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The temperature and polarization dependence of the extended x-ray absorption fine structure (EXAFS) is
calculated within the framework of a simple approximate form for the theory. A discussion of the microscopic
information contained in such dependences is given, and a specific application to the polarization-dependent

EXAPFS in zinc is made.

I. INTRODUCTION

In the past few years there has been renewed
interest! in the interpretation and analysis of the
so-called extended x-ray absorption fine structure
(EXAFS). This revival of interest stems from the
dramatic improvement in the intensity of tunable
X-ray sources vis-d-vis synchrotron radiation
and the realization that such experiments give
important microscopic information about the
local environment surrounding a definite atomic
species. The interplay between recent theories
of EXAFS and measurements on simple molecular
systems have shown how it is possible to extract
structural information from measurements on a
variety of quite complex systems; more specifi-
cally, near-neighbor distances can be extracted.
Ideally one would like to characterize the local
environment as completely as possible, i.e., we
would in principle like to determine the position,
type, and number of the central-atom neighbors
and to determine such interesting properties as
the relative vibrational amplitudes and force con-
stants of these neighbors.

It is the purpose of this paper to discuss in de-
tail the temperature, and to a lesser extent polar-
ization dependence of EXAFS. We will show that
an analysis of this dependence gives important
information about the local modes of vibration
around the central atom. In particular we will
show that it is possible to learn a great deal about
the mean amplitude of vibrations and force con-

stants of the near neighbors in a harmonic system.

We will apply these ideas to an analysis of the
polarized anisotropic EXAFS spectrum in zinc.?

II. THEORETICAL FORMULATION OF THE PROBLEM

In the simplest theory® of EXAFS the oscillatory
part of the absorption coefficient y, for a long
wavelength photon of frequency w and polarization
vector € is given by
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Here k=[2m(w - 2,,)]*/2 is the wave vector of the
free electron promoted above threshold (22,,) to
the continuum from the K shell by the photon.
The angular dependent factor correctly accounts
for the emission probability of an electron from
a spherically symmetric ground state to a plane
wave propagating in the direction R,.*

Equation (1) describes the modification of the
final state as the photoelectron propagates out-
wards and is backscattered by the jth atom lo-
cated at ﬁj and then propagates back towards the
origin. The spherical outgoing wave has been
approximated by a plane wave and f,(7) is the
complex backscattering amplitude. The phase
shift 6; describes the effect of the potential of the
excited atom. The isotropic damping factor y
takes into account inelastic scattering of the
electron from other electrons.

At any finite temperature the positions ﬁj of the
atoms are smeared by thermal vibrations. In all
treatments of EXAFS the effect of this vibrational
smearing has been included in Eq. (1) by setting
R; equal to its equilibrium value (RY) and multi-
plying each term in Eq. (1) by a factor e 2o f,
Since this factor is meant to account for the ther-
mal vibrations of the atoms about their equilib-
rium sites R‘}, one usually assumes that the
quantity o3 is identical with the atomic mean-
square displacement of the atoms.*

The simple formulation of EXAFS, expressed
concisely in Eq. (1), explicitly neglects multiple-
scattering effects and implicitly hides all of the
many-body effects associated with the dynamic
response of the many-electron system to the
presence of the excited electron and hole in the
parameters 6;, f,(r), ¥, and o3. All but the final
one, oﬁ, are taken to be functions of 2, while the
quantities 8] and f;(7) may be determined empiri-
cally from EXAFS measurements on simple

1514



14 TEMPERATURE AND POLARIZATION DEPENDENCE OF... 1515

molecules.® Given these two quantities it is then
possible to unambiguously determine structural
information, i.e., the positions R§ assuming only
that the quantity y(k) is a nonoscillatory function.

The exponential falloff with energy of the oscil-
latory part of the amplitude is clearly related to
the quantities y and 02, Since y characterizes the
electronic loss processes (for example, plasmon
emission) it is expected to be temperature inde-
pendent and for most solids, to be roughly iso-
tropic in space. The quantity 02,, on the other
hand, since it characterizes the relative oscilla-
tory motion of nearby atoms, is expected to be
temperature dependent and anisotropic with re-
spect to the incoming photon polarization vector.

