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The lowest-energy state of the incommensurate charge density wave (CDW) near the lock-in transition is

found to be a distorted plane wave. An exact solution is found in the weak-coupling limit and the lock-in phase

transition is continuous. A new defect is found in the commensurate CDW, a discommensuration, in which

the phase of the CDW slips by 2m/3 relative to the perfectly locked in CDW. The lock-in phase transition is

interpreted as a defect melting transition with a finite density of discommensurations in the incommensurate

state.

I. INTRODUCTION

Recently, the anomalous properties of the lay-
ered transition-metal dichalcogenides such as 2H-

TaSe, have been attributed to charge-density-wave
(CDW) formation. ' In 2H-Tase~ an incommensur-
ate CDW state is formed at 122 K which locks in
to the lattice to form a commensurate CDW state
at 90 K.' Wilson, DiSalvo, and Mahajan have
studied the susceptibility, resistivity, and electron
diffraction pattern of this material. Barmatz,
Testardi, and DiSalvo' have observed an anomaly
in the Young's modulus at the lock-in transition.
Moncton, Axe, and DiSalvo' have made a careful
study of 2H- TaSe, using neutron diffraction to study
the periodic lattice-distortion associated with the
CDW. These authors observed an interesting dis-
tortion of the incommensurate CDW near the lock-
in transition and explained this distortion as aris-
ing from the lock-in energy term in a Landau free-
energy expansion. Independently the present author
developed a more complete Landau theory to des-
cribe CDWs. '

The purpose of the present paper is to present a,

careful study of the commensurate-incommensurate
(lock-in) phase transition using the author's Lan-
dau theory. We show that the phase transition is
continuous (second order) in contrast to the earlier
approximate treatments" which yielded a first-or-
der phase transition. In addition we define and
study a new defect in the commensurate CDW state
state, the discommensuration (DC) The corn. men-
surate-incommensurate transition is naturally
described as a DC melting transition with no DCs
in the commensurate state and a finite density of
DCs in the incommensurate state. This second-or-
der phase transition is interesting in that it cannot
be described in the conventional Landau sense' us-
ing an order parameter. We show that three DCs
can terminate in a CDW dislocation. The model

provides a qualitative explanation of the neutron
diffraction data and the Young's modulus data.

II. INCOMMENSURATE PHASE

The free-energy expression was discussed thor-
oughly in an earlier paper' and we include it here
for completeness. The free energy of the lth layer
is

P, = d'~ ao-', -bn', +ca',

+eP l(q, V-rq, .')q„. f'

+f Q f(|I,. xvq„.)/',

where

n, (r) = Re[/, ,(r) + g, (r) + g„(r)], (2)

b(r)=b, +b, g e' '''+I (4)

where the K,. are the six shortest reciprocal-lat-
tice vectors characteristic of the planar hexagonal
transition-metal lattice. For 2.V-TaSe, ~q, ~

is 2/~

and the three complex order parameters t(„.(r)
represent the three coexisting CDWs in the 1th lay-
er. The conduction band electron density is

p, (r) =p.(r)[I+ o, (r) j,
where p, (r) is the normal-state conduction-electron
density. The three q,. vectors are the wave num-
bers of the three incommensurate CDWs and they
lie in the I'M directions 120 apart. The coeffi-
cients a, b, etc. , are periodic in r with the peri-
odicity of the crystal lattice. We write
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less than —,'K, so that the CDW can lock in to the
lattice by decreasing its wavelength by 2%. The
cubic "umklapp" term (proportional to b,) provides
the lock-in energy. This change in wavelength is
opposed by the gradient term (proportional to e,)
which is minimized when the CD%' wave number is
q, . These two terms in the free energy are of cen-
tral importance for the present discussion.

For later discussion we add the interlayer Cou-
lomb interaction yielding the free energy of the
whole crystal

&=p(, :R p &'~)„) )),.„')')}, (&)

where g= 2p,'exp(-q, c)/q';e„, c is the interlayer
spacing, and e„ is the dielectric constant of the di-
chalcogenide matrix in which the conduction elec-
trons move.

