
PHYSICAL REVIE% 8 VOLUME 14, NUMBER 1 1 JUL Y 1976

Dynamical theory of thermal neutron scattering. I. Diffraction from magnetic crystals*
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A general tow-beam dynamical theory of the elastic scattering of a thermal neutron from arbitrary magnetic

structures is presented. Using a density-matrix formalism, general expressions are developed to compute the

scattering cross section as dwell as the final state of polarization of the emerging neutron. Emphasis is placed

on those features of scattering which arise due to the spin of the neutron, Detailed calculations have been

carried out for spiral structures, ferromagnetic and antiferromagnetic spin arrangements, and the results are

compared with those of kinematical theory. As an illustration, the calculation for the fbpping ratio R for the

MnF2 (210) peak in the symmetrical blaue configuration indicates that according to dynamical theory R can

take arbitrary values when the thickness of the crystal or vvavelength of the incident neutron is varied.

INTRODUCTION

The dynamical theory of diffraction for x rays
and electrons as probe particles has been known

for almost sixty years, ' and the well-known formu-
lation for scalar particles has appeared in many
places. Thermal neutrons as probe particles offer
two main advantages in the analysis of the struc-
ture of materials. The first advantage is that the
spin of the scattered neutron carries information
on the magnetic state of the material. A general
treatment of the polarization dependence of scat-
tering from magnetic materials using the kinemati-
cal theory was given by Blume, ' and a comprehen-
sive account of thermal-neutron scattering in the
Van Hove formulation appears in Marshall and
Lovesey, ~ and Izyumov and Ozerov. ' The second
useful feature of thermal neutrons as probe par-
ticles lies in the fact that the energy analysis of
the scattered beam is possible to a much greater
precision than is commonly done with x rays or
electrons. This has led to the measurement of in-
elastic peaks in the scattered beam and, as a con-
sequence, the phonon dispersion curves of many
solids have been determined accurately.

A general treatment of the thermal-neutron scat-
tering in dynamical theory taking into account the
spin of the neutron and the effect of this theory on
the inelastic peaks has not been given so far. In
this paper (I), we treat the elastic scattering (dif-
fraction) of a neutron from an arbitrary magnetic
structure in dynamical theory; and in a second
paper (II), we evaluate dynamical effects in one-
phonon inelastic peaks. After we completed our
work and were in the process of writing this paper,
we became aware of similar work by Stassis and
Oberteuffer and by Sivardiere. ' Their treatment

is similar to ours, but the treatment given here
deals with all the magnetic structures, including
spirals, in a comprehensive way. %e have also
used the density-matrix formalism to derive the
expressions for intensities of the diffracted beams
and thus have included the case of partially polar-
ized incident beams in our treatment.

In the following, we derive the dynamical theory
of neutron scattering from magnetic materials,
taking into account the spin of the neutron. %'e are
interested in quantities like the cross section, the
polarization of the diffracted beam, and the flip-
ping ratio. In the past, there have been applica-
tions of the dynamical theory of polarized neutrons
to specific models or materials. Hamilton' com-
puted the extinction effects of dynamical theory
treating the up and down components of the spin
of the neutron separately. Nityananda and Ram-
seshan~ took a one-dimensional model of the
continuous magnetization density spiral and ar-
rived at the result that the direction of the spin
of the emerging neutron depended upon the length
of the spiral (or the thickness of the spiral mate-
rial). Felcher" extended their results to the

spiral in three-dimensional space —a more real-
istic case. However, they did not take their spiral
to be made up of localized spins on a discrete lat-
tice, and some of the qualitative effects are lost
in this case. Brown" has computed the flipping
ratio for Cr20, essentially using Hamilton's ap-
proach. Recently, Alperin" reported some ex-
per iments on rotation of the polarization for
Cr, O, . In the following, we give a systematic
development of the general theory. 'The basis of
our work is a paper by Ekstein, "and we aim at
extending the results of Blume' to dynamical the-
ory.
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The arrangement of the material in this paper
is as follows. In Sec. I we determine the wave
function of the neutron in the crystal correspond-
ing to an incident neutron of definite energy. The
wave function is written as a linear combination
of degenerate eigenfunctions of the neutron inside
the crystal; all these eigenfunctions have energy
equal to the incident energy. For perfect crys-
tals, to which we limit our discussion, these
eigenfunctions are simply Bloch wave spinors
with different indices k. For simplicity we take
these Bloch waves in the plane-wave representa-
tion. In Sec. II, we determine the constant am-
plitudes of spinors by matching the total wave
functions to the incident wave and to the scattered
waves at the boundary of the crystal. Once the
wave function inside the crystal is determined,
the intensities, the change in the direction of
polaxization, etc. , can be easily found. %e use
the density-matrix formalism to derive expres-
sions for these quantities.

