PHYSICAL REVIEW B

VOLUME 14, NUMBER 4

15 AUGUST 1976

Spatial carrier density modulation effects in metallic conductivity

Rolf Landauer
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 12 January 1976)

Lattice defects in a metal modify the conduction-band carrier density at the defect site. Thus transport, past
the scattering caused by thermal lattice vibrations, becomes easier (or harder) in the region of changed carrier
density. The resulting transport field inhomogeneities have been discussed in earlier work on electromigration.

This paper discusses the effect on the electronic resistivity.

I. INTRODUCTION

Defects in metals act as localized scattering
centers, and also as localized modifiers of the
conduction-band carrier density. In a series of
discussions, of which we will, at this point, cite
only the latest items!'? this author has investigated
the effects of these spatially inhomogeneous dis-
turbances on the spatial distribution of fields and
currents. This work is based on concepts origi-
nally proposed in 1957,% but which remained un-
accepted for almost two decades. Recent work in
electromigration theory has, however, produced
a number of discussions*”” which agree either sub-
stantially, or even completely, with this viewpoint.
Outside of the electromigration theory community,
however, these concepts are still unaccepted. This
paper points out that the spatial variations are not
only relevant for the driving force in electromigra-
tion but also influence the ordinary electronic
transport coefficients.

This author’s original analysis® was limited to
the effects of the extra localized scattering action
due to the defects, without regard to the changes
in carrier density. In that case the extra field
required to overcome the defect scattering is high-
ly localized, but its space average is that given by
more conventional theories. Thus, initially, no
new answer for the resistivity was put forth,
though other transport coefficients were left open
to more serious questions. In recent publications,
however, the additional effects due to a nonuniform
carrier density were introduced, and these do lead

to corrections in the ordinary electrical resistance.

This correction has been implicit in previous pub-
lications, but is stated more explicitly in this note.
In a dilute alloy one tends to think of the solute
as modifying the density of mobile carriers in the

conduction band, and assumes that the average
density, (n), isacted on by the average field, (E).
In the presence of spatial variations, however,
(En)# (E)(n). The left-hand side of this inequality,
which corresponds to the acceleration effects of
the electric field, is not properly represented by
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the average field acting on the total carrier den-
sity.

Metallic resistivities, in the simplest approxi-
mation, obey Matthiessen’s rule. In this view the
resistivity of the alloy is taken to be that of the
pure metal, except for the addition of an extra
temperature-independent contribution to the scat-
tering probability. There are many reasons for
deviations from Matthiessen’s rule, though the
theoretical literature has emphasized the fact that
thermal scattering rates and defect scattering are
not simply additive, if the two scattering operators
have different characteristic functions. Other de-
viations from Matthiessen’s rule relate to the
modification of the lattice vibrations by the defect
and to the modification of the mobile charge den-
sity by the defect. The effect discussed in this
paper relates to the latter. We are, thus, discus-
sing a modification in only one of the possible de-
viations from Matthiessen’s rule. As a result it
may not be very directly relatable to experiments.
Our point is, instead, made largely to demonstrate
that the spatial variations really do affect the re-
sistance. More striking effects can be expected
for other transport properties. In view of the
critical role of macroscopic spatial variations in
magnetoresistance,® for example, one can also
expect the microscopic variations to be important.

Let us first, briefly, consider a one-dimensional
system which, within a semiclassical approxima-
tion, can be treated exactly.® In that case, near
a defect, the density of electrons n(x), and perhaps
the Fermi-surface relaxation time 7'', are functions
of position. A very naive approach might simply
ignore the rapid spatial variation of » and 7, when
compared with the mean free path, and calculate
a resistance for the whole sample by integrating
the local field, calculated according to E(x)=i/0(x).
While such a field distribution is incorrect it was,
in fact, shown in Ref. 9 that the integrated (or
averaged) field value, calculated from this “naive”
field, was exact. Thus the voltage drop V is given
by f idx/ o~ j dx/n, in the presence of a spatially
varying n. The averaged or measured resistivity
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thus varies as (1/n), where the angular brackets
denote spatial averaging. The conductivity thus
varies as (1/n)™', which is not identical with {x).
If the fluctuations in » are small compared to =,
this distinction is unimportant. In the vicinity of
a defect, however, the carrier density modulation
is not small, and thus the effect of the defect on
(1/n)™* should be distinguishable from that on (x).

