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A nonlocal theory for the surface photoeffect produced in metals by vacuum ultraviolet radiation is presented.

Using a simple electron-gas model, it is shown that p-polarized incident light generates, in the surface region,
a strongly spatially dependent vector potential having longitudinal character; it is argued that the
photoemission associated with this longitudinal contribution constitutes the surface photoefTect. Various

physical features, including the role of the optical constants and the nondirect nature of the electronic
transitions involved, are discussed. It is shown that the nonlocal eA'ects are significant over a wide range of
frequencies and for systems other than the electron gas.

I. INTRODUCTION

Among the more enduring problems in the world
of photoemission is the surface photoeffect for
metals. ' ' In view of the many "surface effects"
now being investigated with photoemission, I
emphasize that the problem of concern here is the tra-
ditional surface photoeffect problem which may be,
stated as follows: What unique physical effects ac-
company the production of photoelectrons by P-
polarized light'P The standard for comparison
implicit in this statement is the "bulk photo-
effect" ' from which the surface effect must be
disentangled when exciting with P-polarized light
and which results when normally incident or s-
polarized light is used. That which sets P-polar-
ized light apart is the presence of an electric
field component normal to the surface; the problem
arises in assessing the consequences of this
electric fieM component.

In generating a photoemission theory for metals,
an essential ingredient is the proper treatment of
the electromagnetic fields within the metal. An

important step in this connection came with the
realization that a significant longitudinal electric
field is excited in the metal as a consequence of
the normal electric field component when P-polar-
ized light is incident upon the surface of the
metal. "" Excitation of photoelectrons by this
longitudinal field represents an excitation mech-
anism which is unique to P polarization and which
requires the presence of a surface. In my opinion,
it is the surface photoeffect. The purpose of this
paper is to examine the consequences of including
the longitudinal field within the simple three-step
model of photoemission, and to compare the re-
sults with the analogous theory when the longitudi-
nal effects are ignored. A brief report of this
work has already appeared. "

It should be noted that the present characteri-
zation of the surface photoeffect differs signifi-

cantly from the traditional approach wherein the
requisite momentum -nonconserving electronic
transitions occur through the appearance of the
derivative of the surface potential with respect to
the coordinate normal to the surface within the
matrix elements. That is, for a semi-infinite
photoemitter, the relevant matrix elements are
of the form'

(e z) 4"*(k~., z)
dP

where the surface of the photoemitter lies near
the plane z = 0, P'(k~„z) is the z-dependent part
of a wave function describing the excited photo-
emitted electron, P;(k„,z) is the z-dependent part
of the wave function describing the initial state of
the electron, V is the potential function for the
electrons with no external electromagnetic field
present, 0 is the polarization vector of the radiation
withinthephotoemitter, and 2 is aunit vector normal
to the surface. The wave function Q& is associated
with the z-dire ction wave-vector component k„while
the part of f within the photoemitter is associated
with the z-direction wave-vector component kf, . If V

is taken to be a step function at the surface, or even
if the potential is softened somewhat from a step,
d V/dz will be nonzero only in a, narrow range very
near the surface and the matrix element will be
nonzero even if kf, c 0;„ that is, the nonexistence
of a momentum-conservation requirement in the
direction normal to the surface due to the lack of
translational invariance in this direction mani-
fests itself right at the surface. The resulting
photoemission will then represent a genuine sur-
face effect and will occur only for P-polarized
light. In the present work, the momentum re-
quired to couple crystal states having different
momentum components normal to the surface
comes from the longitudinal field which certainly
arises as a consequence of the surface being pre-
sent (and includes the effects of the lack of trans-
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lational invariance), but which extends some tens
of angstroms or even further into the photoemitter.
Furthermore, this field derives its character
largely from the bulk electronic excitations of the
system. Thus, the surface photoeffect which
emerges from the present study, while involving
nondirect transitions and requiring p-polarized
light as in the traditional picture, is more pro-
perly described as a hybrid excitation process
having both surface and bulk character; no matrix
elements of the form (1.1) are present. This dual
character, appearing also in the work of Feibel-
man" and, to some extent, in the theory of En-
driz, "will be more carefully discussed below.

In Sec. II, I describe the electron gas model
which will be used for the calculation and generate
a rather different photoemission theory. An ex-
tension of the theory to incorporate, in a simple
way, non-electron-gas effects is also included.
The results for the electron gas are presented in
Sec. IO. Section IV includes the results of some
calculations based upon rather high-ener gy
(& 50 eV) photoemission data taken by Arakawa.
The point of these calculations is to show that the
inclusion of the effects associated with the longi-
tudinal field modifies significantly the conclusions
obtained from a simple scheme for the determina-
tion of electron escape lengths. A discussion of
the reasons the present approach was employed
and a comparison with alternative approaches is
given in Sec. V.

II. NONLOCAL THEORY AND THE LOCAL LIMIT

A. Local limit

I consider P-polarized light of frequency e in-
cident through a nonabsorbing medium of die-
electric constant c, upon a half-space photoemit-
ter. Let us initially examine the local limit within
the isotropic-volume-excitation model of photo-
emission" and thus characterize the photoemitter
by the dielectric function z(~) = z, (&u)+ Iz, (&u). This
local limit has already been examined in detail" ";
however, an understanding of the photoemission
ideas appearing therein is important for our sub-
sequent development so we sketch the theory here.
The reflectance R~ ~ and absorptance A~ ~ for the
system are given by

R, ~= ~(cos8/e,'~' —Z~ ~)/( co/s8'~'z+Z~ ~)~'

(2.1)

where 8 is the incident angle, measured from the
normal, in the medium of dielectric constant e„
and the local surface impedence Z~ L is Z~ ~
=(e —e, sin'8)' '/z. We choose the surface of the
photoemitter to be the plane z =0, with z increasing

into the photoemitter. The absorbed energy can
then be described by

with the distribution of this energy given by dA/dz
=+A~ ~e '. The absorption coefficien n is
a = (2m/c) Im(z —zo sin'8)' ', with Im denoting the
imaginary part.

We now assume that all the energy absorbed goes
into single-electron excitations. The number of
excited electrons produced within dz at z per in-
cident photon is then (dA/dz)dz. If the probability
that an excited electron produced at z will reach
the surface is P(z}= —,'e ' ', the number of elec-
trons reaching the surface per incident photon
will be n„

(2.2)

The quantity g, the electron escape length, will in
fact be a function of the final-state energy E, of
the excited electron. For simplicity, we consider
here ( to be an average escape length for excita-
tion at frequency e. Then,

n, = —,'A~ z [af/(I +a))]. (2.3)

The local photoyield Yr ~(8, &u) can be written as
the product of n, and the transmission function
describing the probability of escape of excited
electrons at the surface. We will focus our at-
tention here on the quantity 2n, which will call the
local surface yield Y'»

Y~(8, u)) A~ ~ [af,/(I +a()]. (2.4)

Caution must be exercised in using P~ to des-
cribe the actual photoyield. In addition to the non-

local effects, of which much will be said below,
the surface escape function has been omitted; this
function will be of prime importance in determin-
ing the yield, particularly for low and moder-
ate energies. Now, the surface escape function
depends upon the work function, the energy of the
excited electron, and, equally importantly, upon
the velocity of the excited electron in the direc-
tion normal to the surface. Thus, the details of
the electron excitation spectrum, implicit in
A. ~ ~ and n, are needed, together with the orien-
tation of the crystal with respect to the incident
light, before the escape function can be specified
and the total photoyield given. For higher ener-
gies, k~ greater than several times the Fermi
energy, say, these restrictions become less im-
portant and the spatially isotropic excitation char-
acter tacit in the above development is more nearly
realized. In this case, characterizing the yield
via Y~ ( or its nonlocal generalization} becomes
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more reasonable. Finally, we would like to point
out that E(I. (2.4) includes the features of the
more elaborate Berglund-Spicer development" in
the limit that o.E«1, the normal situation in a
metal.