Section III deals with the application of the
formalism to specific physical examples. %e
also consider interference between nuclear and
magnetic scattering. Throughout the paper we
emphasize only those aspects of dynamical the-
ory which arise owing to the spinor nature of the
neutron. The Pendellosgng effects which occur
in scalar theory are indicated but are not dis-
cussed in detail, as these are well known and have
been elaborated upon by many workers (for ex-
ample, Refs. 6 and 14).

I. SPINOR %AVE FUNCTION IN THE CRYSTAL

The Hamiltonian for the neutron in the crystal
is given by

H =- V&+ V„(x)+V (x),

where V„and V are the nuclear and magnetic
energies of the neutron, respectively, and, in gen-
eral, are operators in the neutron spin space. Fol-
lowing Ekstein, "we take the wave function of the
neutron inside the crystal to be of the following
form:

X,&'i

y(g)
—g eifR+k) ~ x

X
—~ &i(t+t) ~ x

Xgk 3

Here, the X are constant (space-independent)
spinors corresponding to the reciprocal-lattice
vectox g of the periodic potential. To take X, as
space independent does not pose any restriction
on the problem, because it can be easily seen
that for more than one nonzero term in the sum
(2) the spin of the neutron is a function of its posi-

tion x. The spinor solution of Herring" as em-
ployed by Nityananda and Felcher'0 to investigate
the diffraction from the spiral structures is a
special case of Eq. (2).