II. THREE-DIMENSIONAL CASE

The three-dimensional case is more complex.
In one dimension the continuity of current requires
a separate momentum balance, for each volume
element, between acceleration by the field on one
hand and scattering on the other. In three dimen-
sions this is no longer required, a localized scat-
terer can provide a region in which there is a net
momentum loss. Indeed, this is the result found
in the analysis of Ref. 3, and subsequently elab-
orated.’® It was shown that if the defect caused a
momentum loss dﬁ/dt, by scattering the incident
carriers, then a localized dipole moment
D= (4meny) dP/dt is established. In this case n,
is the density of carriers unperturbed by the lat-
tice defect. Reference 3 did not take into account
the effects of carrier density perturbations. This
result can, in fact, be derived very easily with-
out the complex analysis of Ref. 3 if we are willing
to accept the fact that the residual resistivity
field (i.e., the additional field required to main-
tain the average current upon introduction of the
scatterer) comes in the form of a set of dipole
fields. The extra field ED, associated with over-
coming the defect scattering, must produce a rate
of momentum gain, in the electron gas, which
equals the rate of momentum loss due to the scat-
terers

-E en,=dP/dt . (1)

If the field E, is composed of dipole fields then
E,=- 47ND, where § is the dipole moment and N
the dipole density. Thus p= (4men,)*dP/dt, as
already stated.

In the original discussion of Ref. 3, this result
was derived by actually following the electrons
incident on the scatterer, through their subsequent
motion, as schemaltically illustrated in Fig. 1.
The resultant charge pile-up was then screened in
a self-consistent manner. Note that the flux
coming out of the scattering volume quickly sorts
itself out according to the scattered direction of
motion, a circumstance which was rediscovered
and emphasized by Das and Peierls.!! The re-
sulting charge pile-up (both before screening, and
after) is thus only a function of the carrier dis-
tribution, in velocity, emanating from the scat-

terer, as long as we are not too concerned with
the fine details very close to the scatterer.
Therefore the net dipole moment produced de-
pends only on that velocity distribution. The ex-
act spatial distribution of the source charges for
that dipole does, of course, still depend on the
finer details of the scattering potential.

Since the dipole moment depends only on the
emerging velocity distribution, it follows that the
exact physical mechanism producing a local per-
turbation in the emerging velocity distribution
does not have to be taken into account. Thus if
deviations in #» cause a change in the emerging
velocity distribution, we can calculate the resul-
tant dipole from that distribution. This is the
approach we shall invoke. Thus Eq. (1) holds,
regardless of the physical cause for dp/adt.

Let us now ask what the value of dP/d¢ is, as
caused by spatial nonuniformities in the carrier
density. To do this we shall, for the moment,
assume that the effects of localized scattering, as
discussed in the original residual resistivity dipole
theory,® are completely separable from the effects
of carrier density variation. Thus we explicitly
consider the interaction of the carrier density
variation with the thermally induced lattice scat-
tering, but ignore the higher-order interaction
between the extra (or deficit) carriers introduced
by the defect, and the scattering field of that same
defect. We shall return to this subject in the Ap-
pendix, to estimate the error involved. The rate
of field driven momentum generation in a volume
V is given by -e f,,nﬁd‘r. If we take n=n,+ 0n,
where #n, is the unperturbed density, and take
E-E,+06E, where E, is the uniform field due to
charges far away from the lattice defect in ques-
tion, then

FIG. 1. Electrons in excess of the equilibrium con-
centration arrive from the left, as shown by heavy ar-
row A, and are partially transmitted, as shown by ar-
row D, and are partly scattered, by the perturbation
potential V. The scattered excess moves away, ballistic-
ally, and is subsequently scattered again, by lattice vi-
brations, as indicated at B and C. The deficit electrons,
incident from the right, and symbolized by dashed ar-
rows, go through a similar history. The excess and
deficit eventually diffuse together and recombine.
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f(nﬁ)df:f(no_ﬁo+noéf+ onE, + onoE) d.
% v

@)

