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A hydrodynamic model is used to study the effect of the electron-density profile at the surface on surface-
plasmon modes. The model consists of an extension of Bloch's original hydrodynamic model to study an

inhomogeneous electron gas capable of self-oscillations about a ground state given by the Hohenberg-Kohn-
Sham theory of the inhomogeneous electron system. We write down an expression for the conductivity tensor
which formally contains all relevant information within the context of our hydrodynamic formulation. The
qualitative features of the model are illustrated by detailed numerical calculations for smooth electron-density

profiles. The dispersion relation of both regular surface-plasmon and higher-multipole excitations (which occur
for sufficiently diA'use profiles) are studied for a wide range of wave vectors from the optical (co —cq) to the
nonretarded or electrostatic limit.

I. INTRODUCTION

In recent years there has been considerable
interest in the subject of collective modes of ex-
citation at the surface of metals and highly doped
semiconductors. Despite the substantial amount
of work done on the subject there has been as yet
no satisfactory treatment of the nature of these
modes in the optical region (q- &u/c). Surface
oscillations in this, the "retarded" limit, have
been studied almost exclusively using a local ap-
proximation for the bulk dielectric function. ' Al-
though the effects of dispersion (i.e., q dependence)
in this bulk dielectric function have been studied
in the case of specular reflection, ' the issue still
remains that these formulations have "prejudiced"
the problem from the start by the introduction of
a bulk response function. Furthermore, the sur-
face has almost always been idealized as a sharp,
mathematical boundary.

This paper is a generalization of a previous one'
(hereafter referred to as I) in which the surface
plasma oscillations in metals were studied in the
longitudinal (c =~) approximation, using a gener-
alized hydrodynamic formulation. We now allow
for the effect of retardation, i.e., the fact that the
electromagnetic fields due to the fluctuation of the
sources in the system travel with a finite velocity
c. Our formulation is devised in such a way that a
realistic, i.e., smoothly varying, electronic den-
sity at the surface is allowed for. We also treat
surface and bulk excitations on an equal footing.
In this sense our procedure is in the same spirit
as that of Harris and Griffin, ' who used the ran-
dom-phase approximation (RPA). Although these
authors cast their theory in a fairly general way,
they obtained explicit results only after expanding
the conductivity tensor in powers of u ' and keep-
ing only the leading term (nonlocal effects being

thus lost) and only for a sharp metal-vacuum inter-
face. One of the aims of this paper is to investi-
gate how useful information about the electron
surface structure can be obtained from the study
of the surface collective behavior, and as such, it
belongs in the line of work initiated by Feibelman'
in the electrostatic limit.

In I, special emphasis was placed on how the
generality of our approach allowed quite naturally
for the presence of additional branches in the dis-
persion relation' and a physically appealing con-
dition for their existence was provided for a sim-
ple dynamical model. We now reinvestigate the
same question in the retarded limit. We believe
this is the first time that this has been done.

Surface plasmons in metals and semiconductors
have been detected by electron-energy-loss mea-
surements, ' by low-energy-electron diff raction'
(LEED), and by optical means. ' (For a recent re-
view on surface plasmons in solids see Ref. 10,
where further references can be found. } However,
the additional branches or "higher multipoles" have
not been detected to date. In I we suggested a way
of measuring these modes, namely, by performing
LEED experiments on layers of alkalis chemi-
sorbed on the surface of a high free-electron
density metal. We believe that our present inves-
tigation provides the qualitative picture for pro-
posing that those modes could be observed by at-
tenuated-total-reflection (ATR} measurements'
done on the same systems or on appropriate semi-
conductor surfaces.