With an eye on the nonlocal model to be presen-
ted below, we note that (2.4) can be rewritten. If
the photoemitter contains an eleetrie field E
giving rise to a current density J, the time-aver-
aged power absorbed by the photoemitter per unit
volume is —,

' Re(J- E*), with Re denoting the real
part and the asterisk indicating the complex con-
jugate. Dividing this by the time-averaged energy
flux incident upon the photoemitter, (c cos8)/
8m~,' ', where we have taken the incident electric
field in the lossless dielectric to have magnitude

e, '~' [see E(ls. (2.7) below], we have

dA 4m'~g ReJ E*).c cos49
(2.5)

Since the fields and currents will have the form
F(z) e"~", where q„=(ceo 'sin8/c, and we have
taken the light to be incident in the x-z plane, the
surface yield l becomes

c cos8 e '~' Re[J (z) E*(z)]dz, (2.6)

where 1' without a subscript ean be either a local
or a nonlocal quantity. In the local limit, (2.12)
is just (2.10). However, (2.12) is not restricted
to the local limit and shall be used in the nonlocal
theory which we sketch now.

B. Nonlocal theory

There have appeared several variations of a non-
local optical theory for P-polarized light incident
upon a half-space electron gas with a surface
which scatters the internal electrons specularly. "
We mill base our treatment here on the theory of
Fuchs and Kliewer2~'" as this version contains
the nonlocal effects associated with the collective
excitations (plasmons} as well as with the single-
particle excitations, the latter, as we will see, of
considerable importance in the present context.
This form of the nonloeal theory for the electron
gas involves the bulk, frequency and wave-vector
dependent, transverse and longitudinal dielectric
functions as a consequence of the symmetry as-
sociated mith the specular scattering condition. In
this model the ground-state charge density is uni-
form up to the surface and thus the effects of
charge rearrangement in the vicinity of the surface
such as those recently discussed by Feibelman"

E,'(x, z, f)=(sin8/e) ')(e'"++~e "")e"**e' '

and (2.'Ib)

P', (x, z, t) =(e'"'+re "**}e""e'"', (2.Vc)

with r =r~ in the local case and r =rN„ for the non-
local case. Also,

q, = ((uz,'~'/c) sine (2.8a}

(2.8b)

From the development in Ref. 24, it follows direct-
ly that the field ratios within the photoemitter are

are not included. In addition, for the light incident
upon the electron gas from vacuum, the electric
field component normal to the surface is continu-
ous across the surface and the current density
component normal to the surface is zero at the

surface, both results in marked contrast to the
local situation. The continuity of the normal elec-
tric field at the surface points up one of the prin-
ciple physical features of the nonlocal theory. It
is tbe presence of a surface charge (polarization
charge) layer which leads to the discontinuity of
the normal component of the electric field in the
local case. This charge layer is spread into the
metal in the nonloeal description, the charge
density is everywhere finite, and thus the fields
have no discontinuities.

We are here taking the light to be incident through a
lossless dielectric of dielectric function e, . To treat
the photoemitter nonlocally while retaining the
local description of the outside dielectric is clear-
ly an approximation; all dielectric functions are
in fact nonlocal. For a dielectric which is a good
insulator, the approximation should be reasonable.
As a consequence of the locally described dielec-
tric outside the photoemitter, the electric field
component normal to the surface will no longer be
continuous at the surface, the discontinuity arising
from the polarization charge on the dielectric.
We will comment further upon this and related
points following the presentation of the basic equa-
tions.

Our coordinate system and dielectric-photoemit-
ter arrangement are sketched in Fig. 1. Taking

~
=e, '~' and defining the reflectance amplitude

to be r, we can write the fields in the dielectric
due to the incident and reflected light as

E„'(x, z, f) = (cos8/eo)~'}(e"" —re '"~')e"+e '

(2.7a}

E,(z) 2i~ "dq, cos(q,z) q,'
&„(O) c „e* ( *ic'),(q, ) ( 'i '),(q, )-0* (2.9a)
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(2.9b)

where the field components given, depending only
on z, are the actual field components with the fac-
tor exp[i(q, x —uM)] removed. In Eqs. (2.9), q, is
given by (2.8a), q' = q„' +q'„q, is the wave vector
normal to the surface, c, (q, ~) is the longitudinal
dielectric function, e,(q, &a&) is the transverse
dielectric function, and P,(0) is the magnetic field
at the surface. The surface impedance Z» Nl is
defined by

Z~ NL =E,(0)/H), (0) (2.10)

and r„L, the nonlocal reflectance amplitude, is

Since

cos 9/E'0 Zp NL

cos8/E't + Zp
(2.11)

LOC A L D I E LECT R I C

H„(0) = 1 +rNL,

the optical properties are now determined if e, and

cg are known.
For the electron gas, an appropriate longitudinal

dielectric function to use is the generalized self-
consistent-field expression e, „given by Mermin. s'

We are interested here in rather high frequencies,
u «0.1(d~, where re~ is the plasma frequency,
~~ = (4wne'/m)' ', with n the electron density, m

the electron mass, and e the magnitude of the
electronic charge. With negligible loss of accur-
acy,"one may then use instead of the generalized
self-consistent-field transverse dielectric func-
tion, "the local limit thereof, e(&u), given by

e((d) = 11m 6~ &(q, ld) = 11m Eg{q, (0)

(2.13)

with v the mean electron lifetime which also ap-
peal s in E) ~.

We wish now to extend the model to include in a
rough way non-electron-gas effects. Suppose we
consider a system containing s electrons, which
we consider to be essentially free and d electrons
in rather flat bands. A useful approximation
might than be to treat the s electrons (better, the
"free" electrons) nonlocally and the d electrons
(better, the "nonfree" electrons) locally, the
longitudinal dielectric function then being of the
form

(2.14)

Here &, „represents the free electrons of density
n& and, perhaps, with an effective mass differing
from the actual free-electron value, while e~(v)
is the local contribution due to the nonfree elec-
trons, in general, a complex quantity. To re-
cover the electron-gas result, we must take
e,„(~)=1. Describing all nonfree electrons as
strictly local is clearly an oversimplification.
However, such a description can simulate the
principal features in some complicated systems
for which proper dielectric functions are very dif-
ficult to obtain. "'

Writing e, T in this form has significant conse-
quences for the fields, particularly near the sur-
face, as we now demonstrate. If our system is
homogeneous or has cubic symmetry, the local
dielectric function, now denoted sr(&u), is the
g-0 limit of e, ~ or

Cr((d ) = t ~ ((d) —(dp y /(d ((d + t/Ty), (2.15)

where v~ z is the plasma frequency of the free
electrons which have a mean lifetime vz. In addi-
tion,

e, r(~, &u) = lim e, r(q, e) = e,„. (2.16)

FIG. 1. Coordinate system and the dielectric-photo-
emitter arrangement. The light is incident in the local
dielectric (of dielectric constant &0} at angle 9. Within
the local dielectric, the incident electric field for p-
polarized light is indicated by E

Note that e, r(~, cu) a 1, as it is for the electron-
gas expression e, „. Using er(&o) for e,(q, &u) in
Eqs. (2.9) means that the integrals involving e,
can be done analytically. The field ratios can then
be written
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Ex (z) (» 1' »o sin 8) l(cu/c)(e -e rin2 ()))/2s
&

I 1 lng»l/2e Q)(g

H„(0) ~ex

cosq, z
+ 60 sin 0 dg'g (2.17a)

Es( ) sin 0 ei(w/()(er-~Dain e) s»i/2sing qx~

H, (0)»r &ex

2 sine»,'/' q, sin(q, z} 1 1

»i. r(q) (())
(2.17b)

(2.18)

In the local limit e, z-e~ and thus we obtain only
the first terms of Eqs. (2.17) as we must.