The term in no'ﬁo is not an inhomogeneity; it is
balanced by lattice scattering of the original un-
perturbed current flow. oE exists as a result of
the dipole formation, otherwise it would vanish.
Thus the term noé_ﬁ, representing the interaction
of the locally established dipole field with the un-
perturbed carrier density, is already taken into
account in the derivation of Eq. (1), as part of
ED, and is not a part of the excess local momen-
tum generation on the right-hand side of Eq. (1).
(This point was handled incorrectly in a closely
related earlier discussion,'? and subsequently
corrected in a footnote in Ref. 1.) Now not all of
the extra (or deficit) momentum generated in the
area of carrier density perturbation will leave the
volume of that lattice defect. The force field of
the defect will cause deflection, and thus reduce
the externally apparent effects. For the moment
we will, as already indicated, neglect this and
return to it in the Appendix. Thus omitting the
first two right-hand terms in Eq. (2) we find

§=(41m0)"<§0f5nd7+ féﬁéndr) . (3)

Let [6ndr be denoted by Z. Thus Eq. (3) be-
comes

p= (41m0)"< EZ+ f 6Eon dT) . (4)

The final right-hand term is quadratic in the per-
turbation and, just conceivably, less critical. If
on were constant and nonvanishing over a sphere
of radius a we would have, for the final right-hand
term of Eq. (4),

f s5Eon dr=Z(4na®) f sEdr. (5)

The integral of a dipole field over a sphere cen-
tered about the dipole and including all of the
dipole source charges is —4mp/3. Thus Eq. (5)
becomes

f oEondr=-pZ/a®. (6)

Unfortunately, however, 6z is not constant, nor
is it clear that the sphere of radius a, which in-
cludes the region of static carrier density per-
turbations also includes all the dipole source
charges. In fact the dipole source charges will
extend, by at least a screening length, beyond the
range of the scattering potential. To represent
these geometrical uncertainties let us generalize
Eq. (6) to

f oEdndr=- BpZ/a®, (7

with a coefficient B of order unity. Equation (7)
can be substituted in Eq. (4). Solving the resulting
equation for p yields

B=E,2/(4mn,+ BZ/a)
= (im)ZE,/(3n,+ Bon) . (8)

The field 6E produced by P, if P arises from a
uniformly polarized region of volume V, is
6E=— 4mp/3V. Thus

0E=—- (Z2/V)E,/(3n,+ Bon) . (9)

If we now identify V with the volume 4wa® over
which the charge Z is spread, Eq. (9) becomes

6E = — onE,/(3n,+ Bon) . (10)

As 6n in Eq. (10) is allowed to approach infinity,
6E has to approach _'Eo. Thus the only value of
B which is consistent with all of our geometrical
approximations is f=1.

The increase in space average field caused by
the dipoles of Eq. (8) is —4nNp, where N is the
density of dipoles. Thus the increase in resis-
tivity is

8p=— 4TNp/0oE, ; (11)

0, is the unperturbed conductivity. We will limit
our concern to a dilute array of defects. In that
case the distinction between the space average
field, and the field that is effective as Eo in Eq.
(8) can be neglected. Subtleties of this latter sort
were the detailed concern of an earlier paper.'®
Equations (11) and (8) yield

8p/py=— 3NZ/(3n,+ Bon) . (12)

The right-hand side numerator of Eq. (12) con-
tains NZ, the defect charge per unit volume. This
can also be written as x6n where x is the volume
fraction occupied by the defects. Thus

8p/p=— 3xbn/(3ny+ Bon) . (13)
If we take B=1 this becomes
dp/p=-3x0n/(2ny+n) , (14)

with n=n,+ 0on.

IIl. COMPARISON TO MACROSCOPIC INHOMOGENEITY

The preceding section gave an approximate so-
lution for the case where the carrier density in-
homogeneity extends over a region small com-
pared to the mean free path. At the other ex-
treme we can consider a region large compared
to the mean free path, and apply macroscopic
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theory, i.e., apply 1=0E locally. We can ap-
proach this limit, not only by making the inhomo-
geneity very large, but instead by making the
background or lattice scattering very intense. In
this latter case, however, we must also assume
that the screening length is short enough (due to
a high carrier density). Large space charges can
then be piled up, and thus the field can change fast
enough, in accordance with 1=oE.