This paper is divided up as follows: in Sec. II
we present the general formalism, with emphasis
on the physics behind it. We write down an ex-
pression for the conductivity tensor which in prin-
ciple contains all relevant static (i.e., self-con-
sistent electron contour in the ground state) and

dynamic information within the context of a hydro-
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dynamic formulation. Given the difficulty of apply-
ing conventional many-body techniques to the highly
inhomogeneous systems under consideration, the
hydrodynamic approach offers a workable, albeit
approximate alternative. This is the main motiva-
tion for the several recent papers using a hydro-
dynamic formulation of the inhomogeneous elec-
tron gas. '" " Some important points are ex-
amined in a general context (that is, without hav-

ing to specify a particular form for the density
functional G[n] which appea, rs in Euler's equation),
like the aPProxirnate nature of some conclusions
reached previously in the electrostatic (c =~) lim-
it, this being defined here as the region in q —~
space such that ~c '«q. We point out that in gen-
eral, hydrodynamic effects do enter into the equa-
tion for the transverse part of the field associated
with the charge fluctuation, a qualitative feature
which does not appear to be recognized in the lit-
erature. Thus, another objective pursued in this
paper is to point out the need for further theoreti-
cal study of the problem of the dynamic response
of the surface to electromagnetic fields. Section
II can be considered then as a first step in that
direction.

In Sec. III we apply the formalism of Sec. II to
find the surface electronic collective spectrum
for surfaces with smoothly varying density pro-
files. A simple ansatz for the pressure term in
Euler's equation is made. In this section we spec-
ulate on the experimental possibilities opened by
our qualitative results. For the benefit of those
interested mainly in this aspect of the problem
we have written Sec. III in such a way that it can
be read almost independently of Sec. II.

In Sec. IV we present a critical discussion of
the theory we developed in the previous sections.
We indicate the desirability to improve our ap-
proxirnations and the physico-mathematical rea-
sons why we cannot, at the present time, go be-
yond the simplifying assumptions of Sec. III. On
the other hand, we emphasize that our theory is
formulated in such a way that it leaves room for
improvement and provides a general framework
for studying the response of diffuse surfaces to
electromagnetic fields. We also express the need
for experimental evidence to guide us in a pro-
gram of achieving results of quantitative signifi-
cance, and to ultimately justify or disqualify the
model we present in this paper.

II. FORMULATION OF THE SURFACE-COLLECTIVE-
MODE PROBLEM

A. Generalized hydrodynamics

We begin by recalling that Bloeh introduced the
hydrodynamic theory of the electron gas in order

to study the normal modes of oscillation about the
ground state of a system as defined in theThomas-
Fermi model. " The basic idea of what follows
(and this was first discussed by Ying" in the elec-
trostatic approximation, c =~) is to extend Bloch's
approach and consider an inhomogeneous electron
system capable of self-oscillations about a ground
state given by the Hohenberg-Kohn-Sham theory
of the inhomogeneous electron gas. " We thus ex-
press the total energy of the system as"

-vg(r, t) =v{r, t) —1jcA(r, t), (2.2)

and v(r, t) is the particle velocity, n(r, t) is the
particle density (nv = J being the particle current
density), and A(r, t) is the vector potential of the
electromagnetic field produced by the charge fluc-
tuations. The functional G[@(r, t)] (Refs. 3, 11, 18)
represents the exchange, correlation, and internal
kinetic energies of the electron system. Vb„„(r) is
the electrostatic potential due to the neutralizing
positive background. We assume the jellium model
for this background. Unless otherwise specified,
atomic units (m=~e~ =&=I) are used in this paper.
Since we are interested in self-oscillations of the
electron system, we have not included any extern-
al electromagnetic fields in Eq. (2.1). (Their
introduction is straightforward. ) In Eq. (2.1) we
have assumed the Coulomb gauge, but this places
no restriction on the theory once the basic equa-
tions [ Eqs. (2.7) and (2.8)] are obtained.