In order that g(x) be an eigentunction of 8 with
~~~~gy E ="'I"oI'I'2m, the spinors X must satisfy
an homogeneous algebraic equation

[( lk+ g l
—lk l

)1+v(0}]x

+ g [V„(g- g'}+V.(g - g')]X, = o.

(3)

V„(g) and V (g) are Fourier transforms of the
potential energies V„(x) and V (x) in units of
2m/g'. Equation (3) is the basic equation of dy-
namical theory and is exactly the same as that of
the band theory of solids except that here V„and
V, instead of being scalars, are 2 &&2 matrices,
and the X

's are two-component vectors in the
spin space of the neutron.

For unique solutions of X from the homogeneous
Eq. (3), k must satisfy the well-known vanishing
of the determinant condition

where the elements of D are

D„=(lk+g,. l' —. lk, l')1+ v„(0}+v (0),

D;; = V„(g&- g;)+ V.(g; —g, )

and 1 is a, unit 2 x 2 matrix. Equation (4) cannot
be solved for all the components of k, nox is it
necessary. From the boundary condition of the
continuity of the wave function one of the condi-
tions which we obtain is that the tangential com-
ponent of k is the same as that of k, . In order to
solve Eq. (4) for the normal component of k we
define the following parameters of dynamical
theory:

y=k n, y, =(k+g) n,

I =k 8 10=(k+g) n

~,=+[lk. l'- I(k. +g},l']'",
where yg is the inward normal to the incident plane
pg x=0; note that in general l, 0 I' .

It is possible to solve Eq. (4) and then Eq. (3)
for the n-beam case, but in the following we con-
centrate on the two-beam case because the Pendel-
losung phenomenon can be anticipated in the two-
beam case only. Then

X$ .. . Xg&

y(x) -ekx xl +e i(x+x) ~ x

X& Xg)
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Matrix D for the two-beam case is a 4 &&4 matrix
and its elements in terms of smaller 2 x 2 ma-
trices are

D„=(y' —r', )l+ v(o),

D., =y,'- r,'= [(y+g„)' r-,']i+ v(0), (7)

D» = V(0- g) —= V( —g), D» = V(g- 0) —= V(+g).

Equation (4) is new an eighth ord-er polynomial
in y. That means that for an incident plane-wave
spinor represented by wave vector k, there are
eight, in general different, plane-wave compo-
nents in the forward direction (y) and eight in the
diffracted direction (y ). However, in Laue trans-
mission geometry four of the wave vectors in
each of the two directions are merely reflections
from the boundary n 'x= T. A detailed analy-sis"" of the amplitudes of various components
shows that the reflected components are of negli-
gible amplitudes compared to the forward-travel-
ing ones. Now, if we take only four y's and four
y 's as describing the state of the neutron inside
the crystal, then, the system of equations ob-
tained by invoking the continuity of the wave func-
tion and its normal derivative across both the
boundaries is an overdetermined system. How-

ever, for such a case, Zachariasen-type boundary
conditions, "viz. (a) the total amplitude of the
forward traveling waves is equal to the incident
amplitude at it x=0; and (b) no diffracted wave
enters the crystal from the incident side, are
physically and mathematically consistent. "This
is the system of the boundary conditions which we
shall employ here. To a very good approximation
the four forward-traveling waves in the crystal
can be obtained by writing y = I'p+ 5 and neglecting
the second-order terms appropriately in Eq. (4).

For some special forms of the potentials and
geometry, the matrix D and hence the polynomial
DetD =0 take a simple form and give degenerate
solutions. An obvious example would be if all the
spin-flipping potentials were zero, corresponding
to the neglect of magnetic interactions altogether
and writing nuclear potentials in the scalar form.
Then one has to solve the following equation for
y:

[y'- r,'+ v(0)] Hy+g„)'- r,'+ v(o)]

—v„(+g)v„(- g) =o. (8)

This equation and its two forward-traveling y's
give the Pendellosung phenomena of the scalar
theory.

For the magnetic crystal case when y has four
values corresponding to the traveling plane waves,
and for each of the values, the system of Eq. (3)
can be solved for the components X&, X&, X, ~,

and X,&. The wave function inside the crystal be-
comes 4, „„.XI

~(xX) g e((v((% ~ n) +Ir()g ~ x„]
t

)=1 zl) X)

where,

t
4 . && X&

e &~& +gn)x. n+ (k p + g)g ~ x()]

g =1

(S)

X&=4(i X)~ Xx)=44xi X}~ Xx, =u,'( Xf.

Every term in Eq. (9) is known except the four
arbitrary constants X~. In some physical cases
it may be more convenient to choose some other
components as arbitrary constants. In order to
calculate various parameters entering Eq. (S) we
have to know the explicit form of the potentials
V„and V . These have been given by Halpern and
Johnson. " We use them in the form given in Ref.
2 (B6). Equations of Ref. 2 henceforth will be de-
noted by (B6), (B7), etc.

For simplification, we shall assume the scalar
form of the nuclear potential, i.e. , we shall ne-
glect that part of the potential which gives rise to
