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Electronic properties of an alloy with off-diagonal disorder
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Densities of states and spectral functions are computed for relatively large (- 8000 atom) models of an alloy
with off-diagonal disorder. A nearest-neighbor tight-binding electronic Hamiltonian is assumed. The numerical
results are compared with those obtained from calculations based on the coherent-potential approximation
(CPA) with the "additive limit. " The overall agreement is quite satisfactory. In particular, the two approaches
yield remarkably similar descriptions of the minority states in the case of purely off-diagonal scattering. As
expected, the substructure in the electronic spectrum due to minority clusters is not reproduced by the CPA.

It has recently become possible to obtain exact
results for the electronic and magnetic states of
certain simple Hamiltonians representing three-
dimensional models with a relatively large number
of atoms. " These results are expected to repro-
duce the essential features of the spectra in in-
finite systems and can be used, therefore, to dis-
tinguish between various approximation schemes.

In the present paper, we consider the electronic
properties of a single-band tight-binding model of
a binary alloy. Two kinds of atoms, A and p, are
arranged at random on the sites of a simple cubic
lattice. Their relative concentrations are x and y
=(I —x). A single orbital ~i) is associated with
the atom centered at the site i and the one electron
Hamiltonian is written

where the prime indicates that only nearest-neigh-
bor pairs are included in the summation. The
local energy levels e, may assume either of the
two values ~" or c, while the transfer integrals
t, z take the values t"", t" =t ", or t depending
on the configuration of the sites i and j. The dis-
order in the alloy is manifest in both the diagonal
and off-diagonal matrix elements of 0 and the two
effects must be treated on an equal footing.

The structure of Hamiltonian (1) is such that the
disorder depends on the configuration of pairs of
neighboring atoms. This eomplicates the formula-
tion of a multiple-scattering theory because the
various lattice sites do not contribute indePendent-
ly to the scattering of an incident electron. There
is, however, a special relationship among the t, &'s

which simplifies the scattering formulation. This
is the additive limit': t"~ = —,'(t""+t ). In this
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For convenience we assume that e =0 and t
In Figs. 1 and 2 the CPA is compared with com-

puter calculations' of the density of states in four
alloys, each of which has x=0.15. In all four
cases the machine computations were carried out
for models with 5540 and 1660 sites (that is, cubic
structures with dimensions 14' 18 x 22 and 16 x20
x24). These models are large enough to provide
a statistically significant number of different im-
purity configurations. Their dimensions have pur-
posely been made asymmetrical to minimize the
effects of degeneracies introduced by cubic sym-
metry. The densities of states shown in Figs. 1
and 2 are an average of the results obtained from
the two calculations. Despite this averaging, some
of the features are clearly statistical artifacts.
For example, the fine scale wiggles along the
majority band were different for the two individual
calculations which went into the averages and are
therefore identified as finite sample effects. By

case the disordered terms in Hamiltonian (1) can
be written as a sum of independent finite-range
scattering potentials, and the conventional methods
of perturbation theory can be used to derive the ap-
propriate generalization of the coherent-potential
approximation' (CPA}. (It is of interest to note
that a similar simplification obtains in the random
Heisenberg ferromagnet. ') Since it would appear
that the additive limit does not exclude any physi-
cally interesting aspects of the problem, we shall
adopt it in what follows. '

Having imposed the condition t4s = 2(t +t~~),
the disorder in the model is characterized in
terms of the impurity concentration x and the
scattering parameters
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a
average electronic spectrum. ' In this context it
can be shown that the heights [h" '] and widths
[w "~s~] of the host and impurity subbands scale as

0

hB yl 2//fBB ~ B yl/2 fBB

hA 1/2/fAA ~A 1/2fAA
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(3b)

b

FIG. 1. Comparison of exact (solid) and CPA (dashed)
densities of states: (a) 6 =1.5, D& =-0.2; (b) 6 =1.5, 6&

=0.4. The exact results here and in all succeeding fig-
ures contain a Gaussian broadening with full width at
half-height of 0.04 energy units.

contrast, the multipeaked structure of the minority
band in Fig. 1 and the shoulders near E=+0.6 in
Fig. 2(b) were present in both individual results
and are no doubt characteristic of an infinite alloy
sample.