Consider now the nonlocal situation, and in
particular E,(z)/H, (0), as z-0. The term con-
taining the integral is then zero and we have

E, (0)/H„(0) = —sine»,"/»,„
or4ob

rent density components. These wQl be obtained

by using the procedure of Ref. 24, The Fourier
transforms J,(q, (()} and 8, (q, &()) of the current
density components J„(z) and J,(z) can be written
in a form identical to that used for the Fourier-
transformed displacement components. Thus,

(2.22)

E, (0) = —(sin&»,'/'/», „)(I+r«). (2.19)
(2.23}

Comparing with E(I. (2.7b), we see that the con-
tinuity equation across the surface for the z com-
ponent of the field is

»+,' „„(0)=»,„E,„„(0), (2.20)

(d2

»,E', l, (0)=»rE, „(0)= »„— '/, , E, „(0),
(d (d + 5/T/)

(2.21)

with E, l, (0) the electric field component just with-
in the photoemitter in the loeaj description, and

E,' „(0)the field component just without. Since
E', „{0)and E,' „i(0) are in practice not very dif-
ferent, it is apparent from (2.20) and (2.21) that
E, „(0) and E, „l(0) can be very different and this
difference will be seen to have significant effects
on the photoemission.

Since we wish to use (2.6) to investigate the sur-
face yield, we need also expressions for the cur-

where E, „l,(0) is the nonlocal field component just
within the photoemitter and E,' „l(0) the field com-
ponent just outside the photoemitter Eq. uation (2.20)
is the nonlocal replacement for the local requirement
that the displacement D be continuous in the di-
rection normal to the surface. If we for the mo-
ment take e, =1, then E, will be continuous across
the surface only if rex = l. So, there will be no

surface-charge layer for a system in vacuum only
if », (q, (())-1 as q- ~.

The local D-continuous condition analogous to
(2.20) is

where the g's are the Fourier transforms of the
electric field components and the conductivity
tensor elements are

o..= {I/q')(oiq.'+Ol q'. ),

o..= {I/q')(c&q! + o) q!),

(2.24)

(2.25)

», , =1+4wioi, /(d, (2.27)

and the various q's are defined in Eq. (2.8a) and

followlllg E(I. (2.9b). I't is tllell a lnattel' of nlalll-

pulation to put the Fourier-transformed current
densities into the forms

&u' q,'{»,—1) q', (», —1)
H„(0) 2 0 (e'/ '), ( '/ '), —0' )

{2.28)

~g + 0'x&a

H„(D) 2 cq' ( '/ '), ( '/ ')e, —t/}'

(2.29)

Taking the inverse Fourier transforms, we obtain
for the z-dependent parts of the current density
comp one nts

~xg =om =(qxq~/q )(c) oi) ~

The transverse conductivity o, and the longitudinal
conductivity 0, are defined in terms of the associa-
ted dielectric functions by
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~.(z)
H„(0) 23'c

ccs(q, *) q', (c, —() q'. tc —()
)q" (~'/c')~q (~'/c')~

q
—q' (2.30)

Z, (z) fv'q„"& q, sin(q, z) c, —1 e, —1
)(„(q) q 'c, ' q' ( */ ')c, ( '/c')c, —q' ) ' (2.31)

Let us now use the dielectric functions introduced above for the electric fields, that is, for c, me use e, ~ of
Eq. (2.14) and for' e„er{&u}of Eq. (2.15). Then,

Z„(z) i(d(~r —I)(~r —e, sin'8)' ';(~/, )(q, ~me) q&~, (dc,' ' sine, , 1 1

Hy (0) 4m'~

q,'c "& cos(q, z) 1 1

0 q &),r(q, (q)) &q)x

Jg(~) i(u(er —I}e,' 'sine;(„/, )(q q ~~,) »&a. i&a~„' 'sine, , 1 1

iq c " q s's(q c) ) (
}q &), r(q» (q)) & ex

(2.32b)

As z-0, me have

Z, (z) i(de,'/' sin8
, H, (0) 4s (2.33}

a result which does not depend upon the replace-
ment of the transverse dielectric function by its
local value. Note that Z, (0) is not zero at the
surface unless e,„=1, that is, unless the longi-
tudinal dielectric function e, (q, u&)-I as q-~. So,
even with a speeular scattering model, the vanish-
ing of the current density component normal to the
surface at the surface is not assured. It is, of
course, the local polarization effects which cause
the right-hand side of (2.33) to be nonzero.

To calculate the nonlocal surface yield YwL, we
must evaluate JqL and EN~ from E(ls. (2.17) and

(2.32) and then insert them into Eq. (2.6).

III. SURFACE YIELDS FOR ELECTRON GAS IN VACUUM

To examine the surface yields for the electron
gas in vacuum, we take e, =1 and e„=1. The
calculations have been made with the electron den-
sity of sodium so k{dan=6.07 eV and the Fermi
velocity v„=1.07 X10' cm/sec. We have chosen
the mean electron lifetime r = 10'/(q)~ and defined
0 = ~/(d p and y =((u, 7 ) '.

Before presenting the results, let us digress
briefly and discuss the energy-loss function
Im[- I/c, „(q, (d)], with Im denoting the imaginary
part, a function mhieh plays an important role in
what is to follow. The energy-loss function char-
acterizes the longitudinal excitations of the system,
that is, it is nonzero for the values of u and q for
which, in the present electron-gas ease, elemen-

tary exeitations of the electronic system ean occur.
In addition, its magnitude is a measure of the
strength of the exeitations.

Suppose that the frequency is less than the plas-
ma frequency. The energy-loss function then con-
ta, ins only contributions from the region of single-
particle excitations, which lies between the pair
of parabolas"

I(() llo q
= 8 k~q/tfl+E q /2pB (3.1)

a&a ~„,=-5'k~q/m +k'q'/2m, q ~2k~. (3.2)

Equation (3.1) yields the smallest allowable q for
a given (d (the "lo-q" edge of the single-particle
excitation region) while (3.2) yields the largest.