We now assume that the field n(r, t) is canoni-
cally conjugate to the field [t)(r, t) and, hence,
Hamilton's equations follow":

(2 3)

i)H s g(r, t)
t')n(r, t) e t (2 4)

We note that the derivatives on the left-hand side
of Eqs. (2.3) and (2.4) are functional derivatives.
Then, with H given by Eq. {2.1), Eqs. (2.3) and
(2.4) give, respectively:

9 A—n=V ~ n Vq- —',
at c (2.5)

+-, d'r d'r' — d'r Vb„„(r)n(r, t)., , n(r, t) n(r', t)
r-r

(2.1)

Here g(r, t), the velocity potential, is defined by
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—n+V ~ J=O,
Bt

(2.7)

and

d - - 1- -5G[n]
n —v = —n(E —VVb„„) ——Jx B—nV

dt c 6n
(2.8)

where use was made of the identity

(v ~ V)v +(I/c)[v x (V x A)] =-,'V[(V) —A/c)']

and, as usual,

sg 1 1 ' 5G, n(r', t)+ Vbgpg+ d& ~ /
~st
(2.6)

We can rewrite Eqs. (2.5) and (2.6} in a more fa-
miliar looking form by eliminating g in favor of
v and A. Thus, Eqs. (2.5) and (2.6) can be re-
written

4~ a-
Vx(V&&E ) = ———E + ——J

C2 Bt2 I C2
(2.12)

ground state of the inhomogeneous system and was
used (in a different, but equivalent, version) by
Lang and Kohn~ to compute the self-consistent
density contours in the ground state of the metal-
vacuum system. Secondly, the magnetic field does
not enter Eq. (2.11}because B,=O, i.e., because
of the absence of an external static magnetic field.
Thirdly, although Q, (r) does not appea. r explicitly
in Eq.. (2.11), it is effectively taken into account
via. the self-consistent density n, (r), the solution
to the unperturbed problem, Eq. (2.9}. Equations
(2.10) and (2.11) are the basic equations in our
description of the small amplitude self-oscilla-
tions of the electron system. We supplement them
with the full set of Maxwell's equations. As usual,
uyon elimination of the magnetic field H, one ob-
tains (for the fluctuating variables}:

18f= ———A —VQ,cbt
and

E, = -4wn, . (2.13)

with

and B=V&A., , n(r', t)
r- r'

We emphasize that, as in I, the term nV(5G/5n)
enters Euler's equation as a generalization of the
gradient of the conventional density-dependent
pressure. In order to describe small amplitude
self-sustaining oscillations we assume that the
dynamical variables n, J, and E depart slightly
from their equilibrium values, that is, we write
down:

n(r, t) =no(r) +n, (r, t); J(r, t) = J,(r, t);

One convenient way to proceed is to Fourier trans-
form all the space-time functions into k —e space.
We assume all variables to be continuous, dif-
ferentiable functions of r. Note that we can make
this assumytion because, for instance, in the
metal surface problem, we allow the density n0
to be a smooth function of z, the coordinate nor-
mal to the su~face In fact, in principle, it should
be the solution to Eq. (2.9).'0 It is then straight-
forward to show that

E ( (k, (g) = . . . ,
)
((u'5;, —c'k; k, )J, (k, m)(M2 —C 2k'

(2.14)

6G 6G 6G
E(r, t ) = Eo(r) + E,(r, t); = —+

6n 6n 6n

and obtain

&G
E0 —V'Vb, d, +V —=0,

0
(2.9)

(where the summation convention is used and, as
in the rest of the paper, the subindices denoting
first-order quantities are dropped). We remark
that for the inhomogeneous medium the variables
with physical meaning are the wave packets con-
structed from the corresponding Fourier ampli-
tudes.

and

8nl
at

'+V ~ J =0
1

6G
1 0 1 0

—J =-n (r)E -n (r)V
1

(2.10)

(2.11)

B. Conductivity tensor

Following Harris and Griffin' we now introduce
the constitutive relation

6'0'
J,.(k, (u) =

~ (ru(k, -k', (u)E, (k', (u}. (2.15).

