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Microscopic fracture studies in the two-dimensional triangular lattice*
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In order to understand the static and dynamic bases of macroscopic fracture mechanics, we study flawed

microscopic crystals obeying Newton's equations of motion. The particles in these crystals interact with

truncated Hooke's-law forces. The static results for energy, entropy, stress concentration, and crack structure
are all consistent with expectations from macroscopic elasticity theory. Dynamic theory is less well developed.
Our dynamic results illustrate the importance of surface energy and nonlinear terms in the interparticle forces
in influencing crack morphology and propagation velocity. The propagating cracks, except in crystals
preloaded nearly to the theoretical tensile strength, travel at speeds somewhat less than the long-wavelength

Rayleigh surface-wave speed.

ENTRODUCTION

The economic importance of fracture is sufficient
to explain the widespread interest in this classical
field among engineers. The integrity of aircraft
and pressurized nuclear reactors, together with
the interest in subterranean fracture for hydro-
carbon recovery, are problems of current in-
terest. At the same time fracture has not yet
attracted much interest from physicists' who
could contribute a sound microscopic understanding
of the mechanisms underlying the macroscopic
phenomena of fracture. Several microscopic
"models" of fracture have been described' but
these models typically incorporate the artificial
features of noncentral forces and preassigned
fracture loci or very complicated force laws. '
Before introducing these inessential complexities,
we prefer to understand the consequences of sim-
ple central forces in a classical crystal undergoing
fracture.

Because we wish to incorporate fracture into the
broadening range of subjects clarified by statistical
mechanics and molecular dynamics, we study the
simplest possible atomic model which can illus-
trate the fracture phenomena, mass points inter-
acting with linear-force Hooke s-law springs in a
two-dimensional triangular lattice. The thermo-
dynamic and lattice-dynamic properties for this
crystal are already well known. 4 This model bears
a close resemblance to the simplest "finite-ele-
ment" model used by structural engineers in
macroscopic stress analysis. The equivalence
is demonstrated in Appendix A.

Recent progress in simulating mass, momentum,
and energy transfer with nonequilibrium molecular
dynamics' makes us optimistic that fracture,
another nonequilibrium problem, can be treated

successfully too. Here we summarize results of
equilibrium and nonequilibrium fracture studies
which demonstrate the wealth of new information
readily available with today's fast computers.

MODEL

All of our crystals have the triangular (sixfold
coordination) structure shown in Fig. 1. The par
ticles in these crystals interact with a truncated
parabola, or with a double-parabola potential, '
or with a parabola-linear potential, as shown in
Fig. 2. The microscopic variables characterizing
such a system axe the particle mass m, the inter-
particle spacing d, the spring constant k, and the
well width u.

If we write the macroscopic stress tensor for
such a crystal in terms of the Lame constants A.

RIll 'g

o = XV uI + q(Wu+ V'u ),
then the two constants are equal: A. =@=MS 0/4.
(Detailed calculat;ion shows that the two shear
moduli for the triangular lattice are equal. Thus,
for elastic properties, the isot~opic form of the
stress tensor can be used. The equivalence is
demonstrated in the paper by Hoover, Ashurst,
and Olness. ') The two-dimensional calculations
correspond to three-dimensional plane-strain cal-
culations with the same Lame constants or to
three-dimensional plane-stress calculations with
X'=2q replacing X.

Several kinds of boundary conditions can be im-
posed on the crystal. The simplest of these, con-
stant-stress, periodic, and constant-displacement
boundaries, will be discussed here. Boundaries
which correspond to linearly increasing stress and
strain are also of interest in fracture problems. '
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FIG. 1. A 512-particle close-packed triangular lattice
of mass points joined by Hooke's-law springs. The pax'-
ticles interact with 32 additional boundary paxticles
which in turn interact with a constant external force,
+ad on the upper-boundary paxticles and -ad on the low-
er-boundary particles. The effects of cracks on energy,
entropy, and structure ax"e studied by bxeaking some of
the 'bonds linking neighbox ing partiel, es. Periodic bound-
ax'ies link the left and the right sides of the ex'ystallite,
maintaining an average horizontal spacing equal to that
found in a stress-free crystal.