%hen {d ~+~ the plasmon enters the picture. Let
us consider first 1&A &Q~D, where Q„D is the fre-
quency for which Landau damping sets in, or the
frequency at which the plasmon dispersion curve
enters the single-particle-excitation region. For
the sodium parameters, OLD —-1.48. For 0 fixed,
Im(-I/e, „)then has a large peak centered at the

q of the plasmon dispersion curve and, for larger
values of q, the broad single-particle region oc-
curs. Finally, as 0 increases beyond A„D, the
plasmon occurs within the single-particle-ex-
citation region and is strongly damped. Then
lm{-1/e, „) is nonzero only within the borders of
the single-particle region but continues to show the
remains of the plasmon out to frequeneies well
above GLo. An extensive discussion of Im(-1/e, „)
appears in Ref. 42.

Local and nonlocal surface yields are shown in

Figs. 2 and 3 for two frequencies below the plasma
frequency, namely, 0 =0.30 and 0.99, and a range
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of electron escape lengths $. For 0 = 0.20 (Fig. 2),
the nonlocal yields, which coincide with the local
values for the same escape length at 8 =0, rise
significantly above their local counterparts as 8
increases. However, the shapes of the local and
nonlocal curves are much the same. In particular,
the maxima for the local and nonlocal cases lie at
essentially the same angle for a given escape
length.

It is the presence of the terms in E and J con-
taining the longitudinal dielectric function e, „that
leads to the enhancement of the nonlocal surface
yields. To assess the effect of these terms, it is
perhaps easiest to look at the absorptance for the
system, which is roughly proportional to the real
part of the surface impedance or Re[E,(0)/H, (0)].
From Eq. (2.17a) we then see that e» contributes
to the absorptance via the expression Im(-I/e, „)
/q' in the integrand. Thus, the longitudinal ef-
fects occur through an integral over the energy-
loss function multiplied by q '. Since we are now
at a frequency A&1, the only contributions to the
energy-loss function come from the single-parti-
cle excitations, and these excitations exist only
for q values much larger than the wave vectors as-
sociated with photons. In Eq. (2.17a), this means
that the q values which contribute to the integral
are all such that q= q, . Thus, the longitudinal
contribution to the absorptance involves nondirect
electronic transitions with the momentum transfer

essentially in the z direction, that is, normal to
the surface. It is the longitudinal electric field,
arising from the lack of translational invariance
normal to the surface, which supplies the mo-
mentum necessary for the nondirect transitions to
occur.

These same effects manifest themselves, of
course, in dA/dz [Eq.(2.5)] and the integral giving
the nonlocal yield [Eq. (2.6)]. However, some in-
teresting new aspects emerge. The term indA/dz
coming from J,E*„. is very close to its local coun-
terpart. This is not the case for the J,E,* term
which shows a strong damped-sinusoidal varia-
tion as a function of z,"the origin of which can
be understood as follows. A11 of the integrals
above containing the longitudinal effects were
written as integrals from q, =0-~ with the inte-
grands containing sinusoidal functions with argu-
ment q,z. Since the dielectric functions are even
functions of q, these integrals can also be written
as integrals from q, =-~~ with the sinusoidal
term then replaced by e"~'. Since the integrands
contain the energy-loss function divided by q2,
there will be a range of q values extending only a
relatively short distance up from the low-q edge
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FIG. 2. Local and nonlocal surface yields for several
electron escape lengths $ as a function of the angle of
incidence of the P-polarized light for 0 =0.30, y=10 3,
and the sodium electron density.

FIG. 3. Local and nonlocal surface yields for several
electron escape lengths $ as a function of the angle of
incidence of the p-polarized light for 0 =0.99, y =10
and the sodium electron density.
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of the single-particle-excitation region which will
contribute effectively to the excitation spectrum,
the higher-q excitations essentially eliminated by
the q

' factor. Now, as is clear from the fact that
the q, integrals extend from -~ to ~, the incoming
light, through the medium of the longitudinal field,
produces, at a given value of z, excitations with
both a q„ that is, moving both toward and away
from the surface. These excitation waves then
interfere with each other and the result is the
damped sinusoidal oscillations in dA/dz. '3 That
the sinusoid is damped is a result of the spread of
wave vectors excited, and, to a lesser extent, the
finite lifetime T. Indeed, the distance into the
system that the sinusoidal variation extends is
roughly I/hq, where b, q is the spread of wave
vectors effective in producing the excitation spec-
trum. For 0 =0.3, the oscillation extends-20 A

into the photoemitter with a wave length-2v/q„„
where q&, is the q corresponding to the low-q
edge of the single-particle region. For larger z,
dA/dz in the nonlocal case is essentially that of
the local result. Since the longitudinal effects are
concentrated in the region-20 A from the surface,
they will be most important for small escape
lengths, and this is clearly indicated in Fig. 2.

Two points we would like to emphasize here,
Although the longitudinal fields are restricted to
the region near the surface, the electronic ex-
citations from which these fields are comprised
are the bulk electronic excitations, i.e. , those
which appear in im(- I/z, „). This is the reason
that we referred in the introduction to the hybrid
character of the surface effect as here described.
The second point is that, although the excitations
produced at a given value of z move both toward
and away from the surface, the net electric field
at large z moves away from the surface as it must.

As the frequency increases to Q-0. 8, the basic
character of the curves of Fig. 2 is preserved;
the angle at which the maximum yield occurs de-
creases slowly with increasing frequency. A
further increase to 0 =0.99, however, brings a
striking change. The nonlocal yields shown in Fig.
3 are now below their local counterparts. This
happens because we are now very near the plasma
frequency, and hence, the local dielectric function
z(u)-0. The consequences of the small z can be
assessed from several points of view. In the local
theory, the displacement D normal to the surface
must be continuous. Since we now have vacuum
outside, this means that E,„,(z = 0) = zE„(z = 0). .

(In this argument all fields are taken to be z com-
ponents. The field components parallel to the sur-
face are, of course, continuous across the sur-
face. } In the nonlocal theory, on the other hand,
the normal component of the field is continuous so
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FIG. 4. Local and nonlocal surface yields for several
electron escape lengths $ as a function of the angle of
incidence of the p-polarized light for 0 =1.01, y =10 3,
and the sodium electron density.

E,„,(z =0)=E„& (z=0). If we take E„~(z =0) as the
same locally or nonlocally (not abad approximation)
this meansthatEL „(z=0)=E„„„(z=0)/eso

~

EL „(z= 0)~ »
~
E„L „(z= 0)~ . Now this is the situa-

tion right at the surface. To understand more com-
pletely what is happening, we must know over what

range of z the nonlocal field is much smaller than the
local. For largez, of course, thetwo must coincide.

Above, we discussed the fact that the resistive
or absorptive aspect of the longitudinal effects
was associated with the Im(-I/e, „). There will
be for 0 &1 also an essentially reactive part to
the longitudinal field associated with Re(1/z, „).
This reactive part contributes to the field E, a
longitudinal term which is approximately pro-
portional to e"&', where

(d ((d + l/'r) (d p-
IR 3 ~2 ~R/~2

(The appropriate square root is the one with
Re qs&0 and Imqz&0. ) This result follows di-
rectly from Eq. (2.17b). Let us write the low-q
expansion of ~, ~ and then assert that the contri-
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r. &/2Ez(z) sln&ep ((+ac)(z-zp sin ~e) ~ 2z

H,(0) e((e)

l. /2
0 s1n~ ],,z

s(tp)
(3.5)

where e is the local dielectric constant of Eq.
(2.13) and

q (q2 q2) 1/ 2 (3.6)

In the present case, q„can in general be ignored
in (3.6) so q, = qn.