A few points are worth noting here. Firstly, writ-
ing Eo = —V $0, Eq. (2.9) gives —(p, + Vb„„) + (5G/
5n), = p (p is a constant which one identifies as the
chemical potential). This equation, as proved by
Hohenberg and Kohn" is exact (of course the exact
form of the functional G[n,] is not known) for the

If there were an external electromagnetic field,
then cr&, would represent the response to the total,
local, electric field. Note that a;;, the "conduc-
tivity tensor, " is not a true "response function" as
defined in the general theory of linear response"
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to external perturbations.
Then, one way to cast the equation that deter-

mines the dispersion relation of both bulk and
surface collective modes is obtained by combining
Eqs. (2.14) and (2.15):

d'r e ~ ' n, (r) E,(r, &)

, n, (k —k') E, (k', (o),

E, (k, u)) =, 3, ((u'5;q —c k;kq)
(4wi)

e v'-c k'

d k'

(2 ), o;, (k, —k', u&) E,(k', )k)) .

so that the Fourier transform of Eq. (2.18) can
be written

iud&(k, u&) =—,~A;(k, k') k,'J&(k', &u)
(d (2'�)

(2.16) + n k-k'E k'& (2.20)

The problem thus posed reduces, in principle, to
finding the conductivity tensor o;, (k, —k'+) and
then solving the integral equation (2.16). As in I
we write down, in general:

(5G)
-

) (2.17)

A remark on the operator L(n,) may be in order
here. The expressions for it are borrowed from
the theory in its static limit, whether the system
is isolated, Eq. (2.9),"or in the presence of a.

static perturbation. " We shall have more to say
on this in Sec. IV, but for future reference we
state here that if we ignore the gradient terms"
in G, then I, is just a function of position [through
its dependence on n, (r)] which we shall denote by
p(r). For brevity we shall refer to this as the
Thomas-Fermi approximation for I., although the
exchange and correlation contribution of the homo-
geneous system would be included.

Then, using Eqs. (2.17) and (2.10) in Eq. (2.11)we
obtain

Making use of Eq. (2.15) into Eq. (2.20) we can
write down an integral equation for &r„(k, —k', +).
Rather than doing that we just note that

kq jj (k', (u) = ((u/4v i)kJEq (k', )k)) .
Then writing E;(k', &u) =E, (k', u)5, „utilizing Eq.
(2.15) on the left-hand side of Eq. (2.20), and im-
posing that the resulting equation holds for all
E, (k', ~), we obtain at once,

o;)(k, —k', (u) = (-i/(u)n, (k -P)5;,
+ ( i/-4w (u)A; (kk',)k) . (2.21)

This tensor (once an expression for L is chosen)
should be useful in the study of optical properties
of diffuse surfaces. Unlike any other conductivity
tensor one finds in the literature, it could provide
a starting point for studying, for instance, changes
in reflectance due to the excitation of higher-multi-
ple surface plasmons, whose existence deyends on
our keeping the second term on the right-hand side
of Eq. (2.21). This is, in effect, what is implicitly
done in Sec. III, where the simple ansatz (see I)

i~, (r, e) + (i/&u)n, (r)s;[Ls&J& (r, ~)]

=n, (r)E;(r, ~). (2.18)

Wenow take the k-Fourier transform of Eq. (2.18).
It is straightforward to show that

&0~—

(P being a constant) is made. In fact, it is
straightforward to show that in this case,

where

$3/I

(2 )3 A;(k, k')))'j Z)(k', (ar),

d'k~
k;(k, k')= J,k,"k,(k —k")L(k", k'), (2.19)

Note that in the Thomas-Fermi approximation,
L(r)-P(r) and I.(k, k')-P(k" —k'). In addition,

i (,)
-iP no(k —k') )1,'( k,

~

~0 f1 ~ ~2 p 2/2

(2.23)

Despite the crudeness of this approximation, we
shall see in Sec. III that it contains a lot of inter-
esting physics when used in conjunction with a
"realistic" electron contour at the surface. We
remark that even the simple expression [Eq.
(2.23)] is more general than the one used by Harris
and Griffin in their high-frequency expansion of
the RPA, which corresponds to setting P' = 0, i.e.,
dropping all hydrodynamic dispersive effects.
This local approximation is also implicit in the
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(4v)(-c')k,
2(, 2 2y2}

4mi d'k'

d k'
},no(k —k') k,E,(k', &u)

(4vi)(-c') k; d'k'+,(, ») (2 },k&Ai(k, k')n(k', &u).