polarization in incoherent scattering. This as-
sumption has been made only to delineate the ef-
fects of magnetic scattering.

In the following we write the magnetic part of
the potential V (g) for some cases of interest and
discuss features of the scattering from these po-
tentials in Sec. III.

A. Simple spiral of continuous magnetization density

This has been discussed by Felcher' and
Nityananda' and we give results for comparison
with the spiral on a lattice.

(o
(eiqx 0 j

V„(+G) =4))i(,„M „,2m O

With this form of the interaction, where magnetiza-
tion is a continuous function, it is possible to dis-
cuss only (000) satellites. For a particular peak,
say the + satellite

v (-v()=c( ), v„(+t))=c( );

V (0) =0 for qco and C —= 4m'(, „M(2m/h').
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(10)

We have used the notation of Ref. 2 except for a
change of sign in the definition of the Fourier
transform to make it agree with the conventional
definition. G is the general scattering vector at
which the peak is observed, and f » is the form
factor of the ion with the spin S» =f}„Sat the site
(l,j).

V (+G) =C g e" ""'f .(+G)[(q„.G')(&'~')];

2m 2+5' 2ye' S
h' m m e'V'

v„((()= « Ef,,((()(((,, « '((s « '() .
&~j

(12}

This expression shows that the component of the
spin along the direction of the scattering vector
does not contribute to magnetic scattering. This
is also obvious from E&l. (10). So far no fixed set
of coordinate axes has been chosen, nor has the
spin structure on the lattice been fixed. In this
sense expressions (11) and (12) are valid for an
arbitrary spin structure and any experimental
geometry.

For a spiral structure on a Bravais lattice

&)&
= 2(u e"'+u, e &~') sinp+q cosp,

where q is the wave vector of the spiral, P is the
angle that the spin direction makes with q, u

uj iu„u, = u, + iu„and u, and u, are orthogonal
unit vectors perpendicular to (l.

For a+ satellite around g, G=g+q,

V'(vG) =C;[—,'(u, G') sinP](s G'),

and for a —satellite

B. Ferromagnetic spiral due to spins on a lattice

When the magnetic properties of the crystal
can be described by ions having localized spins
on a lattice the potential is given by (B9)-(B11)

2m 2&&5' 2ye' 1
V (+G)=m @' m m, e V

x g ' «'»f, . ( sG ((G S, xG() ~ .
W

configuration. For illustration, we choose the
geometry employed by Koehler et al."

q =z; G =z cosP+x sin(t),

V'(- G) =C [2s.—~(s, cosP+s, sing) sing]

(- cos&f& sing 2 —sin'&t( (

=pC (15)—sin'&t& cos&f( sing f
This potential correctly gives the form factor of

Koehler et al."for unpolarized neutrons, i.e. ,
—,(1+cos'Q)f'. When &t( is zero, i.e. , when the
scattering vector 5 and spiral wave vector &l are
parallel, we get the same form as in Sec. IA.

C. Ferromagnets and antiferromagnets

For ferromagnets as well as for antiferromag-
nets we can write V„ from E&l. (11) as

V (v G) = CF (v G) (

l q, +i&}, 0

is the form factor of the magnetic unit cell
and includes the geometrical structure factor,
which determines the selection rules for antifer-
romagnetic peaks. Here we have chosen G =z, a
convention different from that for spiral case.
Also,

( 0 q„—iq,)
V (0) = CF„(0)l

( &}„+iq, 0

and g is the direction of magnetization.

II. INTENSITY AND FINAL POLARIZATION

In this section we derive expressions for the
intensity and the state of polarization of the dif-
fracted beam for the two-beam case of dynamical
theory. The approach followed is a straightfor-
ward extension of the scalar neutron theory. First
we calculate the intensity for a fixed polarization
state of the incident beam and then derive the ex-
pressions for a par'. ially polarized incident beam.
We consider the Laue transmission geometry ex-
plicitly, but calculations for the forward beam as
well as for the other experimental geometry
(Bragg reflection) are straightforward and are
given in Sec. III for specific spin structures.

In the Laue transmission geometry we take the
spinor wave function of the neutron in the exit
vacuum region to be

V (+G) =C,[-,(u, G') sinP](s G'),

C: =Cf(+(g+Tl)), C, =Cf(+(g 4)). -
(14}

X,&)
q (X)

—e&i'r&&&x ss'I ««0& +*((1

This is the most general form of the potential.
However, in order to do computations for dynam-
ical theory we have to choose some geometrical

X,&

+e f (I'& (x ~ ff ) + ()~0 +g) g
~ x() 3

&eg&
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Xf Xgff) y +) Xf Xgff~ ~

(17)

gu,', xi=0; Qu'i X(=0.

The above four inhomogeneous equations unam-
biguously determine the four constants X& to give
uniquely the wave function inside the crystal.
Finally, from boundary conditions at the exit sur-
face n x= 7 we obtain the amplitude of the dif-
fracted wave function in the exit region:

(I:& 1 xt~

4
e fr~rgC

j =1

(18)

The intensity of the diffracted beam, and con-
sequently the cross section (except for kinemat-
ical factors) is A A, and the orientation of the spin