The first term in (3.5) is the local transverse
contribution to the field and the second term is
the longitudinal part. Note that these fields are
oppositely directed. From Eq. (3.5), the effect
of the longitudinal contribution is clear. At z = 0
it is large, so large in fact that within the present
approximation the total field ratio is zero at the
surface. '4 Because the imaginary part of q, is so
much larger than the absorption coefficient which
characterizes the decay of the transverse field,
the longitudinal term dies away much more rapidly
than the transverse term leaving, for large z,
only the transverse term. The region where the
longitudinal term occurs is, of course, the region
of nonzero charge density.

Clearly, q~ has both real and imaginary parts
and thus is not associated with a purely reactive
effect. However, it is the presence of ~ which
introduces the resistive character; the large-q
resistive effects of the single-particle excitations
are essentially z independent. For the sodium
parameters and y=(pp~r) '=10 ', the real and

imaginary parts of q„are given in Table I along
with the inverse of the imaginary part of q„. The
real part of q~ is very small and not of significant
interest. However, the inverse of the imaginary
part of q„ is a measure of the distance over which
the total field builds up as a consequence of the
decay of the longitudinal field. This distance is
very small until we get near the plasma frequency.
For 0 = 0.99, it is about 6 A and this is indeed
consistent with the results in Fig. 3.

An apparent dichotomy now arises. For lower
frequencies we talked only of the resistive part
of the longitudinal effects, and for Q=0.99 we

bution to the integral from e, ~ occurs at that
value of q, associated with the pole ~, ~=0. Making
the argument for the electron gas (e, r =s, „), we

have, for qv~«~,
(d 3 22

(, slsmz((q
( y~) +5 s ' ( ' )

For e, s l~~z =0, q=+qa, with q„given by Eq.
(3.3). With e.,=1, the field ratio [E,(z)/H, (0)] then
is

TABLE I Frequency dependence of qz =qg +i gg
' and

@z') . From the derivation it is apparent that qz is a
meaningful quantity only when [qsl ez/(c «1. The last
column shows that this occurs only for 0 very near one.

q~ =q~ +iq~' (cm ') 1/q~" (A) lq~lv~/'

0.8
0.9
0.95
0.97
0.99
0.999

5.93 x 10 + i 5.34 x 10
1.03 x 10'+ i 4.36 x 10'
1.61x10~+i 3.30x10'
2.15 x 10 + i 2.62 x 10'
3.86 x 105+ i 1.55 x 10'
1.20 x 10 + i 5.11x 10

1.87
2.29
3.03
3.81
6.44

19.6

0.77
0.56
0.40
0.31
0.18
0.06

have referred only to the essentially reactive
parts. The longitudinal field associated with
e"&' represents the essentially reactive, small-

q part of the total longitudinal field. It does not

include the high-q resistive parts of the longitudi-
nal field which figure so prominently at lower
frequencies and extend in general much further
into the system. Indeed, approximating the lon-
gitudinal effects as we did in deriving Eq. (3.5) is
totally inadequate if the absorptive effects associ-
ated with the longitudinal field are of interest as
they are in photoemission. 4' It is only when the
distance associated with the reactive field becomes
reasonably big that its effects are important since
a large distance portends a small total field in the
surface region and thus a strong reduction in the
photoyield for small to moderate escape lengths.
This is an important effect which will manifest
itself whenever the local limit of the longitudinal
dielectric function is near zero but negative. "

Before leaving the region Q&1, we would like
to make two points. The first is that the theory
as presented here contains no surface plasmon
effects which can be of considerable importance
if the surface is even slightly rough. " The second
is to emphasize that we are dealing with a specular
scattering model which perhaps is the surface
model providing the weakest nonlocal effects. For
diffuse scattering, for example, the nonlocal
effects are far more pronounced in the single-
particle-excitation region. 4'

We turn now to the frequency region Q&1. In

Fig. 4 is shown the angular dependence of the
surface yield for Q = 1.01. The nonlocal surface
yields are again well above the local and all curves
have much the same shape. The fact that the local
and nonlocal curves for a given value of ( have
similar shapes, here and for Q(1, occurs since
both J and E include both longitudinal and trans-
verse terms and thus in an expression like J+,*
there will be a transverse term, two mixed terms,
and a longitudinal term. The purely longitudinal
term is then added to a group of terms all of
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which have, at least in part, transverse character.
It is the transverse character, or, in other words,
an optical effect, which is principally responsible
for the shape. For (d & cd~, this optical effect can
be described as follows. " For 6=0', the absorp-
tance is high but the absorption coefficient is low
so the yields are low. As 6 increases from 0, the
system is still highly absorbing, but the fields
are refracted away from the normal since the
index of refraction is between 0 and 1. Thus, the
energy is refracted in such a way that it remains
closer to the surface and the yields correspond-
ingly increase. This increase persists until the
critical angle 6„6,= 8.1' for 0=1.01, where the
refracted wave is moving parallel to the surface
and the yields reach their maximum. As 6 in-
creases beyond 6„ the system becomes strongly
reflecting, the absorption coefficient increases
but slowly so the product of the total absorptance
and the absorption coefficient decreases and the
yield decreases. These arguments are applicable
for all Q&1, and the same effects appear clearly
in Fig. 5 for 0 = 1.10, where 6, = 24.6, and also
for 0 = 1.414,"where 6, = 45'.

The enormous enhancement of the nonlocal sur-
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FIG. 5. Local and nonlocal surface yields for several
electron escape lengths $ as a function of the angle of
incidence of the p-polarized light for 0 =1.10, y =10 3,
and the sodium electron density.

face yields over the local values when 0 &1 arises
from plasmons excited by the longitudinal field.
Since the plasmon is so sharply defined for the
small damping used here, the energy-loss func-
tion is dominated by a sharp peak at q= q~(&u), with

q~(u&) the wave vector of the plasmon at frelluency
Since the peak is so sharp, the spread of wave

vectors is small, and the interference effects
which destroyed the longitudinal effects for 0& 1
are essentially gone. Thus, the oscillation in
dA/dz persists far into the system with a wave-
length that of the plasmon. "

While the effects just discussed for Q&1 do in-
deed represent the optical situation, the same
cannot be said for the photoemission. The plas-
mon is a collective excitation and can manifest
itself in the photoemission only through decay into
single-particle excitations. For the electron gas
with 7=~ and Q&Q„D, with OLD the frequency at
which Landau damping sets in (Q„D = 1.48 for the
present parameters), such decay cannot occur.
For the large value of v in the present calculation,
the plasmon damping, simulating weak interband
effects, is very small. Thus, the nonlocal yields
of Figs. 4 and 5 are in general too high. This,
however, points up an interesting possibility. In
real systems, plasmons can decay via interband
transitions. So, for a given material, there may
be crystallographic orientations where the plas-
mons decay easily giving rise to individual excited
electrons. In such circumstances, the sharp in-
crease in the yields as 0 increases through 1.0
shown in Figs. 4 and 5 should indeed occur in the
photoemission.