In this macroscopic case the change in resis-
tivity is given, for small x, by**

(D— po)/po= - 3)((0’1 - 0'0)/(01+ 200) . (15)

po =07 characterizes the unperturbed material,
0, is the conductivity of the inclusion, and x the
volume fraction of inclusion. If we assume that
0,/0,= (ny+ 6n)/n,, then Eq. (15) becomes

(p=po)/po=— 3xn/(2ny+n,) . (18)

This is identical to the result in Eq. (14). Thus
under the assumption 8=1, a naive macroscopic
theory will give the correct resistivity change,
as it did in the more exactly treated one-dimen-
sional case.® If B8 is not exactly unity, the naive
theory and the correct theory still behave quali-
tatively similarly. The Bdn term in the denomina-
tor of Eq. (13) represents the effect of the spatial
correlations between field and carrier density.

If on>0, for example, the field is reduced in the
carrier rich region. This de-emphasizes the
role of &z and thus 6p/p, is smaller in magnitude
than x6n/n,.

Note that the similarity between the large and
small inhomogeneity is limited to the electric
field distribution and the resistance. The distur-
bances in carrier distribution are very different
for the two cases. For the macroscopic inhomo-
geneity the geometrical scale is set by the physical
size of the defect, whereas in Fig. 1 it is deter-
mined by the mean free path.

IV. ELECTROMIGRATION IMPLICATION

We return here to the implication of Eq. (15) for
electromigration. The driving force, per unit
volume, has been shown to be!’* 615

F=-Ezeny(p-p)/p, 17

where ET is the average field in the alloy. Sub-
stituting from Eq. (12) we find a force, per im-
purity

F/N=- ETZe3nO/(3no+ Bon) . (18)

This is a force which is related to the change in
p produced by the carrier density changes and is
unrelated to any additional scattering introduced
by the impurity. The mere fact that Eq. (18) gives

a nonvanishing contribution shows that the analysis
of Bosvieux and Friedel'® is incorrect. Their
theory only allowed a force related to the defect
scattering action. The deviations in charge, from
the perfect lattice were “screened,” in the
Bosvieux- Friedel treatment, leading to the ab-
sence of a “direct” force. Huntington’s contrast-
ing analysis,'” however, which leads to a complete
absence of screening, and thus to a direct force
-E, Ze, is also incorrect. The direct force devi-
ates from that value, as shown in Eq. (18), be-
cause the local field, seen by the bare defect ion
(i.e., the ion and its tightly bound electrons, with-
out any conduction band charges) is not —E.T, but
deviates from that by 6E, as given in Eq. (9). We
stress this fact here because in the otherwise de-
finitive and perceptive treatment by Sham,* we
find “The formula for the effective force is just
that of Fiks and of Huntington and Grone.” Later
on in Sham’s paper® it is, however, pointed out,
in connection with conductivity modulation effects,
that, “An... evaluation of such terms is, how-
ever, beyond the scope of this paper.” It is of
course just these conductivity modulation effects
which we have treated in this paper, and which

do change the “direct force.”

V. CONCLUSION

It is hoped that this discussion, despite its very
crude approximations, has made it clear that
spatial variations, about localized scatterers, do
enter into electronic transport theory. Hopefully
a more refined theory, based on diagrammatic
techniques, can subsequently elaborate the role
of the basic physical effects that we have invoked.
It should also be stressed that while we have in
this paper, as well as in its predecessors,
stressed the metallic case, closely related ques-
tions can arise in other transport problems, e.g.,
in semiconductors or in phonon transport. The
metallic case is particularly simple, since in
that case not only the carrier flux, but also the
electric field, can be very nonuniform with the
electric field exhibiting a particularly close anal-
ogy to a macroscopic inhomogeneity. But even in
other cases, an analog to Fig. 1 can be expected
to apply.

APPENDIX: INTERACTION OF DEFECT DENSITY WITH
DEFECT SCATTERING

Up to now we have referred to two contributions
to localized fields. One consists of the residual
resistivity dipole and other closely related terms.
These terms arise from the scattering action of
the defect acting on the acceleration induced in a
uniform electron gas. The other term, the car-
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rier density modulation term, allows for the
spatial nonuniformity of the electron gas when
subject to acceleration by an electric field. In
Sec. II this was analyzed under the assumption
that this acceleration was opposed only by a
spatially uniform thermal scattering. The missing
interaction between the nonuniform carrier density
and scattering by the same defect was only briefly
mentioned in Sec. II. There it was pointed out

that as a result of this neglect we would be over-
estimating carrier density modulation effects.
This Appendix is devoted to an estimate of these
neglected higher-order interactions. This esti-
mate carries our semiclassical approximation up
to, or beyond, its limit of plausible applicability,
and it is for this reason that these considerations
have been placed in an Appendix.