STATIC RESULTS

Webegan by studying the static properties of
crystals with several contiguous broken bonds.
The horizontal boundaries were maintained at a
constant stress and the vertical boundaries were
joined periodically as shown in Fig. 1. For such
cracks, in an elastic continuum, the stress field
and stored elastic energy are well known. '

In TaMe I and Figs. 3 and 4 we show the varia-
tion of stored energy and crack structure with
crack length L in 512-particle crystals. These
results are consistent with elasticity-theory pre-
dictions: The energy varies as the square of the
crack length, and the crack shape resembles an
ellipse. '

In these static calculations the interparticle
forces were taken as linear functions of the par-
ticle displacements up to a maximum stretch u
«d at which the force discontinuously drops to
zero (as 1I1 the type-l potential shown 1n Fig. 2).

Macroscopic elasticity theory predicts that the
stress and strain fields in the vicinity of the crack
tip vary as x '~', where x is the distance from the
tip, diverging at the tip itself. The coefficient of
the r '~' divergence is proportional to the "stress-
intensity factor, " the value of which, at failure, is
tabulated as a material property K„.From
macroscopic elasttcity theory'K„ is (m/2)' 'o&f' '
=1.2530fI'~2, where o& is the perpendicular ten-
sile stress at failure for a large plate containing
a crack of length I. far from the plate boundary.
Analysis of our results (based on extrapolating the
stretch in the spring next to the crack to the large-

d-w d d+w d+pw d d+w d+2vl

FIG. 2. Interpartiele potential. s Q(x} and forces f (~}=-g' (&}. All of these potentials have the same curvature
at the minimum, k =@"(r;„=d},and hence the same
linear elastic properties. The tensile stxength of cry-
stals composed of particles interacting with these poten-
tials depends on the potential width m. The single-para-
bola potential (1}corresponds to linear elasticity theory
in the limit that d and ~/d' both approach zero.

FIG. 3. Energy increase, x'elative to an unelaeked
crystal, for stressed 512-particle crystals with 2L/4
broken bonds. The prediction of macroscopic fractux e
mechanics„ for a crack small relative to crystal dimen-
sions, is the intercept, marked with an&,
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FIG. 4. Displacements in the neighborhood of cracks
with 2, 4, 6, and 8 broken bonds. The particles have
been drawn as fil. led circles, which touch one another in
the stress-free crystal. The displacements in the
stressed crystal slightly exceed the predictions of mac-
roscopic linear elasticity theory. The predicted shape
for a small crack in a large crystal is el.liptical, with
a major-to-minor-axis ratio of (k/o)/v3. The more
complicated expression for a crack length equal to one-
fourth the system width predicts a crack opening about
3% wider than the large-crystal ellipse. The crack
openings predicted by linear elasticity theory are shown
as shaded areas in the figure. It should be emphasized
that the scale of the displacements is arbitrary (but in-
finitesimal) in linear elasticity, and has thus been
greatly exaggerated here for clarity.

L limit) identifies the failure stress cz for our
structure as 0.89(d/L)' ' times the ideal crack-
free failure stress of v 3 k(w/d). If, for example,
the springs break at a 10'%%up extension (w/d = 0.1),
oz is 0.154k(d/L)'~' and the critical stress-in-
tensity factor is 0.19kd' '.

Bonds using a 6-12 Lennard-Jones interaction
"break" at a 10.9%%uo extension, in the sense that
the force required to stretch the bond beyond that
extension is a decreasing function of r. Because
our static calculations use linear forces, with the
assumption w«d, our use of those results to esti-
mate critical stress-intensity factors for finite w

is only approximate. Nevertheless, detailed cal-
culation shows that the calculated stress-intensity

hs
k

I
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I

4

factor, using the linear forces, lies within 2% of
that calculated exactly for w=0. 1d.

Because the fracture process is irreversible,
the stress must drop below 0.89(d/L )' ~'oz in order
for the crack to shrink. Analysis of our static re-
sults shows that open cracks heal again at a stress
0.24(d/L)' ' times the theoretical strength. Thus
there is a wide range of stresses within which a
crack of length L neither grows nor shrinks. This
phenomenon is called "lattice-trapping" by Thom-
son and co-workers. '

Some new features are present in our calcula-
tions. We have calculated the entropy contribution
of a crack to the crystal by comparing the traces
of the dynamical matrix before and after the crack
is introduced. 4 The entropy calculation could in
principle be carried out for an elastic continuum,

L/d
FIG. 5. Entropy increase, relative to an uncracked

crystal, for crystals with 2L/d broken bonds. These
broken bonds correspond to a horizontal crack of length
L lying between the 17th and 18th rows of particles shown
in Fig. 1. For large L most of the entropy increase
corresponds to the surface entropy for a surface of
length 2L (indicated by the straight l.ine "macroscopic
theory" in the figure).