When 0 &OLD, the above reservation concerning
the role of the plasmons no longer exists. The
plasmon is now heavily damped, what is left of it
occurs in the single-particle-excitation region,
and thus, it should contribute very effectively to
the photoyield. Surface yields have been calculated
for 0 = 2.00,"and 2.924; the latter are shown in
Fig. 6. The interesting thing here is that these
curves are so much like those for 0 &Q„D. While
we expected the diffraction effects to persist es-
sentially unchanged (the critical angle in Fig. 8 is
VO') it is perhaps somewhat surprising that the
enhancement of the nonlocal yield over the local,
now due to single-particle excitations, is so
large. The physical situation here is much like
that described for 0 =0.3 above. Because the
longitudinal effects appear via lm(-1/e, „)/q',
the effective part of the single-particle-excitation
region extends upward somewhat from the low-q
edge. As a result of this spread, there are inter-
ference effects and dA/ds is a damped sinusoid"
extending about 25 A into the photoemitter with a
wavelength roughly that corresponding to the low-q
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edge of the single-particle region. Again, we
emphasize that all these longitudinal effects are
associated with nondirect electronic transitions.

To provide a somewhat different perspective on
these results, we have shown in Figs. 7-9 the
frequency dependence of the surface yield for a
fixed angle. For &=0'(Fig. 7) the curves, purely
local, reflect the product of the absorption coef-
ficient and the total absorptance, reasonably large
and constant for Q &1 and decreasing as Q in-
creases from 1. When 6)=45', Fig. 8 shows that
for Q & 1, the nonlocal single-particle effects are
strongest for Q-0.6. Below this frequency they
drop off because Im(-1/e, „) is decreasing and
above because of the q

' multiplying the energy-
loss function and also the effects of decreasing

I el, associated as it is with a reduced electric
field near the surface. The sharp drop due to the
small I el as 0 -1 is very apparent as are the
plasmon effects for Q&1. As noted above, the
region 1.0&Q&1.48 must be viewed with some
care. Increasing 6 to VO' results in the yields
shown in Fig. 9. Again, the frequency range of
the essentially undamped plasmon, 1.0&Q & 1.48,
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FIG. 7. Local surface yields for several electron
escape lengths $ as a function of the frequency for nor-
mally incident light and the electron density of sodium.
Since 0 =0, local and nonlocal surface yields for a given
value of ( are the same.

must be kept in mind.
One aspect of these results bears further com-

ment. In situations where the plasmon is rela-
tively weakly damped for 1&Q&QL~ and contribut-
ing but little to the photoyield, there should occur
a strong increase in the photoyield as Q passes
through Q„„. For situations where the plasmon is
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FIG. 6. Local and nonlocal surface yields for several
electronescape lengths $ as a function of the angle of
incidence of the P-polarized light for 0 =2.924, y= 10
and the sodium electron density.

FIG. 8. Nonlocal and local surface yields for several
electron escape lengths $ as a function of the frequency
of the incident p-polarized light for 0 =45', y =10, and
the electron density of sodium.
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FIG. 9. Nonlocal and local surface yields for several
electron escape lengths $ as a function of the frequency
of the incident p-polarized light for 8 =70', y =10, and
the electron density of sodium.

FIG. 10. The integrated absorptance A(z) = jo (dA/dz)dz
as a function of z, for y =10 ~, the electron density of
sodium, and several combinations of incident angle and
frequency. The lower three curves are the local results
and the upper three curves the nonlocal results.

always rather strongly damped, it will contribute
significantly to the photoyield as soon as 0 & 1,
and nothing dramatic should occur for Q -0„„.

We conclude this discussion of sodium with low
damping by showing in Fig. 10 the integrated ab-

sorptance for several frequencies and angles. "
The total absorptance for the system is the value
along the ordinate as z -~. The effect of the os-
cillation in dA/dz is very clear, but perhaps as
striking is the significant extent to which, for

TABLE II. Yield ratios for 0 & 1 and several. values of p and electron density. (Aluminum is here considered to be a
free-el. ectron gas with v& = 2.03X 10 cm/sec and hc

&
= 15.8 eV. ) Y& ~ (8) and Y& N&(8) are the local and nonlocal surface

yields for P -polarized light incident at angle 8. Y(0) is the surface yield for normally incident light for which the local
and nonlocal yields are the same. Y~ (8) is the surface yield for s-polarized light incident at angle 8 and is given by
Eq. (2.4) withA& L replaced byA~ L, the total absorptance for s light, given by Eq. (4.4) below.

Q

8=60' g (A)

Na (q =10-') Na (/=10 2) Al (y =4x10-~)

Yp~NI. (8) Yp NL (8) YP NL(8 Yp, NL (8) Yp Ng (8) Yp Nz (8) Yp, NI. (8) Y~ NL(8) Yp gL(8)
Y(0) Y (0) Y „(8) Y(0) Y (8) Y „(8) Y(0) Y (8) Y (8 )

0.50 2.12
5.30

10.6
21.2

18.6
10.8

6.54
4.19
1.62

37.2
21.6
13.1
8.48
3.62

12.4
7.21
4.39
2.83
1.21

3.14
2.39
1.99
1.76
1.36

6.12
4.68
3.89
3.46
2.95

2.08
1.59
1.32
1.18
1.02

1.73
1.60

1.34

3.38
3.14

2.91

1.18
1.09

1.01

0.70 2.12 12.2
5.30 6.85

10.6 4.23
21.2 2.80

1.10

24.4
13.8
8.57
5.74
2.88

9.68
5.48
3.41
2.28
1.15

2.19
1.73
1.50
1.36
0.975

4.35
3.45
3.01
2.77
2.54

1.74
1.38
1.21
1.11
1.02

1.33
1.28

0.971

2.59
2.51

2.46

1.06
1.03

1.01

0.90

0.99

2.12
5.30

10.6
21.2

2.12
5.30

10.6
21.2

2.52
1.75
1.41
1.21
0.539

0.615
0.684
0.749
0.804
0.166

5.08
3.56
2.89
2.55
2.20

1.23
1.39
1.56
1.73
2.03

2.36
1.66
1.35
1.19
1.03

0.613
0.691
0.774
0.859
1.01

0.971
0.988
1.00
1.00
0.533

0.635
0.721
0.796
0.845
0.179

1.92
1.97
2.03
2.08
2.14

1.20
1.39
1.56
1.73
2.02

0.901
0.925
0.952
0.974
1.01

0.601
0.692
0.781
0.862
1.01

0.898
0.967

0.552

0.804
0.916

0.248

1.70
1.87

2.11

1.35
1.58

1.99

0.814
0.893

1.01

0.684
0.804

1.01



u& +~, the absorbed energy is concentrated near
the surface nonlocally in contrast to the local re-
sults which are described by the ordinary absorp-
tion coefficient.

To illustrate the effect of increased damping we
have given some surface yield xatios in Table II
for Q(1 and in Table III for Q) 1. The Na (@=10 ')
results are those shown in the figures. The 1',
are given by Eq. (2.10) with A~ „replaced by the
total absorptance for s-polarized incident light.
While the relative importance of the nonlocal
effects clearly diminishes as the damping in-
creases, they can still be important for rather
large damping, particularly for 0 &1. It should
be kept in mind, however, that the single-particle
effects will be considerably larger if the surface
scattering of the internal electrons is other than
specular. " It should also be noted that escape
characteristics, not included here, can influence
these conclusions. That is, if the nonlocally ex-
cited electrons are directed so as to be more
likely to escape through the surface, their impor-
tance can exceed that indicated in the figures and
tables 30,sl

IV. NONLOCAL EFFECTS IN DETERMINATIONS

OF ESCAPE LENGTHS

A scheme which has been proposed for the de-
termination of electron escape lengths involves
measuxements of the total photoyi, eld under two
different illumination conditions, """"e.g. ,
measuring at a given frequency two among the

1' =Ip/I, ,

where I~ (I,) is the intensity of p (s) light in the
incident beam. They define the quantity Y(9) by

I (e) = [I', ,(e)+I I', ,(e))i(1+I') . (4 2)

total yield for p light incident at angle &, Y»(6),
the total yield for s light incident at angle 6,
Y'r, (6), and the total yield for normally incident
light, Fr(0}. By writing an expression for the
ratio of two of these yields and assuming (i) the
validity of the three-step model, (ii) the validity
of the isotropic-volume-excitation model, and

(iii} the nondependence of the escape characteris-
tics on illumination conditions, it is possible to
obtain an equation with the electron escape length
E as the only unknown quantity and thus obtainable
from the measured yield ratio. These schemes
were generated from a strictly local point of view
and a knowledge of the optical constants was pre-
supposed.