of the neutron in the diffracted beam is given by
A'( —,'o)A.

The above procedure, exact for an incident beam
of unit polarization, can be easily cast into the
density-matrix formalism by defining an average
of the incident spinor over the various spin direc-
tions. '0 If

l x) is a spinor representing an inci-
dent neutron, then the density matrix p of the inci-
dent neutron beam is def ined by

where the ( )„represents an average over the
neutrons in the incident beam. The density matrix
can be written generally as p= —,1+p s, where
—,'p= (s) is the polarization of the incident beam;
similarly if

l
X') is the spin wave function of neu-

tron in the scattered beam then
l
x') =Mix), where

M is a 2 && 2 matrix, and

p' =(I x')&x' I).,=MpM'

is proportional to the density matrix of the dif-
fracted beam.

In terms of the density matrix the cross section

where

e f (I Ox n + k Pg x(~) —
&

fk O~x
7

and, since I', + l(k, +g), l'= lk, l', g, (x} satisfies
the free space Schrodinger equation for a neutron
of energy 8' lk, l'/2m.

Since we have taken only four y's (associated
with the forward-traveling waves) to specify the
wave function inside the crystal, in the following,
we apply approximate (Zachariasen-type) bound-
ary conditions and obtain

is given by

—= Trp'= TrMpM
do'

dO

and the polarization vector of the diffracted beam
by

p Trsp' TrsM pM
2 Trp' TrM pM~

(20)

R = Trp, M~M/Trp M M. (21)

III. PHYSICAL EXAMPLES

In the following we apply the techniques of dy-
namical theory developed above to three important
spin structures: spirals, ferromagnets, and anti-
ferromagnets. The main emphasis is on the dy-
namical effects in the polarization of the scattered
beam. We first consider two special cases of

The cross-section for an unpolarized beam would

be simply TrM'M. All the above quantities can be
easily computed once the matrix M, which gives
the amplitude of the diffracted spinor in terms of
the incident spinor of unit polarization, is known.
Various trace relations (B7}in the product ma-
trices of Pauli spin matrices facilitate this compu-
tation.

From the form of the amplitude of the diffracted
beam —Eq. (18)—one can note that since y, in

general, has four values, the usual feature of
dynamical theory associated with two distinct
values of y (Pendellosung phenomena) will not be
observed unless some special geometry or form
of the potential yields only two distinct values of
y. Second, the role played by the matrix M can
be compared with the role played by the interac-
tion potential V." Since in kinematical theory the
intensity formula is given by TrpV~V, we observe
that if the structure of the matrix M turns out to
be the same as that of V (for some special physi-
cal example and experimental geometry) the po-
larization features of the scattering will not show

any dynamical effects. More precisely, if M dif-
fers from V only by a thickness-dependent scale
factor, the final state of polarization p' and the
flipping ratio will be given by the expressions of
kinematical theory. " In effect, M plays the role
of a scattering matrix as compared to V of the
first Born approximation (kinematical theory).

Finally, the flipping ratio is defined as the ratio
of the intensities for two different directions of
the initial polarization. In many experiments one
measures first the intensity for the polarization
vector parallel to some preferred axis and then

antiparallel to the same axis. This defines two

density matrices p, and p . The ratio of the two

intensities, or flipping ratio, is
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high-symmetry spirals and treat ferromagnets
and antiferromagnets in general in Sec. IIIA.

A. Spiral structures on a lattice

u' u2
f(T) — gk gf ega&r (e (or 1)

Qg) —Qg)

The cross section and final polarization are then

The potentials in the matrix D for a + satellite
are given by Eq. (15),

Dl2= ~-, =P
—cosP sin@ 2 —sin'P)

—sin'@ cosP sing)

r —cosy sing —sin'Q

2 —sin @ cosp sing)
or

= Tr(—', 1+j5 %)[f*(T)s,][f(T)s ]

= if(T) I'-.'(I f.),

with

P= &C sinp=oCf( —(g+q))sinP
= 21T(2'/e IpBoe )(vo) Sf slnP

where v0 is the volume per lattice site .

We take /=0, i.e. , q 'G=1. This occurs when
the axis of the spiral (z axis) is parallel to the
scattering vector. This will be the case for the
(00I) satellites of holmium. " Equations (3) are

(&'- Fo)Xi+2PX,)=0 (r' —Fo)X)+0=0

0 [(~ a.)'-F;]X,i=0,

2P*X~+ [(X+a.)' —F',]X,~
= o.

Therefore, we conclude that the polarization of
the diffracted beam is independent of the thick-
ness. In the above we have made use of the foBow-
ing relations:

For M = n+ P s and p = -1+p s

Tr(pM'M) = in i'+-,'iPi'+-' *p'P+,'p'(P*x P),

Tr(sMpM~) =~on"P+ oaP*

+-,'f[- P*x P+(0 xp)e*+(P*xp)o']

+-'[(p P*)P-p(P* P)+(p P)P*]

Exactly the same calculations can be carried out
for the negative satellite, viz. , 6= g - q, and the