The fact that a quantity of the form e"2¥*"} re-
presents the effect of thermal motion of atoms
has been quite widely accepted in even the most
refined theories of EXAFS. The precise definition
of 0% and the validity of such an expression, how-
ever, has not been thoroughly investigated.®

To see the origin of €25 we start from Eq. (1)
and replace R; by R9+# - T, and retain all the
leading terms in |4, - §,|/RS. Here 1, and §, are,
respectively, the jth atom and central-atom dis-
placement vectors. With this replacement, Eq.
(1) represents the EXAFS due to an instantaneous
configuration, since i, and U, are functions of the
time. To obtain the observed EXAFS, we must
average over a period which is short on a micro-
scopic scale, but which is long compared with the
period of vibration of the atoms. It is simpler,
however, to evaluate the ensemble average of Eq.
(1) over a canonical ensemble defined by the Ham-
iltonian of the system, rather than to take a time
average. The EXAFS spectrum is then given by

X=X0<92“Aj> , @)

where A;=R% (i, - T,).

The exponential in Eq. (2) cannot be expanded,
as k4, is usually much greater than one even for
A,/R§«1, so that an evaluation of the temperature
dependence of the EXAFS requires the evaluation
of

(e%i*81) =Tr(eBHe?i*8)) . (3)

In general, such averages cannot be carried out.
However, in many cases of interest the vibrations
of the atoms are described by a harmonic or quad-
ratic Hamiltonian. This is the case for almost all
solids and molecules at low temperature and will
be the situation assumed to be true here. In this
case we make use of the well-known relation’

(e?i*85) = o2k (4)

and obtain

X= xoe-zkz(Aﬁ) . (5)
Thus, only if we assume small harmonic vibra-
tions and if we set

03=(a3), (6)

do we get the usual form of the EXAFS thermal
damping factor.

It is important to note that it is nof necessary to
assume isofropic Gaussian atomic displacements.
In fact (A%), is the mean-square relative displace-
ment (MSRD) along ﬁj or, in molecular spectro-
scopy terminology, the mean-square amplitude of
vibration.

In Sec. III, using Eqgs. (5) and (6), we discuss
what can be learned about the force fields of a
system from a study of the temperature depen-
dence of the EXAFS. In Sec. IV, we introduce an
approximate method to calculate the temperature-
dependent damping of the EXAFS in anisotropic
crystals. Finally, we apply this approximate
scheme to zinc and compare it with recent experi-
ments.?

III. EXAFS AND FORCE FIELDS

For molecules, the possibility of measuring
directly the MSRD between atom pairs is of great
interest. In modern techniques of molecular
structure determination (electron diffraction,
microwave, infrared, and Raman) it is important
to distinguish between the equilibrium internuclear
distance and various kinds of average distances.
In particular, for the interpretation of electron
diffraction experiments, it is necessary to calcu-
late the MSRD for each atom pair in the molecule
to be studied. The calculations are very laborious
and always make use of assumptions about the na-
ture of the force-fields. Conversely, the calculated
MSRD are used to determine (harmonic) force
fields, if they can be obtained by an independent
measurement. Presently this can be done only by
using electron diffraction. The necessary accu-
racy can be obtained only in very few cases, by an
extremely elaborate experimental procedure.®

The utility of EXAFS as a tool in measuring
MSRD has yet to be tested. Nevertheless, it is
worthwhile to examine in more detail its potential
usefulness. In EXAFS experiments it is possible
to measure, quite straightforwardly, the MSRD at
various temperatures. We will see that it is pos-
sible to directly relate the temperature dependence
of the MSRD to the molecular force fields, them-
selves.

Let us consider a polyatomic molecule. The
treatment® of the harmonic vibrations problem in-
volves the secular equation for the normal fre-
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quencies w?. This equation may be written in the
form

|GF-w?1]=0, M

where G is the inverse “mass” matrix, F is the
potentia_.-l energy matrix, and 1 is the unit matrix.
The matrices G and F are specified by a complete
set of internal displacement coordinates (e.g.,
bond lengths and angle displacements). This set
of coordinates we represent by the column matrix
S. The MSRD amplitude matrix is defined by'°

T=(s8", (8)
where (- -+) means thermal averaging. The diag-
onal elements of £ are the MSRD of vibrations,
i.e., we can choose a coordinate system such that

(a%?)=3,,. Transforming S to normal coordinates
Q using the matrix L

=19, ©)
we obtain

2=LQAIL, (10)
where

(Q @ pms = [(7/2w,) cothz fHiw, 15, (11)
and B=1/kT.