TABLE I. Energy and entropy changes induced in a 32-row, 512-particle crystal (see Fig.
1) by introducing a crack of length L. The increase in energy corresponds to constant stress
cr applied at the upper and lower boundaries of the crystal. The energy data are of the form
k&Q/0 L =0.68+ 0.6d/L. The entropy data lie within 0.01 of the expression M/k (Boltzmann)
= 1.354(L/d) —0.363(L/d)' + 0.127. The large-L limiting energy agrees with the known result
from elasticity theory and the ]arge-L entropy agrees with the surface-entropy calculations
of Ref. 4. The entropy calculations here are based on the method used in that reference.

Crac k length/d I
2 22 3 31

2

kAQ/cr d 0.5024 1.2127 2.4871 3.8585 5.8711 7.9476 10.7332 13.5652
b S/k (Boltzmann) 0.5488 1.1124 1.71 57 2.3195 2.9391 3.5588 4.1866 4.8145
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though only with difficulty. In Fig. 5 we show the
results, obtained as is indicated in Table I. The
entropy contains not only the expected linear de-
pendence on crack length, identical to the surface
entropy previously calculated for the triangular
lattice, 4 but also a term of order I.'~', the con-
tribution of the crack tips. The fact that energy
varies as I.' and entropy as I. suggests that the
usual practice in fracture mechanics, ignoring
entropy, can be justified in macroscopic calcula-
tions where I is large.

The static results also show that the next bond to
break has nearly the same stretch as do three
other bonds in the crystal. Figure 6 indicates
that in many cases the static-lattice calculations
suggest that cracks will propagate by leapfrog
propagation, in which springs once-removed
from the crack tip break before the adjacent
springs. These static considerations also sug-
gest, in accord with experiment, that as fracture
propagates through a crystal a relatively wide-
spread damaged region can result, with a surface
energy exceeding that of a clean cleavage crack.

DYNAMIC RESULTS
%'e study dynamic proper ties of fracturing crys-

tals by using Verlet's solution of the equations of
motion, ' replacing the particle accelerations by
centered second-difference approximations:

= [ r,.(t + dt) —2r, (t) +r, (t dt)]/(dt)2 .-(2)

A choice of dt =0.1(m/k)'" typically conserves en-
ergy with four-figure accuracy. Some calculations
were carried out with smaller time steps to con-

:VA'

firm that the results are insensitive to this choice.
%e began by exploring the propagation of cracks

in crystals with the constant-stress boundaries
shown in Fig. 1. The boundaries soon became
grossly deformed (as shown in Fig. 7). This de-
formation could be controlled by boundary damp-
ing, ' but the growing stress concentration (in-
creasing as the square root of the crack length' )
produced nonsteady hard-to-interpret results. Ac-
cordingly we adopted instead horizontal-strip
boundary conditions with fixed vertical and hori-
zontal boundaries. The horizontal boundaries im-
pose a tensile stress on the crystal. The vertical
boundaries are fixed with the horizontal spacing
corresponding to a stress-free crystal. These
conditions, together with related variants in which
the vertical stress increases or decreases linearly
along the strip, have been considered previously. '
They make it possible to observe steady-state
fracture and, for this reason, are of fundamental
impor tance.

Using the constant-displacement fixed boundaries
we were able to achieve steady propagation, al-
though only with some care. The calculations were
carried out in three steps: initialization, relaxa-
tion, and propagation. First, several contiguous
bonds were "broken" near the crystal's left bound-
ary. These broken bonds are ignored in calculat-
ing the accelerations used in Eq. (2). Second, the
crystal was partially relaxed, building up stress
concentration at the crack tip, by following the
time development for a time 10(m/k)'". During
this relaxation phase a ci itically damped dashpot
was introduced in parallel with each of the un-
broken Hookean springs. At the end of the relaxa-
tion phase the breaking strength of the springs was
set, by choosing so such that the spring adjacent to
the incipient crack would break. Then the dashpots
were removed and the crack was allowed to propa-
gate. It was verified that the velocities found for
finite strips g-rows high and 5n-particles long pro-
vide velocities which are not significantly different
from the long-strip case. The results are also in-