following results are obtained:

The four solutions for y and the corresponding
arbitrary coefflclents are M =f(T)s„, —„„=if(T) i'-,'(1-P,),

yls2 p + glp2 ~

0

o(F, —F,)+ o(F, —F,) + „o
0 g

y3 p0 y4

From the form of the potential for the spiral (Sec.
IA) and the above equations it follows that the
spiral in this configuration acts like a filter. And

the magnetic interaction favors the up component
of the spin in the forward direction, while only
the down component is found in the diffracted beam.
From the boundary conditions the amplitude of the
scattered beam is given by

l
I 2

1+2pg
p =

) z ~

Two points concerning these results should be
noted. First, we obtain the same ratio of intensity
between the two satellites as obtained by kinemat-
ical theory (Ref. 2). Second, no dynamical effects
have appeared in the polarization dependence of
the intensity. This follows from our ea,rlier as-
sertion (See. II) that no dynamical effects in polar-
ization will be observed if the matrices M and V
a.re proportional.

The matrix M0 in the forward direction does,
however, show interesting properties. The am-
plitude of the forward spinor A0, for the+ satel-
lite, is given by

A. =6 "&T u' u2 . u'&&2&

+l &int 2 l Kin ~

A& ~
—

O&~

and the matrix M is

r Q ~ Qeiy l T gk e1y2T gh
2 l 2 1 X in)

M&~ —B&~ B&~ —Xl&~
0

M = ' ' r, re(e Nor 1) f(T)s .Qg )gg) ~ ~ 0 0

Qg) —Qg) 1 0



'f, (T-)1+f (T)&„

0 )
This will be the approximate situation for the

(100)' satellites when I is large (Ref. 19). In I aue
geometry, the amplitude of the diffracted wave is
given by

f,(T) = e'"& r[(u~gi —u,')) '(u' ) —u,'I e'~ r)

((ro ~~~ rl

with 4 = y, —y, . Then

« If.(T)I', If.(T)I', ~~f,,~.f f.
dA 4 4 4 4

'(f.*f -f.f*».:(f.lf-I—"-pl~ I'+2lf I'I.}
d&x/dQ

M, -f(&)(
)

=2f(~)'

—=
I f(T) I', p'=2(p. k- -'p).

;, , (f."f.f.f "» f.l~ I'-2lf I'p' '
lf.I'. I~I' ~'.(f.*f. f,f*)

Hex'e the polarization direction does depend upon
thickness, and %'e expect Gsclllations of polariza-
tion direction given by an extinction thickness
proportional to I/&. For p =f,

(f;f. f.f*)- lf. l'

and for the opposite direction of polarization

(f.'f +f*f.)+ If I'
lf. I + I&-I —(f:f-+f.f-")

The difference in the x'esults fox' the fox%ax'd
dixection and the diffracted direction is due to the
fact that in the forward direction there is inter-
ference between the incident beam and the forward
scattered beam, while such intexference does not
occur in the diffracted direction. All the above
results are also found for Bragg geometry, which
differs from I aue geometry only in the boundary
conditions. ' The diffracted amplitude A and ma-
trix M for Bragg geometry are

Q Q e 2 Q Q 8zk
2 ter ~ fy~r+ 2 &fy2r j, 4~X

Q&~ e —Q&~ e Q&~ 8 IM&~ e

I,=f(T) =f(T)s,
j. 0

f(T) = — 2 (((,r x
Qg )e Q4I( $

Except fox" trivial changes„ this gives the same
xesults as obtained for Laue geometry because M
is the same in both eases, except for the redefi-
nition of f(T).

This result is remarkable for the fact that the
cross section is independent of polarization, but
the final state of polarization is different from the
initial state. We also note that since the axis of
the spiral is perpendicular to the scattering vec-
tor, from the point Gf view of 'the magnetic inter-
action there is no preferred component of the
spinor. As a eonsequenee, both the components,
up and down, are affected equally. Similar re-
sults can be easily obtained for the —satellite and
for the Bragg geometry.

As an illustration we give the formalism for
general potential when V(0) =0. Equations (3) are

b'- I')x+ v(- g)x, =o,

v(+ g)x+ [b+g.)'- I',lx, =0.
For y= To+ 5, 5 being a small deviation, Eqs. (22)
and (2&) can be transformed to the following set of
eigenvalue equations

V
& x, =-»x; v -=v(-g);

0

V. (r',)'- I"',
~& x+ —

&, x~= —25x~; v, -=v(+ g).

The problem of determining y (or 5) is reduced
to solving the above eigenvalue px'oblem. The
eigenvalues 5 (or the values of y) are given by

251'0(25I'~+ I""—I') —x, , = 0,
whexe A, , are eigenvalues of the matxix

V.V' = Ipl'[(1+ cos'p)1 —2cos'(f o,—sin2(t(o„j,

(27)

x,,, = lpI'(I+cos(t()'.

Finally, from Eq. (26) we obtain the following four
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values of y:

r 4r' Z/2

If Q &0 and Q &rv, all the values of y are distinct. The neutron wave function inside the crystal is

v„ t v„ j

v —x I(".e'"~x'i+~p'"&x'i) - v. l v x I(ii.e'"~xi+~p'"+x'&),
— 'v„'1

~,=- [(y+g„)' r', ]-' = [36r',+ (r", r',)]-'.

Applying the boundary conditions,

( 1 ( 1

A, =v.l v«x, (e'" '-e'" ) .' 'i [(v»-x2)x;. i —v»x;. &]+ v. l v» x, (e'" e'"")

" .' 's [(v«-xi)x. i —vi2x i]
Q —Qg Xg —X2

(30)

=f- T v
~

(v„x,)(v,„x,)
X;.~ V~i - ~& —Vi2 X-. ~

Within the small 5 approximation,

eiy r(I eider}
2& (x x)'

eix42'(I e-itt t r)
f34( ) 2+t x x 7

1 2

4 3

The cross section and other quantities are given

