures very low compared to the region in
which the "Debye T' law" mathematically holds.
If the compound under investigation has a fair
amount of anisotropy, conventional techniques to
separate the electronic or magnetic contribution
from the total specific heat, such as a G/T versus
T' or a CT' versus T' plot, respectively, should
only be applied with great care, since they are
based upon a purely T' dependence of the lattice
heat capacity.
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APPENDIX

The n-dimensional Debye function used in this
paper is defined as

+ 'II ~tl+lel

~0

where R denotes the molar gas constant.
The integral that appears at the right-hand side

of Eq. (24) can be evaluated as follows. Let us
define a function G, (T/6, ) as

T 24R T' ec~~ x'e"
~ YT

» arcsin —dx. (37)
ec +ec ~0 (e 1) C

1.6—
I I I I I I I I I I I I I I I I
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TABLE I. Coefficients B&; of the polynomial series
P &(T/O, ) that relates the function G &(T/o", ) to a three-
dimensional Debye function.

T/8, » 0.1 T/O, 0.1

The low-temperature behavior of G, (T/6, ) canbe
found by substitutingarcsin(xT/6, ) = xT/B„since the
integrand goes exponentially to zero for large values

08 I I I I I I I I I I I I I I I I I I I

103 16 10 1 10
~ /'em

FIG. 7. Description of the contribution to the specific
heat, axising from a mode of vibration for which disper-
sion effects near the xy plane are dominant, vrith an ap-
parent O, value. The different curves are characterized
by the ratio O, /O
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B« =+ 7.11922x 10~

B, ,=+ 8.660 12x 10'
B g p
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Bg,9=+2.33086x10 ~

B& o=-5.63143
B« ——-1.942 11
B ( 2

= -5.322 41x 10
Bg 3=+3.3997lx10 2

Bg 4=-1.88309x10 2

B i 5
= + 7.530 21 x 10 ~

B
& 6

= -1.487 47 x 10 ~

B, ,=-5.640 74x10 '
B1,8 +4 33673x 10 ~

B&,=-4.445 69x10 '
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TABLE II. Coefficients 82, of the polynomial series P2(T/8, ) that relates the function
G 2(T/O, ) to a three-dimensional Debye function.

V/, OO3

82 p= 2.498 59x 104

82 (=-7.32324x 10
82, = -9.283 42 x 104

8, , = —6.70697x 104

82 4
——-3.05181x104

8 2 5
——-9.088 19x 10

82 6=-1.774 04x 10~

82? =-2.19161x102
8

2 8
=-1.556 37 x 10

8 2 9
= -4.844 91x 10

0 03~ T/Os~ 0 40

8 2 p
= -3.000 59

82 )=+8.17766
8, ,=+2.377 06x10
82 g

=+ 3.248 92 X 10
8, ,=+ 2.863 22x 1O

8 2 ~
= + 1.683 68 x 10

82 6=+6.57270
8 2? =+ 1.632 29
8 2 8

=+ 2.31085x 10 ~

8, ,=+1.40476x 10 '

0.40 a T/O~~

82 P
= -4.941 17

8, , = -2.001O1
8, ,=+ 7.11166x 10-'
8, ,=+4.36995x10 4

82 4=-1.73992x10 ~

82 5=+1.71293x10
82 6=-8.19824x10 4

82, ? =+2.09085x10-4
82 8=-2.72743x 10 5

82, 9
=+ 1.43144 x 10-6

of x. The result is

G, (T/0, ) = (8/3w)D, (8,/T). (38)

At low temperatures, the function G, may also be
described by the equation G, (T/0, ) =D,(8/T), if
we put

8 = (3s/8)'!'O, . (39)

At higher temperatures, the relative differences
between the function G, (T/8, ) and the three-dimen-
sional Debye function D,[(3m/8)'!'8, /T] may now be
approximated with a function P( !T0,), for exam-
ple, a polynomial series in T/6, . The approxima-
tion

G, (T/8, ) = D,[(-,'7r)'!'8,/T][I P, (T/0, )] -(40)
was found to have a relative accuracy better than
2x 10 ' for 0& T,/e, &~ with the polynomial series

For &u« ~„Eq. (42) reduces to
g~/~

g(~)=, &[I -(~,/2~)'&'] '"dt
~SI1

The limiting low-temperature behavior of the heat
capacity may now be found as

G, (T/ O,) = 4/(3I, )D,(8,/T),

or alternatively,

G,(T,!e,) =D,[(3I,/4)~!'o, /T].

(44)

(45)

Following the same procedure as outlined above
the function G,(T/8, ) can be described with a rela-
tive accuracy better than 5 ~ 10~ for all tempera-
tures by the approximation

G, (T/8, ) =D,[(3I,/4)'!'8, /T][1 -p2(T/8, )).
P, (T/8, ) = exp B, ,[ln(T!8,)]' .

"0
(41)

(46)

The coefficients 8, „obtained by a least-squares
fit of approximation (40), are listed in Table I.

The function G,(T/C ), substituted in Eq. (33), is
equal to the heat capacity that is obtained if the
frequency distribution function

g(&u) = ' &[1 —(Id,/2&v)'sin'C] '!'dg, (42)
~aIi -0

with 8 = arcsin(2(u/ur, ) for &u ~ 2ur, and 5= —
2w for

a~-, u&„ issubstitutedinto Eq. (23) with &u = &a,.

The magnitude of I, has been numerically evaluated
as I, =1.1190677,while the constants B„,. in the
polynomial series P,(T/8, ), having the same func-
tional form as P, (T/8, ), are listed in Table II.

Given the fact that for the usual Debye functions
various series expansions are available, "the
results given by the relations (40) and (46) are
very suitable in numerical fitting procedures,
since the derivatives to the different parameters
may be inferred very easily.
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