Let us consider a situation in which the analysis
of Sec. II applies: Carrier density inhomogeneities
exist, but the scattering is only thermal scatter-
ing. Then assume that the defect scattering is
turned on, in the presence of the current distri-
bution as calculated in Sec. II. A residual resis-
tivity dipole® is then generated; however, the in-
cident current for this dipole is not the current
far from the obstacle, but the perturbed current
of Sec. II.

What is this perturbed current? The rate of
excess local momentum generation —d-ls/dt, is
given by —4menyp, with P given by Egs. (4) and (8).
This excess momentum is taken to be generated
uniformly in the region of the defect. The car-
riers which have been accelerated stay within the
defect volume while they continue to travel from
the point of acceleration to the surface of the
obstacle. We assume that the obstacle is a sphere
of radius a. Elementary geometrical considera-
tions show that the average value of this distance
is 2a/3. Thus the excess momentum, once gen-
erated, stays in the defect volume for a time
2a/3v, where v is the Fermi-surface velocity.
Thus the extra momentum within the sphere is

(2a/3v)(~dP/dt) = — 8wen,pa/3v . (A1)

To convert this to a current density we must
multiply by —e/m to convert momentum to elec-
trical current, and then divide by the volume of
the sphere 3(47a°) to yield a density. Thus, with-
in the sphere, the current density change, 83, is
given by

8] = 2e%n B/ mva® . (A2)

Thus the current density at the defect site is

70+ &j, with 30 the current far from the obstacle.
This is then, roughly, the current incident on the
scattering field of the obstacle. Admittedly this

is an approximation in which we are pushing our
geometrical simplification to an extreme. The
resultant resistivity dipole will be that calculated
in the absence of carrier density modulation ef-
fects, multiplied by (j,+ 6j)/j,- It is the departure
from unity in this multiplier, &j/j,, which repre-
sents the cross effect we are analyzing. Thus the
contribution of the cross effect, p., tothe resistivity
is p,6j/j,, where p, is the residual resistivity.
Hence, from Eq. (A2)

p. = 2e"ngpp,/mvaj,. (A3)

The dipole moment p appearing above can be re-
placed through Eq. (11), 8p=— 47Np/j,, with N the
density of defects. Thus

0.=— p,dpe’ny,/2nNmva® . (A4)

Now O'g=1Taz is the geometrical cross section of
the obstacle and it can be used to define an elec-
tronic relaxation time

7,= (Nov)™ = Wma®v)™ . (A5)
This in turn yields a resistivity p, through
P, =1€"T,/m =n,e®/Nmmva® . (A6)

p, is then the residual resistivity which would be

found if the actual scattering cross section were

replaced by the geometrical area. p, can be used
to simplify Eq. (A4) to

p.=~36p(p,/p,) . @an

We see first of all that p, is opposed in sign to
op, thus it reduces the effects we have calculated
in Sec. II. We furthermore note that p, need not
be small compared to p,; thus the correction
(A7) can be important.

An alternative and even more approximate ap-
proach gives some physical insight into the ap-
pearance of p, in Eq. (A7). Let 3, be the uniform
current incident on the region of inhomogeneous
carrier density, which at first is assumed to
cause no extra scattering. This gives a change
']'Oﬁp in the space average field, as discussed in
Sec. II. Now consider, instead ?0 incident on a
scattering field which is associated with a resid-
ual resistivity p,. The current flow in the volume
of the scatterers is reduced by a factor roughly
of the form (1- p;'p,). As p, is increased and the
obstacle becomes impenetrable, the current must
vanish. But this impenetrability is reached when
p,~ pg, leading to the factor (1 - p;'p,), that we
have just specified. Now in the presence of this
reduced curvent flow, let the carrier density in-
homogeneity and the thermal scattering be turned
on. The dipole associated with carrier density
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modulation can then be estimated as

To(1 - pip,)0p. (A8)

The cross effects are contained in the term
JoP;'p,0p, Which is twice the expression given in
Eq. (A7). Quantum mechanically, of course, a
scattering cross section can be large compared

to a geometrical cross section, if the spatial ex-
tent of the scattering potential is small compared
to the wavelength. Thus we can see that the semi-
classical reasoning given above is not very accu-
rate. It is, on the other hand, not completely in-
applicable. The Fermi wavelength is not large
compared to the obstacle.
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