by this new density matrix p. Also, if F(T) =f(T)X,
where f(T) is a scalar function, then there is no
thickness-dependent rotation of the polarization
direction of the incident beam as it passes through
the crystal, but the final direction of polarization
is different from that given by the kinematical ex-
pression TrpV~sV by a constant angle.

The matrix M for the diffracted beam is, finally,
given by

M = V,[A,f»(T)+ A,f,i(T)] .

It is easy to observe then that the diffracted inten-
sity

TrpM M= r T[p[fA»( ) TA+ff2, (T)]

«.v.[Aifi. (T) +A.F4(T)1

is different from the kinematical expression
TrpV'V. If we define

Dl
C~(A+8 ~ o) C (A+8 o')

C,(A+ B o') Co (A. + B'o')+ C~,l
(35)

B. Ferromal, nets and antiferromagnets

First, we find y (or 5) using techniques similar
to those used for spirals. The matrix D can be
easily written using the potentials given in Eq.
(16). Finding the values of 5 is equivalent to find-

ing the eigenvalues of the following partitioned
matrix:

p= F(T)p F'(T) (34)

A,f, (T)+A,f, (T) =F(T)—
then we observe that all the formulas of kinemati-
cal theory are valid if we compute them with a
new density matrix

CF„(0)
2r 0

CF„(+g)
2r0,

A = 0, B= (i)„,i)„

CF~(0) I' ' —I'
Og 2r0 & ties 2ro

CF.(-g)
2rO

0). (See Sec. III A for the con-
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vention. ) We have written the matrix in this form
so that it may be applicable to a general case, in-
cluding the nuclear interaction.

%e compute the matrix M by a procedure quite
similar to the one detailed in the preceding sec-
tions. The matrix M is given by

,2T 0

where h is a unitary matrix which diagonalizes the
Hermetian matrix

C. Calculations for MnF2

For an antiferromagnet we obtain some inter-
esting results so far as rotation of the polarization
direction is concerned. %e illustrate this by tak-
ing the case of MnF, . The various elements of the
matrix D are given by

D„= [P r', + V„(O)]1, a„= [(y+g„)' —I,' + V„{O)]1,

V„(- g) cE (- g)(n. —in, )
~

~

.E.(- g)(q. + q, ) V.(- g)

The matrix h is the spin-& representation of the
rotation operator which brings the projection of
spin i) onto the x-y plane (or more precisely the
vector [)I- (j 4)G]) into the z axis (or in the dir-
ection of 0). If this projection makes an angle P
with the x axis, then

&2
&=i

e+is/2

&2

e-ig/2

Fp

e- F3/2
(36)

f *'f- (A. f-)&"}-M=
(f» -f3.)e" f»+f.~

= 2 (f»+f„)1+(f» —f„)(cosPs„+sinPs, ) .

The cross section is given by

81nf .

„p [~-(~ G)G]
sing

Obviously, for p in the direction of the scattering
vector the last term is zero, and there is no po-
larization dependence of the scattering.

The flipping ratio for p in the scattering plane,
but perpendicular to 4 is given by

&if.l" If-I')+ &lf. l'- lf-l')& o P/

(ff,.f'+ lf., f') —(ff,.f'- if..f')(cosP/»n4)

(»)
In the above,

,„ir(1—e'~r)
fi. =f12(2') =e'" '

~

~

V„(+g) cE„(+g) (i)„-iq, )
D21 =

~& (+)()(v +(n ). .('.(+1) )
%e have studied this case in detail and therefore
have included nuclear potentials in the matrix D.
If we analyze a purely magnetic peak, i.e. ,
V„(+g) = 0, then the two equations [similar to Eq.
(26)] determining 6 are degenerate, leading to the
conclusion that

l f» l' =
i f„l'. This will happen

only if the form factor of the ion is real and spher-
ical. In the following, we assume that covalency
effects and the nonsphericity of the form factor
can be neglected. Therefoxe, we observe that for
purely magnetic peaks the flipping ratio will be
one and the cross section will not depend upon the
polarization —a fact borne out by kinematical the-
ory' al80.

The strongest mixed peak in MnF, is (210). For
this peak the following numerical values of the
structure factors can be easily evaluated. "

E1((g) = —45r»n(2)nili)sin(27lBk),

gg =0.31 —3.

{heal) =-(210); br, the scattering length for flourine
ions, is 0.55x10 ' cm.

E„(+g) = 1.39 x 10 "' cm;

E„(0)= 25 „„+4br = 1.52 x 1F"cm;

bM„= —0.36 ~ 10 cm;
Y S(1 ig(a+1+0))f

mec

Taking f= O. V and S= —,
' (Ref. 24)

Eii(+ g) = 3.6 && 10 "cm

V=EX 4)i/(1)0); e„ the volume of the unit cell, is
114 A'. For illustration, we choose a simple ge-
ometry. We take a crystal oriented in the (001)
direction (the direction of )I) and analyze the (210)
peak in symmetrical Laue geometry, i.e. , the
scattering vector 0 is parallel to the incident face
of the crystal. For this case eigenvalues X, and

A2 a1'e (EN+ Eii)4W/1)&) alld {EN—Ea)411/8(&, 1"espec
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tively. At the peak

(41)

Next we comp~te the flipping ratio for p q= + 1.
In this case p will be automatically perpendicular
to G if we choose it to be parallel to q.

E~+ E@ 4n' . ~ E~- E~ 4g= sin —T Sln2I' v 2I"0

sin(p+ 1)x
sin(p —1)x

P =F„/F„, x =--(E„/21",)(4x/v, )T.
For the (210) reflection of MnF,

F„/F, =0.366 =0.37.

The flipping ratio versus x is shown in Fig. 1,
whel e

x = 0.033(XT/cos8s),
o

g is in A, T is in pm.