In order to simplify the problem enough to actu-
ally solve it we will study the lock-in transition of
a single CD%' in one layer. We will return to the
(observed) triple CDW state in three dimensions
later. We now substitute

0 (r) = 0oe ' )t)(r)

into (1) with )(),
'= —2a,/3c, and s=(-q, + —,

'
C,)r and

flnd

+, =+' ' d'el:-Iql' py «(@'-)+ll41'

where

r"' = a,'/I 3c,(q, — K', )'],

P=ee'0'(q —-4'
Y foq14(ql 3+)

)f)(x) =e '*+A,e'

with A, determined variationally by minimizing the
free energy. The physics of the situation is as fol-
lows. The energy of the CD% is lowered when it is
"in phase" with the lattice. Here 'in phase" means
that the peak of the CDW lies between rows of
transition metal atoms so that the bond charge is
maximized. For the uniform CDW with wavelength
2/& longer than the locked in wavelength the CDW
will be in phase with the lattice for 25 lattice spac-
ings, out of phase for the next 25 lattice spacings,
etc. The umklapp energy is attractive for the in-
phase region and repulsive for the out-of-phase
region and averages out to zero. However, we can
distort the uniform CD% in two ways to gain ener-
gy. %e can modulate the amplitude of the CDW
making it larger in the in-phase region to gain en-
ergy. Or we can modulate the phase of the CDW to
enlarge the in-phase region and shrink the out-of-
phase region to gain energy. It costs much less
energy to create a long-wavelength phase distor-
tion (phason) than it does to create a long wave-
length amplitude distortion. Therefore, if the mod-
ulation wavelength is long compared to the coher-
ence length (i.e. , if p is small), the phase varia-
tion will be much more important. The ansatz of
Moncton et g/. forces an equal phase and amplitude
distortion.

It turns out that in order to discuss the phase
transition we want an exact solution to the problem.
This is easy to achieve for the long-wavelength or
weak-coupling case where P is small and only
phase modulation is important. For that case we
substitute ))f)(s) =e ' &' and find the free energy
relative to the commensurate state

QF = g'p d.g 1 —cos(38 + V8 —1 - .

Finally we make the ansatz

8(x) = t)x+ Q A„sin(3n()x), (10)

Writing s = (x,y) a.nd taking the q, direction to be
the x axis the uniform plane wave solution for the
incommensurate phase is p(s) = e '" with free en-
ergy F'(- —,'). The uniform plane wave solution for
the commensurate phase is )t)(s) = 1 with free ener-
gy F'( ——,'+ p(1 —y)). This simple theory of the
lock-in transition predicts a first-order phase
transition when y = l. (The temperature depen-
dence of Y is contained in the temperature depen-
dence of )}),.)

Moncton et g/. were clever enough to notice that
the free energy of the incommensurate CDW could
be lowered by distorting the plane wave to take ad-
vantage of the cubic lock-in term in the free ener-
gy. Their trial function was of the form

where 5 and the A., are variational parameters.
For fixed 1' and 5 we minimize 6P with respect to
the A„parameters using the standard nonlinear
minimization procedure. Then we minimize AP
with respect to 5 to find the optinum wavelength at
a given tempraturee. %e retain up to 20 terms in
the Fourier series to obtain six place accuracy in
the free energy. The integration over x is per-
formed numerically. %e find that 5 goes contin-
uously to zero at a critical value of P, Y, = 1.2337,
which determines the commensurate-incommensu-
rate transition temperature T~, . Defining the re-
duced temperature t= (T- Tc,)/(Tz„—Tc,) we find
that 5 is a universal function of t and is indepen-
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FIG. 1. Wavelength discrepancy & vs reduced temper-
ature in the incommensurate phase. The density of DCs
is proportional to 6 which goes continuously to Eexo at
t=Q

dent of the Landau theory parameters. This func-
tion is shown in Fig. 1.