The results shown in Fig. 1 correspond to 5 =1.5
and 5, =-0.2 and 0.4. In these systems the effects
of diagonal disorder are dominant and off-diagonal
disorder may, in a sense, be viewed as a perturba-
tion. Indeed, in both Figs. 1(a) and 1(b) the most
significant feature of the spectrum is the appear-
ance of a well defined subband centered around the
impurity level e"=1.5. The main effect of the off-
diagonal scattering is to rescale the shape of this
minority band. A convenient way of characterizing
this effect is in terms of a moment analysis of the

The comparison made in Fig. 1 indicates that the
CPA accounts quite well for the general features
of alloy spectrum. Two discrepancies, however,
are worth noting. First is the fact that the exact
spectrum is spread over a slightly larger range
of energies than that predicted by the CPA; the
states near the limits of the exact density of states
being due to large single component clusters. Sec-
ond, we note that the substructure within the min-
ority band due to molecular clusters of A atoms is
not present in the CPA results. Both discrepancies
are associated with fluctuation effects and, as
such, are expected in a comparison with a mean-
field theory like the CPA.

In Figs. 2(a) and 2(b) we consider the effects of
pure off-diagonal disorder. Here' the agreement
between the exact calculations and the CPA is re-
markably good. In the case I5, =1.5, the impurities
produce broad wings above and below the central
portion of the spectrum. Physically, these wings
are due to an average distribution of the bonding
and antibonding states associated with a single im-
purity. This interpretation is supported by the
minority component density of states (plotted in
Fig. 3) which is seen to peak in the vicinity of the
bonding and antibonding levels. When the minority
band width is narrower than that of the host (e.g. ,
6, =-0.5) a peak in the center of the majority band
is evident in both the CPA and exact results. The
states in this peak are representative of those in
the high narrow band of a pure A crystal, and are
simply superimposed on the host spectrum.

Next we consider the separate contributions to
the alloy density of states associated with each vec-
tor k of the Brillouin zone. These are given by the
spectral functions A(k, E),

0

p(E) =N 'QA(k, E), (4)

g(E)

0 0

g (E)

FIG. 2 ~ Comparison of exact (solid) and CPA (dashed)
densities of states: (a) 5=0, 4&=-0.5; (b) 6=0, &~

= 1.5.
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FIG. 3. Exact result for the minority (A) component
density of states in the case 6 =0, 6& ——1.5.
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FIG. 4. Comparison of exact (solid) and CPA (dashed)
spectral function for the case & = 0 and 4& = l.5: (a) s(k) = 0;
(b) s(k) =1.

FIG. 5. Comparison of exact (solid) and CPA (dashed)
spectral function for the case 6 =0 and 6& ——-0.5: (a) s(k)
=0; (b) s(k) =1.

s(k) = —,
' (cosk„a + cosk, a + cosk, a), (5)

where a is the lattice constant. The curves shown
in Figs. 4 and 5 correspond to s(k) =0 and s(k) =1.
(In the case 6 =0 it can be shown that both the co-
herent potential and exact results exhibit the syrn-
metry A[s(k), E j =A[-s(k), -E).j

where N is the total number of atoms in the model.
In Figs. 4 and 5, machine calculations of A(k, E)
for the two cases of purely off-diagonal disorder
are compared with their CPA counterparts. (As
mentioned above, the numerical results are aver-
ages of the results of computations carried out on
7680- and 5544-atom models. } The comparison is
made at k points along the line Z in the Brillouin
zone. Within the CPA, A(k, E) depends on k only
through the simple cubic energy-band function

The results for 5, =1.5 and Py: 0 5 have in
common the feature that the spectral weight shifts
from low to high energies as s(K) increases from 0
to 1. Of course, this behavior is also characteris-
tic of the perfect crystal. In the case 6, =1.5, con-
tributions to the spectral functions for s(k) =1 may
be divided into two parts. The contribution at
larger values of E(E = 1.80) is due primarily to the
few highest-energy impurity states, and its multi-
peaked structure is a finite-sample artifact. By
contrast the smaller peaks near E =0.75 represent
majority states and are present in the numerical
results for both alloy models. When 5, =-0.5 the
spectral functions for both k exhibit a sharp major-
ity peak and a diffuse tail associated with the more
localized minority states. In all of the cases con-
sidered here the agreement between the machine
results and those of the CPA are quite satisfactory.
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In the numerical calculations, the additive limit pro-
vides no particular advantage. By contrast, the limit
where t" =(t~t ), that is, the geometric mean,
leads to great reductions in both the time and the
storage requirement for the equation of motion method.

~The numerical method used here is essentially the
same as that used in Ref. 1 ~ The essential difference
is that the time equation of motion for the Green's
function involves pair-dependent off-diagonal terms.
We have also changed the damping function which is



14 ELECTRONIC PROPERTIES OF AN ALLOY WITH. . 1513

used to reduce "termination ripples. " In Ref. 1 the
damping function was an exponential. Somewhat more
satisfactory results are obtained with a Gaussian
damping function and this was employed here.

When 5 =0 it can be shown that the densities of states
obtained from both the CPA and machine calculations
must exhibit the sy~~etry p(E) =p(-E).