t
I ~ ~

FIG. 6. Predicted quasistatic fracture direction for
a stressed 512-particle crystal. The initially broken
bonds (1, 2, . . . , 8} are indicated by heavy lines. The
most-highly-strained bonds are indicated by dashed
lines —by symmetry there are two such bonds in each
case. The next-most-highly-strained bonds are indicat-
ed by dots. Only in the cases that 6 or 8 bonds are initi-
ally broken does the crack 'propagate" directly from its
tip. Dynamic and nonlinear effects both inhibit the leap-
frog propagation.
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FIG. 7. Typical appearance, at long times, for a
crystal. undergoing fracture with constant-stress boun-
daries in the absence of boundary damping. The bulging
of the boundaries can be inhibited by viscous damping.
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propagation regime [with v& greater than the longi-
tudinal sound speed, 1.061d(k/m)"'], and find that
the theoretical result,

v&(supersonic) = ,'d—(k/m)' ~'( ur/5)' ~' (3)

describes the data quantitatively (Fig. 10). In (3)

TABLE II. Propagation velocities v& of cracks in sys-
terns NR-rows high and NL-particle-diameters long.
The initial state of the system is achieved by starting
with a perfect stress-free crystal, fixing the x coordi-
nates of left-hand and right-hand boundary particles,
applying the strain ~ = e, fixing the y coordinates of
the top and bottom rows of particles, "breaking" b

bonds, [that is, ignoring the forces from these bonds
in solving Eq. (2) j, and allowing the system to relax with
viscous critically damped dashpots in parallel with the
unbroken bonds for a time 10(m/0 )' . Then the dynami-
cal evolution of the system is followed with the dashpots
removed. The potential type (see Fig. 2) and well width
are also listed. For all of these crystals the longitudinal
sound speed is (—)' (0/m)'/ d, the transverse sound

speed is (8)'/ @/m)'/ d, and the Rayleigh-wave speed is
(3 —W3) / {k/m) / d. Uncertainties in p are generally
+0.01$/m) / d. The time step used was generally
o.i(m/a)'".

NR NL b Type M/d ., (m/u)"'/d

10 50 19 1 ' 0 068
10 50 19 1 0.137
10 50 19 1 0.277
10 50 19 1 0.427
10 50 19 2 0.0125
10 50 19 2 0.066
10 50 19 2 0.068

6 50 11 2 o 137
10 50 19 2 0.137
10 50 19 2 0.137
20 50 40 2 0.137
10 50 19 2 0.133
10 50 19 2 0.207
10 50 19 2 0,277
10 50 19 2 0.348
10 50 19 2 0.419

0.34
0.39
0.54
0.56 "

0,29 ~ 0.04 '
O.337 '
0.315
0.34
0.345
0 347
0.34

0.32 + 0.03 f

0.372
0.407
0.440
O.47O ~

~ Fractures in type-1 crystals broke off-center after
about 12 bonds had broken.

"The shape of the crack tip resembles a large keyhole
in this case, so that finite-width boundary effects are
pr'obably large.

Propagation for this very-narrow-well crystal was
somewhat erratic. An otherwise identical calculation
using the type-2 potential produced an erratic crack with
velocity about 0.8(P /m) d.

"This crack broke off-center after about six bonds had
br'oken.

For this calculation a time step of 0.05(m/0) was
used.

f This crack bifurcated and came to a halt.
~No second-neighbor interactions are included for any

of the large-ge calculations.

5 is the distance necessary for a bond to stretch
before breaking —the initial stretch is u —5. See
Table III.

We have studied three different modes of crack
arrest. The first of these demonstrates that the
double-parabola potential is less prone to fracture
thanthe single parabola {although they have identi-
cal elastic properties). Two crystals, 10-rows
high and 50-diameters long, were loaded so that
the diagonal bonds, far from the 19 initially bro-
ken, were stretched to 0.597sv. In the single-par-
abola case, the fracture propagated the additional
distance 40d across the entire crystal with a vel-
ocity of 0.435d(k/m)'~'. In the double-parabola
case, the fracture propagated only a distance Bd,
with a velocity of 0.357d(k/m)'~', then bifurcated
(starting two cracks), and stopped. The final con-
figuration is shown in Fig. 11. A similar compar-
ison was carried out between the double-parabola
and the parabola-linear potentials {potentials 2

and 3 of Fig. 2). With ur = O. ld and an initial strain
of 0.088 the double-parabola crystal fractured
completely across, with velocity 0.34d(klm)'~',
while the parabola-linear potential failed to propa-
gate. Increase of the initial strain to 0.11 resulted
in a higher velocity for the double parabola, 0.523d
x (k/m )'~', and to a propagation length of 14.5d for
the parabola-linear potential, at which point that
crack stopped. An even greater strai. n, 0.125,
was required to see propagation for the deeper
potential; an unsteady velocity -0.38d(k/m)'~' was
recorded. This same loading greatly overdrives
the double-parabola potential, resulting in a frac-
ture velocity 0.82d(k/m)' ' exceeding the trans-
verse sound velocity 0.612d(k/m)'~'. Figure 12
shows two stages in the fracture of a crystal con-
taining a vacancy. The vacancy relieves the