Now, the assumptions upon which these schemes
are based are certainly not valid for low or mod-
erate energies, but appear more reasonable when

A~»E~, the Fermi energy. It is our intention
here to examine one such scheme, that of Arakawa
e& g&. ,

"*"and show that the conclusions are sig-
nificantly affected by the inclusion of nonlocal con-
tributions to the yield when the incident light in-
cludes a p-polarized component.

Arakawa et gl. use a thick photoemitter in vac-
uum and a partially plane-polarized incident beam
with

TAQQE III. +ield ratios for 0 & I and several values of y and electron density. The various quantities are described
in the caption of Table II. A digit in parenthesis is the power of 10 by which the preceding number should be multiplied.

Na (y=10-') Na {y=10-') Al. g =4x10-~)
Fp, w~(~) Fp, N~(~) Fj, w~(~) Fp, m, (0) F, Ng (&) Fp, wz (0) Fp, wg(6) Fp, NL(0) Fp, Ng(0)

F(0) F, (8) F~ „(0) F(0) F, (0) F~ „(6) F(0) F, (0) P~, (0)

1,155 2.12
30' 5.30

10.6

989 402
592 241
335 132

0.415

118
70.5
38.7
1.03

74.8
47.9
28.7
0.745

32.9
21.1
12 ~ 7

2,79

11.9
7.66
4.66
1.01

12.9
8.93

0.972

6.48
4.50

2.09

3.11
2.16

1.01

1.414
450

2.00
60'

2.12
5.30

10.6

2.12
5.30

10.6

1590 39S
785 196
420
1.27(-1)

2580 382
1150
593 88.0
8 65(-2) 1.40

205 138
101 71.2

54.1 39.7
1.07 0.389

290 241
129 112
66.7 60.6
1.06 0.239

37.7
19.5
10.9
1.82

3S.3
17.8
9.65
I 32

21.0
10.8
6.07
1.02

29.6
13.8
7.47
1.02

26.2
14.8

44.8
23.4

0.423

8.08
4.59

7.90
4 I4

4.98
2.83

6.30
3.29

1.01

2.924
70'

2.12
5.30

10.6

4330
1860

942
7..29(-2)

406
174
88.4
1.19

360 416
154 185
78.4 98.1
1.05 0.177

41.2
18.3
9.73
1.14

36.8
16.3
8.69
1.02

73.2
36.5

7.88
3.95

1.13

7.10
3.55

1.02
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G(8) = Y(8)/I'(0), (4.5)

C cancels out. In the local picture we have left
a function of the optical constants and $. Knowing
the optical constants means that we can in principle
obtain g from measurements of G(8). In the non-
local picture, the determination of g requires
knowing the optical constants and having a model
for the longitudinal dielectric function. In prac-
tice, Arakawa et al. , using only the local picture,
employed a curve-fitting procedure to obtain We

=s+ ik as well as ] from a curve of G(8) as a func-
tion of g. We will use a simpler procedure to
show the effects of nonlocality. This procedure
is to use the n and k values determined by Arakawa
et aL. and then focus our attention upon the magni-
tude and angular position of the maximum in G(8).

Let us consider first amorphous carbon. The
values of n, k, and P provided to me by Arakawa"
for three energies are given in Table IV. All the
information needed to make the local calculation is

TABLE IV. Optical. constants, n and k, for amorphous
carbon and the polarization factor P in the experiments
of Arakawa et aI, . for three incident energies. The val-,

ues of ~&, y, vz, and r, given are the free-electron
parameters resul, ting from the assumption that amor-
phous carbon can be considered a damped free-el, ectron
gas.

ken (eg)
52.92 38.36

P
(eV)

'y

v~ (cm/sec)
y8

0.925
0.020
0.944

25.3
0.649
2.77 ~ 10'
1.51

0.892
0.040
0.920

25.4
0.718
2.78 x 10S

1.51

0.831
0.085
0.870

23.7
0.722
2.65 x 108
1.58

The purely local quantity Yr,(8) is given by

I, .(8) = LA, „u(8)g/(I+ c.g) JC, (4.2)

where (1(8) ls the absorption coefficient,

1 —cos8/(e —sin'8)"'
1+ cos8/(e —sin'8)"'

(4 4)

c is the local dielectric constant of the photoemit-
ter, and C is the escape probability for excited
electrons which reach the surface, here taken to
be a function only of u. Arakawa et al. take for
yr ~(8) Eg. (2.4) multiplied by (2C), but we will
now allow I'r ~(8) to be either the local expression
used by Arakawa et aE. or its nonlocal generaliza-
tion, Eq. (2.6) (with 3 and E calculated nonlocally)
multiplied by (2C). Defining then

now availabl. In order to generate a nonlocal
longitudinal dielectric function e,(q, ~), I assumed
that e, (0, ur) was given by the damped free-electron
form

e, (0, u)) = 1 —(uf/(u((u+ iu&~ y),
with y= (~~T) ', took the electron mass to be the
free-electron value, used the n and k values of
Table IV, and obtained the results also shown in
Table IV. The agreement in the free-electron
parameters at the higher two energies is striking,
suggesting that such a description in this energy
range is indeed appropriate. However, the param-
eters change considerably in going to the lowest
energy in Table IV, presumably the result of
band-structure effects. Let us consider these
energies in turn.

bra=64. 30 e V. Arakawa" found the maximum in
G(8) to be 7.02 at an angle of 72'. Doing the calcu-
lation locally using the parameters of Table IV,
G(8) had a maximum value of 5.68 as (- 0 at an
angle of 71.3'. lt is thus impossible to find a 6 as
large as the experimental value. Using the param-
eters of Table IV in the dielectric constant e, „
and then doing the P part of the calculation non-
locally, G(8) = 7.02 occurred for (= 0.9 A and 8
= V1.2 . To put much faith in the actual result
when $ is so small is perhaps unwise. However,
the fact that an experimental value which cannot
be achieved in the local theory can with the non-
local theory points to a significant improvement
in the physical content of the nonlocal theory as
compared with the local.

bed =52.9Z e V. The experimental maximum in
G(8) is 4.25 at an angle of 69'." In the local calcu-
lation, this maximum value of G(8) occurred for
)=1.9 A at an angle of 67.9'while the nonlocal re-
sult was $ =4.9 A at an angle of 67.6 . This non-
local result appears to us considerably more rea-
sonable. "'"

S~ =38.36 e V. The experimental maximum in
G(8) is 2.63 at an angle of 62'. Proceeding as
above we now find that, locally or nonlocally, the
value of E has risen to about 15 A at an angle of
about 61.5'. Such a sharp rise in this energy range
is, in my opinion, unreasonable and may portend
the breakdown of the assumptions made in this
simple model. (Another possibility will be dis-
cussed just below in connection with some com-
ments about silicon. ) Since we are now at an en-
ergy of about 1.6 S(d~, with x~ the plasma frequen-
cy, band-structure effects should be reflected in
the electron excitation spectrum and the escape
characteristics, as they apparently are in the pa-
rameters of Table IV.