Near the transition we can fit the free energy
with the following analytic form:

Lp'=F~p[0. 8115(Y—Y,)+8.05e ""~ ].
The numerical data for 5(t) can be fit by the follow-
ing function within + 1% for 0.005& f -0.5:

5(f) = 4.82/[4. 81+ ln(1/f) I.

The entropy is s = —S5Ã/Bf and the singular p»t
of the heat capacity is C»=ss/&f.
computed numerically and is shown in Fig. 2. The
following function fits the heat capacity within + 3/q

for 0.005 & t & 0.5:

C» = . oP1.35/f in'('l. 4/f).

The phase function g(x) for t=0, 5 =0.2 is shown in
Fig. 3. This function is badly distorted from the
linear dependence of an undistorted plane wave.
There are wide regions where 8 is a multiple of
—,g and the CD%' is in phase with the lattice and is
effectively locked in. There are narrow regions
in between where the phase changes by -', p and the
CD% is not locked in. These regions appear as
defects in a perfectly locked in CD' and we call
this new defect a discommensuration. The density
of DCs is proportional to 5 and is small enough
near the phase transition for the defects to be well
separated and well defined. In the commensurate
phase 5=0 and there are no DCs in the lowest-en-
ergy state, The entropy of these extended defects
is insufficient to produce a finite density of DCs in
the commensurate state.
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FIG. 2. Discommensuration heat capacity vs reduced
tempexature in the incommensurate phase.

III. THE DISCOMMENSURATION

0
0 (0 30

FIG. 3. Phase of incommensurate CDW relative to
perfectly locked-in CD%' vs distance for 4 = 0.2 near the
lock-in temperature. The xegions sphere & is a multiple
of ~~ axe locked in and the regions of rapidly varying
phase in bebveen ax'e CD% defects called discommensur-
ations.

%e now calculate the properties of one DC in the
commensurate state. We again assume Q(s}
= e 'e~"' with 8 going to zero for large negative x
and to 3m for large positive x. Minimizing the free
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energy (9) with respect to 8(x) we find the following
nonlinear differential equation for 8(x):

VDD= Voe (18)

the free energy in the incommensurate phase is
+ —,'Y sin38 —d'8/dx' = 0. (14)

For large negative x the asymptotic solution is
&F =ED(36/2m)+ Vo(36/2r)e '""~' . (19)

8(x)-B,e"*; ~=( 9Y)" (15)

En = F'P x 1.698(Y —Y,), (16)

with Y, =1.2337 in agreement with Y, determined
in Sec. II. Since the density of DCs is 36/2w, the
first term in the free energy of the incommensu-
rate phase (11) is just the energy of the DCs pres-
ent.

The energy of a DC is minimum if the line is in
they" direction. If the DC lies at an angle e with
respect to the y" axis the energy per unit length (in
the y direction) is

(17)ED(B) =F [px1.696(Y —Y )+yB 2.094].

The DC strain falls off as e ~'~ so one expects
the interaction energy of two DCs to be propor-
tional to e ~ where 8 is the separation. Writing
the interaction energy as

0-2

FIG. 4. Phase and gradient of the phase of the CDW
relative to perfectly locked-in CDW for a single dis-
commensuration at the lock-in temperature.

With (15) as the starting function we integrate (14)
numerically to find 8(x). 8(x) and dB/dx for a DC
at the transition temperature are shown in Fig. 4.
The core thickness of the DC is roughly 2/o (in
dimensionless units). We define a new character-
istic length $, =- 1/[(K,/3 —q, )(&Y,)'~'] which is of
order 30 A in 2H-TaSe, . This length is the healing
length for phase distortions in the commensurate
phase and establishes the core thickness of the DC.

$, does not diverge at the phase transition; it is a
constant.