2.0
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E

l 0:/LoNG

0 l l l I i I I l I

0 l 2 5 4 5 6 7 8 9 IO
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FIG. 10. Fracture velocity„using linear forces, for
a sex'ies of 500-particle crystals. At very high initial
loadings (6 approaches zero, where 4 is the stretch at
failure less the initial stretch in a diagonal bond) the re-
sults reproduce Eq. (3) of the text. Even at the greatest
4 shown the propagation velocity exceeds the long-wave-
length Rayleigh velocity 0.56d(k /m) ~~~ .
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TABLE III. Propagation velocities g& of cracks in 500-particle crystals with linear forces.
The well width u is treated as infinitesimal relative to d in these calculations. The crystals
were initially relaxed, with critically damped dashpots parallel to the unbroken springs and
with a fixed crack length of i0d. Following a relaxation time of 10(m/A) the dashpots were
removed and the crack was allowed to propagate. The velocities found are expressed in terms
of the well width u and the additional stretch 6 required to break the springs. Results for
small t5/se obey relation (3) of the text. The subsonic cracks, with smaller 6/gg ratios, ex-
trapolate roughly to a zero-strain velocity of 0.36(t/m)" d. This intercept may be mislead-
ing because the morphology of the cracks changes for h values larger than those in the Table.

5/(ge —5) 0.675 0.500 0.400 0.300 0.200 0.100 0.05 0.03 0.02 0.0f.

v~ (ypg/0') ~ /d 0.67 0.733 0.738 0.806 0.926 1.00 " 1.06 $.25 1.67 2.50 d

~ This velocity was also reproduced, within about $% at the same prestrain, in crystals i4-
and 20-rows high.

~ In the linear calculations particles can remain connected with their neighbors despite a
large displacement perpendicular to their original bond direction. Thus for the subsonic lin-
ear-force "fractures, "unrealistic damage, such as that shown in Fig. 8, results.

At this relatively high prestrain a nonlinear calculation, with x =O. i37d, gave the same
fracture velocity.

dAt or above this prestrain the measured velocities agree with the asymptotic relation (3)
of the text.

elastic strain in its neighborhood, first attracting,
and finally stopping the advancing crack.

CONCLUSION

Our results show that even the simplest crystal
models, with Hooke's-law forces, are sufficiently
complicated to provide a host of interesting physi-
cal phenomena, including varying propagation ve-
locities, widespread damage, while remaining sus-
ceptible to exact analysis. We expect that further
study of these systems will eventually provide as
complete an understanding of fracture mechanics
as now exists for the equilibrium and linear trans-
port properties of simple systems.
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funct Department of Applied Science CDC 3400
computer.

APPENDIX A: RELATION TO THE FINITE-ELEMENT

METHOD

The finite-element method is often used by
structural engineers in computer analyses of the
thermal and mechanical behavior of complicated
structures. The structure in question is divided

np into zones ("elements" ) within which displace-
ments, velocities, temperatures, etc. , are as-
sumed to vary in a simple way. The transient, or
steady-state, problem is then solved by matrix
diagonalization. Systems with thousands of dis-
crete elements can be treated.

Consider now a simple finite-element descrip-
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FIG. 11. Illustration of the effect of the smoother
double-parabola potential (2 in Fig. 2) in inhibiting frac-
ture. The crack shown, initially of length 10d, grew to
a l.ength of 18d, bifurated, and stopped. The l.ines drawn
within the particle circles indicate broken bonds. A

single-parabola potential. (1 in Fig. 2) behaves differently
under identical. loading conditions, propagating fracture
across the entire crystal at a velocity 0.435d(k/m)~~2.
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FIG. 12. Illustration of the effect of a vacancy in inhi-
biting fracture. Initially the 499-particle crystal con-
tained one void and a relaxed crack of length 10d. The
crack was allowed to run, and did so until stopped by in-
teraction with the vacancy.
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tion of our elastic model crystal. If we use the
springs joining our Hookean masses as element
boundaries and if we assume that the displacement
svitkin each of the equilateral triangular elements
is a linear function of r, then the six constants in
the relation

can all be expressed in terms of the three sets of
xy coordinates forming the vertices of the ele-
ment. These displacements can then be intro-
duced into the equations of macroscopic linear
elasticity to calculate the strain energy of the tri-
angular element in question.