These results suggest that the simple model is
perhaps valid for her a 2(Sup~). 1st us, however,
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TABLE V. Optical constants, & and +, for silicon
and the polarization factor P in the experiments of
Arakawa et al. for two incident energies. Also given
are the calcul. ated dielectric function parameters e,„
and y.

59.32
k~ (eV)

46.60

k

I
x

—1

y

0.974
0.003
0.99
0.0266
0.268

0.959
0.005
0.94
0.0459
0.213

now look at some results for polycrystalline sili-
con where the simple model appears to have no
validity.

In Table V are the values of n, k, and P ob-
tained by Arakawa" for two energies in the range
where we might expect the simple model to be
valid. In this case, writing the local dielectric
constant in the free-electron form was not suc-
cessful so we chose the form (2.15a) and took
Roy f ——I6.6 eV, the value re suiting from the as-
sumption that the plasma oscillation involves four
free electrons per atom. The resulting parame-
ters are also shown in Table V. In calculating
G(8) nonlocally, the longitudinal dielectric func-
tion was then taken to be Eq. (2.14). The maxi-
mum values of G(8) and the associated angles for
several escape lengths are given in Table VI. The
experimental results of Arakawa" were

h(d~= 59.32 eV, G =8.1 at 8 = VV,

k~p=46. 60 eV, G =6.4 at 8 =73'.

To obtain the experimental values of G .x from the
theory requires what appear to be excessively
large escape lengths, "a possible explanation be-
ing, of course, that the simple model is totally
deficient. There is, however, another possibility.
When the G values are as large as they are here,
the values of Y(0) are small and thus small abso-
lute errors in Y(0) would have significant effects
in G(8). It is now well established that at low en-

ergies, yields from s light or normally incident
light are extremely sensitive to the quality of the
surface, "'"and, in general, increase consider-
ably more rapidly than the P yields as the quality
of the surface deteriorates. " If such an effect oc-
curs also at higher energies, it might account for
the seemingly too low experimental values of G(8)
obtained for silicon.

H;„, =-,'(A p+p ~ A) (5 2)

in the matrix elements of the standard photoemis-
sion theories then means that it is impossible, be-
cause of the z dependence of H;„„ to generate an
expression like (1.1); conclusions drawn from a
theory which describes the surface effect via ex-
pressions like (1.1) must be suspect.

The theory presented here includes the effects of
the spatial dependence of A. Have we then provid-
ed a comprehensive theory of the surface photo-
effect'P The answer is no, and in seeking im-

V. DISCUSSION OF PRESENT THEORY AND

ALTERNATIVES

In the Introduction I commented that it is the ef-
fects associated with the longitudinal field that
comprise the surface photoeffect. It is, perhaps,
worthwhile to examine this statement more close-
ly and, in the process, relate the present theory
to the more conventional theory of photoemission.

The primary physical feature characterizing the
surface photoeffect is, in my opinion, the exis-
tence of a vector potential which is a strong func-
tion of the distance from the surface in the region
of the surface. The longitudinal field constitutes
just such a contribution to the vector potential.
Indeed, since the scalar potential can be taken to
be zero, the vector potential A in the present non-
local theory is given by

A = cE/iru, (5.1)

with E the nonlocal electric field, and, as is clear
from the above, A is a strong function of the dis-
tance from the surface when the incident light is
P polarized. Using the interaction

TABLE VI. Calculated values of Gm~, the maximum value of t" (&), and the angle 0'max for
which & max occurs for sil. icon at two incident energies. The dielectric function parameters
used in the calculations are given in Table V.

+~ = 59.32 eV
Local Nonlocal

Gmax 0 max G max ~ max

@~ =46.60 eV
Local Nonlocal

~max G max

1
3
5

10

12.5
12.4
12.2
11.9

78.2
78.2
78.2
78.1

24.0
16.6
14.9

78.2
78.2
78.2

9.85
9.73
9.62
9.36

75.3
75.3
75.2
75.1

17.5
12.1
10.9

75.1
75.2
75.2
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provements we come up against an interesting sit-
uation in which, at the moment, a choice must be
made concerning which physical characteristics
are to be included in the theory. The principal
deficiency of the present approach is that the
ground-state charge density is taken to be constant
at the bulk value right to the surface. In the real
world, there will be a region over which the ground-
state charge density goes from its bulk value to
zero, perhaps including Friedel-like oscillations,
and this structure in the charge density will affect
the longitudinal field and, thus, the surface photo-
effect. The importance of such effects in using the
electron gas to stimulate the surface photoeffect
for real systems is simply not known. Feibel-
man" has recently developed a self-consistent,
surface photoeffect theory, including nonlocality,
for the electron gas without damping. His proce-
dure entails the assumption of a form for the sur-
face potential, the calculation of wave functions
consistent with this potential, the use of these
wave functions in obtaining the nonlocal vector po-
tential, and finally the calculation of surface-effect
matrix elements using the interaction (5.2}. Inthis
way the effects associated with the charge rear-
rangement near the surface are included.

While Feibelman can treat rather well the un-
damped electron gas, the theory is of limited use-
fulness because damping effects will in general be
of considerable importance for real systems.
Writing, as we have, the theory in terms of the
nonlocal dielectric functions means that damping
effects can be incorporated with ease and various
dielectric functions representing a variety of real
physical effects (e.g. , band structure) can be
utilized.

For reasonably high energies, e of the order of
2 or 3 times the plasma frequency, both approach-
e& suffer from a deficiency which may be serious.
'1 he vector potential for such freque~ cies varies
considerably over several angstroms. In such cir-

cumstances, it is quite likely that the retention
only of terms which are roughly macroscopic in
character (corresponding to the diagonal elements
of a dielectric tensor} is insufficient; local-field
effects should be included. Neither the theory pre-
sented here nor the theory of Feibelman includes
such effects.

An additional advantage of the approach present-
ed here is the fact that the physics is rather more
transparent, involving, as it does, familiar con-
cepts such as the energy-loss function and the as-
sociated bulk excitations. This will be even more
apparent when the energy- and angle-resolved
photoyields are presented from the point of view
presented here. " Furthermore, the present pro-
cedure can be used to discuss the surface photo-
effect when the surface scattering of the internal
electrons is other than specular. What is needed
is a theory which includes the surface potential in
a reasonable way (like that of Feibelman} but which
also includes the flexibility of the present ap-
proach.

Finally, we would like to make several remarks
about nondirect electronic transitions, the kind of
transitions involved in the surface photoeffect. Al-
though nondirect transitions occur, all nondirect
transitions are not equally probable. The transi-
tion probabilities are weighted by the factor q ',
where q is the magnitude of the momentum trans-
fer. This means that small-q transitions are very
significantly favored over large-q transitions. In
addition, the relevant joint density of states cannot
be obtained simply from energy considerations but
requires a complicated analysis involving both en-
ergy and momentum.
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