The free energy of one DC is found by substitut-
ing 8(x) into (9). Near the transition temperature
we find for the energy per unit length of one DC

From a fit to the free energy versus 5 in the in-
commensurate phase at Y = Y, we find Vo F p
x16.6 which fit yields (11). Thus the free energy
and structure of the incommensurate phase near
T~l are interpreted in terms of a finite density of
DCs. In the commensurate phase there are no DCs
present in equilibrium. Thus we see that the na-
tural physical interpretation of the commensurate-
incommensurate (or lock-in) phase transition is as
a defect melting transition with a finite number of
defects in the high-temperature phase. The con-
tinuous phase transition cannot be described in the
conventional Landau way using an order parameter
which is finite in the ordered phase and vanishes
in the disordered phase.

Let us now consider several effects which might
change the character of the phase transition and
make it first order. Recall that an approximate
calculation, even in the weak-coupling case, yield-
ed a first-order transition; it was only when the
weak-coupling model was solved exactly that we
found a second-order transition. When the coupling
parameter P is not small there will be important
amplitude modulation of the CDW as well as phase
modulation. The amplitude of the CDW will be
smaller in the core of the DC than it is between
DCs. This will affect the quantitative behavior of
the phase transition. However the interaction be-
tween DCs will still be repulsive and this is all
that is necessary to ensure a continuous phase
transition. The entropy of the DCs is unimportant
and cannot affect the character of the phase trans-
ition. A weak dependence of lock-in temperature
on lattice spacing can make the phase transition
weakly first order but this effect may be small
enough, in practice, to be negligible. We conclude
that, at constant lattice parameter, the onset
transition for a single CDW is truly continuous.
For the triple CDW case there are DC crossings
which may provide an attractive interaction. We
cannot conclude that the triple CDW onset transi-
tion is continuous until these interactions have been
studied in detail. Barmatz et al. observe a large
hysteresis at the lock-in transition in 2i'I- TaSe, in-
dicating a first-order phase transition. They also
observe a strong frequency dependence of the elas-
tic anomaly which might arise from impurity pin-
ning of the defects. Impurity pinning may give rise
to extremely long equilibration times at this phase
transition.

The weak-coupling model predicts 5 as well as
the amplitude of Fourier components of the CDW
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(which can be measured by elastic neutron scat-
tering). The magnitude of the Landau theory pa-
rameters are not known yet; however, both 5 and
the Fourier amplitudes are universal functions of
reduced temperature in the weak coupling limit and

we can compare our results directly with the neu-
tron measurements. Moncton et al. observe a de-
crease of 5 of a factor of 4 between t =1 and /=0. 1,
whereas the weak-coupling model predicts a de-
crease of a factor of 1.5. Moncton et gL find the

amplitude of the e" - Fourier component of about
0.3 relative to the primary e '" component at
f= 0.3. We find that amplitude (= —,'4, ) equal to 0.1
at the same temperature. Obviously the weak cou-
pling model is in poor quantitative agreement with
the neutron measurements. One clear reason for
the discrepancies is that the coupling parameter P
is not weak in 2II-TaSe, . There is a rather large
jump in the CDW amplitude at lock in which indi-
cates a large value of p. The value of the weak
coupling calculation is that it provides a simple
qualitative picture of the lock-in transition with

qualitatively new features.

IV. RELATIONSHIP TO CDVf DISLOCATIONS

%'e consider still the simple case of one layer
(two-dimensional problem, line DCs) and only one

CDW. As the temperature is lowered toward the
lock-in phase transition the equilibrium density of

DCs decreases and we wish to discuss the way in

which DCs are removed from the system. In a
large monodomain a modest amount of pinning at
grain boundaries or impurities will prevent macro-
scopic motion of the CDW to push DCs out the ends

of the sample. However there is a mechanism by
which DCs can be terminated in a CD%' dislocation
and then removed by CD%' dislocation motion. One