In the high-temperature region one can derive
a simple relationship between = and the molecular
force fields. Using the well-known relations

(I_-‘+F_I_-‘)nn' = wiénn’ )

(12)
LL'=G
and expanding the hyperbolic cotangent in Eq. (11):
coth3frw, = 2/ Bhiw, + 3 Bhw, , (13)
we obtain
= (1/BF "+ 476G. (14)

If we choose the internal coordinate system so
that the diagonal element Z;; is the MSRD of the
jth bond (i.e., the bond length between the central
atom and the atom at R,), we have

G;;=1/u. (15)

Here u is the reduced mass of the pair of atoms
forming the jth bond. Finally, from Egs. (14) and
(15), we obtain

(A== (/B F};+ 7B/ 1) - (16)

In a typical EXAFS experiment, it would be a sim-
ple matter to deduce F7;; from the slope of the
high-temperature values of (A%). This measured
value could then be used to fes? the force-field
model on which the F matrix is based. In electron
diffraction measurements'! of (A% there have

been, to date, no temperature-dependent mea-
surements. Such a situation arises because of
the complexity of performing such measurements.

IV. MEAN-SQUARE RELATIVE DISPLACEMENTS
IN CRYSTALS

For perfect cyrstals it is convenient to rewrite
the MSRD (A?) in terms of the mean-square dis-
placements (MSD) ((ﬁj-ﬁj)z), (('ﬁo-é,)"’) and the dis-
placement correlation function (DCF)

(o R, B,); Le,
(82 = (@, B)?) + (@, B - 2(T, B, R))) .
1m)

This form is useful as we wish to discuss sepa-
rately the role played by the MSD and by the DCF.
In 2 monoatomic crystal we have!?

h‘ 521
A2 =__§: & R ,)2—
“=xm & Ca-R)) Wz

X (cothzfwy)[1- cos@-R,)],
(18)

where N is the number of atoms of mass M, and
23 is the polarization vector for phonons of mo-
mentum §, polarization A, and frequency wg,. The
first term on the right-hand side of Eq. (18) is twice
the MSD which is independent of the central atom
neighbor distance and determines the decrease in
the EXAFS amplitude as a result of the “total”
thermal motion of the atoms along R ;- When this
term is inserted in Eq. (5) the resulting expression
is formally identical to the Debye-Waller factor
with 2kR ; replacing the x-ray momentum transfer.

The second term in Eq. (18) ensures that only
out-of-phase thermal motion of the atoms along
R, determines the decrease in the EXAFS ampli-
tude. This term is most interesting as it also
determines the R; dependence of the damping fac-
tor and it can be computed, e.g., if a lattice-
dynamical force model is available.

In anisotropic crystals a study of the various
components of the MSD in the principal directions
gives one a good experimental test of dynamical
force models. Similarly, an experimental deter-
mination of MSRD would reflect directly on the
stretching of various near-neighbor bonds in a
crystal. While there have been many calculations
of MSD,” to our knowledge there have been no cal-
culations of MSRD. This situation is undoubtedly
due to the lack of good experimental data. In the
absence of such calculation of the DCF based on a
lattice- dynamical force model it is not unreason-
able to approximately evaluate the relative impor-
tance of the DCF versus the MSD by using a simple
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Debye model of the lattice vibrations.
For the moment, let us restrict our attention to
a monoatomic cubic crystal. In this case we can

J

3% (1- cos(g,R,)

R N RIS o

where
e,/ T XN
<1>"=f0 dr——. (20)

In this expression w,, ©,, and ¢, are the Debye
frequency, temperature, and wave vector, respec-
tively. The firstterm on the right-hand side is twice
the MSD while the second term is twice the DCF. To
get a rough idea of the relative size of the various
forms we have numerically computed the ratio of
the first shell DCF to the MSD for bcc and fcc
lattices as a function of temperature. The results
are shown in Fig. 1. The most interesting feature
is the magnitude of the DCF term which amounts
to roughly 40% of the MSD at high temperature in
both cases. Although this conclusion is reached
within an approximate model we have an indication
that the use of the measured MSD for o3, as is
usually the case, is incorrect.