IV. CONCLUSION

%e have extended the dynamical theory of dif-
fraction to include the effects of magnetic ordering
on the polarization dependence of the scattered
intensity and on the polarization of the scattered
beam. The theory is given for arbitrary magni-
tude and direction of incident polarization, and for
arbitrary spin arrangement.

The theory appears very similar to kinematical
theory except that the interaction potential V be-
tween neutron and crystal is replaced by a matrix
which can be written as a product of V and some
thickness-dependent matrix F(T). Calculations of
M have been carried out in detail, for the case of

T (yam)

FIG. 1. Flipping ratio R for MnF2 (210) peak in sym-
metxical Laue configuration. x is a dimensionless pa-
rameter (see text). Thickness T is for incident neutrons
of wavel. ength 2.5 A.

spiral spin structures, ferromagnets, and anti-
ferromagnets. Intensity as well as final polariza-
tion states have been computed for some impor-
tant experimental geometries. %hen M contains
the thickness dependence as a scalar multiple then
there is no rotation of the spin direction of the
neutron as it comes out of the crystal after passing
through the magnetic structure. In this aspect the
results presented here are different from those of
Nityananda, for simple spiral structures. In sim-
ple spirals, there is no rotation in the fonvard
diff&acted beam, but the forward transmitted beam
does undergo a rotation of the spin direction which
depends upon the thickness. In the case of an anti-
ferromagnet on a body-centered lattice (e.g. ,
MnF, ) there is a rotation of the spin direction only
for mixed peaks, l.e. , those peaks where both
magnetic and nuclear interactions contribute.

Throughout this paper we have concentrated on
the phenomenon of rotation of the spin of the neu-
tron and, therefore, have not discussed such top-
ics as depolarization of the diffracted beam, for
example. However, the formulation presented is
general and these effects can be readily computed.

ACKNOWLEDGMENT

%e thank Dr. C. Stassis for sending us a pre-
print of his work and for useful discussions.

~cwork at Brookhaven performed under the auspices of
the Energy Research and Development Administra-
tion; work at Stony Brook supported by the National
Science Foundation.

$ Present address: IBM System Products Division, East

Fishkill, Hope@sell Juncti. on, N. Y. 12533.
~The fixst two papers on dynamical theory of diffxaction

are considexed to be: C. G. Darwin, Philos. Mag. 27,
315 (1914);27, 675 (1914). Since then, major contri-
butions have been made by Ewald, Bethe, Lamia, and



SUSHIL KUMAH MENDIRATTA AND M. BLUME

von Laue. Many good reviews have been published on
the subject which deal fairly wel. l with the common
dynamical theory and give proper historical. account
of the subject. We refer to only two of them: T. W.
Batterman and H. Cole, Rev. Mod. Phys. 36, 681
(1964) and R. M. Stern and H. Taub, CRC Crit. Rev.
Solid State 221, (1970). The first one treats dynami-
cal theory from the x-ray point of view and the second
treats it from electron diffraction point of view.
Bethe's formulation for an electron is closer to the
neutron case than the x-ray dynamical theory.

2M. Blume, Phys. Rev. 130, 1670 (1963).
~L. van Hove, Phys. Rev. 95, 249 (1954).
4W. Marshall and S. %, Lovesey, Theory of Thermal

Scatters'ing (Oxford U. P. , OxfoI'd~ 1971}.
5Y. A. Izymov and R. P. Ozerov, Magnetic Neutron Dif-
fraction (Plenum, New York, 1970).
C. Stassis and J. A. Oberteuffer, Phys. Rev. B 10,
5192 (1974).

7J. Sivardiere, Acta Crystallogr. A 31, 340 (1975).
8W. C. Hamilton, Acta Crystallogr, 11, 585 (1958).
9R. ¹ityananda and S. Ramaseshan, Solid State Commun.

9, 1003 (1971).
~OG. P. Felcher, Solid State Commun. 12, 1167 (1973}.
~~P. J. Brown, in Therma/ Neutron Diffraction, edited

by B. T. M. Willis (Oxford U. P., London, 1970).
H. Alperin, paper presented at the International Con-
ference on Magnetism, Moscow, 1973.

~3H. Ekstein, Phys, Rev. 76, 1328 (1949).
' Sushil Kumar Mendiratta, Ph.D. thesis (State Univer-

sity of N. Y. at Stony Brook, 1974) (unpublished).
~SC. Herring, in Magnetism, edited by G. T. Rado and

H. Suhl (Academic, New York, 1966) Vol. IV, p. 87.
~6W. H. Zaehariasen, Theory of X-ray Diffraction in

Crystais, (Dover, New York, 1967).
~'We give here only a sketch of the main argument;

details are to be found in Ref. 14.
~SO. Halpern and M. Johnson, Phys. Rev. 55, 898 (1939).
~9W. C. Koehler, J. W. Cable, M. K. Wilkinson, and

E. O. Wollan, Phys. Rev. 151, 414 (1966).
2 M. Blume and O. C. Kistner, Phys. Rev. 171, 417

(1968).
W. Marshall and S. W. Lovesey, Theory of Thermal
Neutron Scattering (Oxford U. P. , London, 1971),
Chap. 10.

+Reference 21, p. 329.
2~Reference 21, p. 205.
24Y. A. Izyumov and R. P. Ozerov, Magnetic Neuron

Diffraction (Plenum, New York, 1970), p. 388.