DC involves a phase change of —,'p of the CDW with

respect to the latti. ce. %'ith a perfect crystalline
lattice there is no way to terminate one DC because
of the nonintegral phase difference (a crystalline
dislocation must terminate a DC since the disloca-
tion removes one line of atoms which is equivalent
to a, -', v phase shift). However three similar DCs
can be brought together at a point and give a total
phase change of 2g along any path around that
point. Such a point singularity is just a CDW dis-
location [see Fig. 5(a)) and three DCs can be re-
moved from the system by the traverse of one CD%
dislocation. It must be emphasized that the CD%
dislocation is a defect in the charge-density wave
only and that the crystalline lattice is assumed to
be perfect. Thus in order to approach equilibrium
after a change in temperature there must be mo-
tion of dislocations across the sample to adjust the
number of DCs. Near the phase transition the

I I I

FIG. 5. (a) q vectors for the three CD%'s in 2H-TaSe2.
(b) Three DCs in the single CDW state terminating in a
CDW dislocation {circle). (c) Three type-23 DCs in the
triple CD%' state terminating in a CDW dislocation
(circle). (d) Type-13 DC crossing a type-23 DC with no

point singularities in the CDWs. (e) Three DCs, one of
each type, intersecting with no point singularities in the
CDWs.

free-energy minimum (as a function of 5) is shal-
low, the forces driving the dislocations are weak,
and the equilibrium times are correspondingly
long.

The DC dislocation picture of the lock-in phase
transition provides a natural explanation for the
Young's modulus experiments of Barmatz et gl.
These authors observe a sharp decrease of Young's
modulus of 2II-TaSe, near the lock-in phase trans-
ition as well as low- frequency loss. In the experi-
ment the crystal is bent in such a way that the
crystalline lattice of one layer is expanded in one
direction and contracted in the orthogonal direction
to maintain constant volume. We assume a triple
CD% with the lattice expansion in the direction of
one CDW. Since the incommensurate CDW wave-
length is somewhat longer than the commensurate
CDW wavelength (3~a) (a is the lattice spacing),
expanding tie lattice will bring these wavelengths
closer together and will cause the CDW to lock in
at a higher temperature. Thus modulation of the
st~ain modulates Tci as well as the equilibrium
number of DCs. The linear term in the free ener-
gy is then
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B Tcs ~L)
(20)

(23)

where c is the strain and +~ is the DC free energy
computed in Sec. II. The other two CDWs feel a
contraction of the lattice of e and the linear con-
tributions to the free energy from the three CDW's
cancel. The second-order term is

F = const. ——,'b, g,
' cos(3e) +~,' cos(2e).

Minimizing I' with respect to e, we find

(24)

with (,' = —2a, /(15c, —Sd, ) and find for the free en-
ergy per layer per unit area

z sin(3z ) = sin(2z ), (2 5)
BTcl B Fa (21)

The rapidly varying part of B'p, (BT' is just the
heat capacity so that Young's modulus is predicted
to behave as

2
~ BT"Y= Yo ——,- Cy,

BE
(22)

where C~ is the DC heat capacity of one CDW (the
heat capacity of Fig. 2). The theory explains why
only a small anomaly is observed in Y at the onset
transition and predicts a large negative anomaly
above the lock-in transition. Barmatz et al. ob-
serve a strong negative anomaly at the lock-in
transition but the anomaly appears to be as large
or larger in the commensurate phase where the
theoretical model predicts a constant heat capac-
ity (near the lock-in transition). Heat-capacity
measurements are not yet ava, ilable to check the
heat-capacity predictions of the model. The weak
coupling model provides at least a qualitative ex-
planation for the Young's modulus anomaly. The
losses observed near the lock-in transition may
be due to the CDW dislocation motion involved in
removing discommensurations from the sample.
Barmatz et al. have suggested CDW dislocation
motion as a possible loss mechanism near the on-
set transition.