We would like to make a comparison of those
theoretical ideas to recent experiments in zinc.
Since zinc is anisotropic we cannot use a simple
Debye model. As an artifice, however, a direc-
tional Debye temperature originally proposed by
Gruneisen and Goens,'? can be introduced in order
to give a good rough parameterization of the
actual spectra. In essence, for an anisotropic
system a directional Debye temperature is asso-
ciated with the component of the MSD in a given
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FIG. 1. Temperature dependence of the ratios of the
displacement correlation function (DCF) (@,*R,) @,- R}
and the mean-square displacement (MSD) (@,"R,)? .
Results are obtained within the Debye model for fcc and
bce crystals and refer to the first shell only.

replace (83 -R;)? in Eq. (18) with 3. Then, using
the Debye approximation for the density of states
it is straightforward to show that

2 1 T \? 1 T \* ]
) [‘bx—‘ﬂ<qDRJ'é—'D> ‘I’3+'5—! <qDRj‘e';>‘1’5‘ } ’

(19)

direction, as if the system were isotropic and all

the atoms vibrated with the particular component

of the MSD associated with that direction; e.g., in
the x direction

W2 = (31/Mw [z + (T/0,,)°®,]. (21)

For zinc the MSD parallel to the basal plane and
perpendicular to it are known from thermodynamic
and inelastic neutron data and have been calculated
by Barron and Munn.'* Thus we can determine the
Debye temperatures 9,,,0,, and use the results of
Fig. 1 for an fcc lattice (which has g,R,=4.37 as
for hep) to determine, at each temperature, the
value of the ratios of the DCF to the MSD parallel
and perpendicular to the basal plane.'* This is a
hybrid scheme in which the MSD are accurately
known (from experiment and lattice-dynamical
force models), while the relative weight of the
DCF is calculated on the basis of the anisotropic
Debye model. The results for the MSRD parallel
(0%) and perpendicular (02) to the basal plane are
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FIG. 2. Temperature dependence of the mean-square
relative displacements of zinc parallel (0 |21) and perpen-
dicular (@?) to the basal plane. Results refer to the
first shell only.
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shown in Fig. 2. Here we have plotted o and o
as a function of temperature for the first shell
only. The theoretical result based on this simple
model clearly predicts a large anisotropy in the
EXAFS damping factor. It is also important to
point out that the calculated MSRD values are con-
siderably smaller than twice the MSD.

At room temperature the preliminary data® for
o2 and ¢? in zinc are

0% =0.04+0.0054%, 0%3=0.015+0.005A2

which are in semiquantitative agreement with the
theory. Thus, although our scheme only takes
into account the DCF in an approximate way, we
may conclude that in many materials such con-
siderations are important.

V. CONCLUSION

In this paper we have examined a few related
aspects of the temperature dependence of the
EXAFS spectra. We have shown that the thermal
vibrations of the atoms about their equilibrium
positions can simply be taken into account by
using Eq. (2) as long as one assumes harmonic
displacements. For molecular systems we were
then able to show that the temperature dependence
of 0% is simply related to the force field of the
system. Such a relation can be used to test force-

field models provided enough accuracy on o§ is
available. In addition we have discussed the actual
evaluation of 0"} in perfect crystals. With in-
creased experimental accuracy it may become
necessary to calculate the DCF from a detailed
lattice force model. In this paper we have, in-
stead, introduced an approximation scheme of
evaluating o % which can be used both in isotropic
and anisotropic crystals, if the Debye-Waller fac-
tor is known. We have applied this hybrid scheme
to the case of zinc and we find a semiquantitative
agreement with the experiments. In this respect
the most interesting result is the large contribu-
tion of the displacement correlation function to o3.
This indicates the inadequacy of identifying mea-
sured mean-square displacements with the of.,
even at a very approximate level.

EXAFS is still in the process of being explored
as a potential tool for structural analysis. The
accuracy of the information obtainable is still
very uncertain. As far as the temperature depen-
dence is concerned, the situation is even more
obscure, owing to the scarcity of experimental
data. In our discussion we have made numerous
approximations. For example, we have completely
neglected anharmonicity and restricted the formu-
lation to the approximation given by Eq. (1). We
feel, however, that much remains to be done be-
fore more detailed theoretical comparisons can
really be made meaningful.
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