In order to compare the elastic energy according
to this linear finite-element theory with the en-
ergy from the Hooke's-law springs, we first ex-
press the Lame constants X and q in terms of the
spring constant k:

The energy for any triangular finite element is
then the product of the elastic energy density and
the element volume v 3 d'/4,

y= ~3@d'[ (0"u)'+ —,(Vu+ Vut):(Vu+ Vu~)] .
If we instead take the microscopic view of lattice
dynamics we associate half of the potential energy
of the three springs bounding a finite element with
the energy of that element

where 5' is the change in spring length from the
least-energy state.

It is a straightforward and tedious, but reward-
ing, task to show that these two dissimilar expres-
sions for the energy P are identic&L" Thus the
least-energy configuration for a discrete crystal
described either from the lattice viewpoint or

FIG. 13. Crystal geometry used to derive the Bayleigh-
wave dispersion relation of Appendix B. The top row of
particles is a free surface. Rayleigh waves can travel
along the surface (for wavelengths greater than 8.38d).
Shorter-wavelength solutions are also found generalized
Rayleigh waves). All of the solutions obey the dispersion
relation mK =0 |'3—43)sin2 8, where the wavelength is
~e/e.

from the isotropic continuum viewpoint (using lin-
ear equilateral finite elements with sidelength
equal to the interatomic spacing d) is the same.
Evidently this energy correspondence between a
simple crystal lattice with nearest-neighbor Hook-
ean springs and an isotropic elastic continuum is
restricted to two dimensions; neither of the simple
close-packed three-dimensional lattices (face-
centered cubic and hexagonal close-packed) is iso-
tropic.

The equivalence is interesting, not only for ped-
agogical reasons, but also because it might sug-
gest useful approximations for generalizing finite-
element energies in the case of imperfect lattices.

APPENDIX 8: RAYLEIGH-WAVE DISPERSION RELATION

Begin by labeling the particles in a periodic
crystal with indices J and J, as shown in Fig. 13.
%e will ultimately discard those particles with
negative values of I so that then the row I= 0 will
correspond to the crystal surface. If we assume a
motion of the form

(u, v)z J=(U, iV) exp[ qi+i 8(I+2-Z)+i&et],

then solutions with real U, V, q, and 8 corres-
pond to periodic waves, with wavelength vd/8 in
the x direction, decaying exponentially in the y
direction. In the long-wavelength limit we expect
to find the continuum solutions"

u& = 1 12603(k/m)'~'8 for q, = 1.467898,

q2= 0.68125 8 .
The calculation proceeds in two steps. First the
dispersion relation linking m, q, and 8,

m&u'/0= 3 —2cC —c'+[(c' —cC)'-3s'S']'i' .

c = cos 0; s = sin8; c' = cos28;

C = coshq; S = sinhq,

is solved for q. These solutions can then be
checked to see whether or not the x and y forces
on particles in row 0 due to those in row -1 van-
ish. If these forces do vanish, then rom -1 can be
ignored and we have a surface-wave solution. The
condition for the vanishing surface forces is

R(c &e—1) —v3 se" R,se'&+&3 (ce'& —1)
R,(ce'& —1) —use'& R,se'&=@3 (ce'2 —1) '

where', . is the ratio of U to V in the solution cor-
responding to q;. An expansion in powers of q and
8 shows that the long-wave limit values of A, and

R, are -1.17996 and -0.39332, reproducing the
continuum solution, For larger q we had a compu-
ter find the solution. For values of the wave num-
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her 8 less than cos '(—)'~'= 21.47' (corresponding
to wavelengths greater than 8.38 particle diame-
ters), Rayleigh-wave solutions were found with
two distinct real positive q, . Particle displace-
ments fall off exponentially with penetration into
the crystal in this case. These solutions for q
change in form, becoming complex conjugates, at
8= 21.47' with the particle displacements falling
off as a damped periodic disturbance for shorter

wavelengths. A remarkable feature of the com-
puter-generated solution for v as a function of 8

is its simple form:

m&u'/k = (3 —v 3)sin'8 .

Thus the dispersion relation has the same form as
the bulk-wave dispersion relation for a one-dimen-
sional chain.
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