V. THREE-DIMENSIONAL ASPECTS

We digress to discuss the phasing of CDWs on
neighboring layers in a three-dimensional crystal.
We consider the triple CDW case in the incom-
mensurate phase. There is a cubic term (propor-
tional to b, ) in the free energy which is optimized
if the relative phases of the three CDWs in one
layer are zero with respect to a particular origin
in space. This phasing piles up the charge density
from the three CDWs at lattice sites of a two-di-
mensional hexagonal lattice. The interlayer Cou-
lomb interaction, on the other hand, is optimized
when the CDWs with the sa.me Q vector on neigh-
boring planes are out of phase. This phasing is in-
consistent with that required to optimize the cubic
term and the CDWs adopt an intermediate phase
relationship which we now calculate.

Using the free energy (5) we assume

with z = 27b, g,(4g N.ear the normal-incommensur-
ate transition z is small and e = p optimizing the
Coulomb term. The cubic term is unimportant at
the onset transition and this phase transition is
second order (in agreement with experiment'). ln
an earlier treatment neglecting the interlayer Cou-
lomb interaction the cubic term made the onset
transition weakly first order. At lower te mpera-
ture and providing b, is large enough z can become
large and & approaches -,'m optimizing the cubic
term. For intermediate values of z, e varies con-
tinuously from —,'z to -,'m. Both the relative phasing
of the three CDWs in one layer and the relative
phasing of CDWs on neighboring layers are fixed
by these two terms in the free energy.

We can now discuss qualitatively DCs in the tri-
ple CDW commensurate state in three dimensions.
A DC in one CDW introduces a phase change of 37T

and throws the three CDWs out of phase. It is nec-
essary to introduce a DC into one of the other two
CDWs in order to restore the proper phasing of the
CDWs. We label the CDWs 1, 2, or 3 according to
whether the q vector is fl„ fl„or q, . A DC in
CDW, and CDW, we will call a type 12 DC. There
are three types, 12, 23, and 13. Recall4 that in the
CDW dislocation the 2p phase change occurred in
two of the three CDWs. Thus three DCs of the
same type can terminate in a CDW dislocation as
shown in Fig. 5(c). Inaddition itis possible for
three DCs, one of each type, to intersect without
a point singularity in any of the three CDWs [see
Fig. 5(e)].

In a three-dimensional system the interlayer
Coulomb interaction forces a phase relationship
between CDWs on successive layers. Therefore a
phase slip of —', z in a CDW in one layer must be
near a phase slip of -,'p in the corresponding CDW
in a neighboring layer. The DC therefore extends
from one layer to another and the defect is a planar
(two-dimensional) object in the three-dimensional
system. The minimum energy configuration for a
type-12 DC is a flat plane perpendicular to the q3
direction. The DC plane may be curved but it costs
elastic energy to do so. We can describe a general
type-12 DC by specifying the y coordinate y (x, z) as
a function of x and z, with x lying in the q, direc-.
tion and z being normal to the layers. The elastic
energy is then
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where the first term is the energy to create the
DC, the second is the orientational energy to ro-
tate it from the preferred direction, and the third
term is the Coulomb energy necessary to slip the
DC in one layer relative to the neighboring layer.
DCs interact via (18).

VI. CONCLUSIONS

We have presented a new physical picture of the
lock-in transition in 2H- Ta,Se, based on an exact
solution of the free energy optimization problem in
the weak coupling limit. We have introduced a new

CD% defect, the discommensuration, and have
shown that the phase transition is continuous and
can be viewed as a defect melting transition. The
theory is in qualitative agreement with available
neutron diffraction data and provides a qualitative
explanation of the Young's modulus anomaly at the
lock-in transition. The discomrnensuration should
be directly observable in the electron microscope.
There is a pressing need for quality heat-capacity
work to determine the nature of the phase transi-
tion experimentally.

This work began as an attempt to explain the
Young's modulus anomaly. I would like to thank
M. Barmatz, L. R. Testardi, and F. J. DiSalvo for
several stimulating discussions and for a preprint
of Ref. 3.
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