(2.24)

We find it convenient to take the scalar and vector
products of k and Eq. (2.24). We obtain, respec-
tively:

&u'k E(k, &u) =4v, no(k —k'} k E(k', &u)

and

d'k'+4vi, k.A(k, k') n(k', &u),

(2.25)

(~~ —c~k')kx E(k, ~) =4m, no(k —k') kx E(k', ~)

+4vi, kxA(k, k') n(k', &u).

(2.26}

We emphasize that the second term on the right-
hand side of Eq. (2.26) introduces hydrodynamic
effects into the equation for the "transverse" part
of the field. [If we were to quantize the theory,
what this is saying is that hydrodynamic effects
will, in general, affect the "photon component" of
the coupled photon-plasmon (polariton) mode. ]
This effect vanishes if the simple ansa. tz Eq. (2.22)
is made (because of A being then proportional to
k) and, of course, it is absent in all local (i.e.,
P' =0) theories.

Here:

C. Example: homogeneous system

n, (k —k') = (2v)'n, 6(k- k'),

where n, is a constant (equal to the background

more conventional treatments of the surface-plas-
mon problem in the retarded region. '" In Sec.
IV we comment on the reasons which inhibit us at
the present moment from using a (presumably)
more accurate expression forA [that is, for
L(n,)].

Substituting Eq. (2.21) into Eq. {2.16), we obtain:

4n d'k'
E&(k, &u) =, , 2

(
)3no(k —k')Ei(k', &g)

density). Assume, for simplicity, a Thomas-
Fermi approximation to L. Then

I, (k", k') —P(k"- k') =(2w) P6(k" —k')

[with p =p(s,}]. Eq. (2.19) gives

A; (k, k') = (2v}'Pn, „k;5(k —k')1 (2.27}

where we have called P~F = plopo Then, using
k E(k, &u) =4vin(k, u&), Eq. (2.25) reduces to

&o' n(k, &u) =
m~ n(k, &u} + P rh.F k'n(k, e)

(~&
= 4m &go) and hence there can exist a nonvanish-

ing n(k, w) (in the absence of external changes) if
and only if

(d =
COp +pTh F k .

This is the bulk pla. smon dispersion relation (note,
however, that p ~~ „x—', vr'). Also, with A given in
Eq. (2.27), Eq. (2.26) simplifies to

(v' —c'lP)kx E(k, u) =e& kx f(k, m),

thus, there exists a nonzero transverse electro-
magnetic field if and only if

2 = (d2+C2
P

which is the photon dispersion relation, modified
by the coupling of the photon field with the electron
system. Finally, note that the reason why Eqs.
(2.25) and (2.26) are decoupled in the homogeneous
system is thatA as given by Eq. (2.27) is propor-
tional to k [that this holds true for a more general
choice of L can be seen in Eq. (2.19), with

no(k —k") = (2v)'n, 6(k —k~)].

0. Surface-problem geometry

We assume z to be the coordinate normal to a
planar jellium surface and assume translation
invariance in the plane (x —y}. We thus consider
k as having a well-defined component q parallel to
the jellium surface. Without loss of generality we
take q to be a.long the x axis: k—= (q, 0, k,).

Rather than working with Eqs. (2.25) and (2.26)
we prefer to use the differential equations which
are their equivalents. They are obtained by trans-
forming Eqs. (2.25) and (2.26) back into r space.
For the geometry just defined we obtain:

9 a a—n, (z)—[L(n,) n(qzur)] +[~' —~~2(z) -q's, (z) L(n, )]n(qz&u) +E,(q, z, ~) n, (z) =0— (2.28)
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f(u—J„(qz(u) +rgq J, (qz(g) = —[n, (z) E, (qz&o)] —iqn, (z) E, (qzur) +iq —[n, (z) I (n, ) n(qz(u)]
9 8 8

-iqn, (z) [I.(n, ) n(qz(u)],
3z

(2.29)

In order to write down Eq. (2.29) use was made of
the equation

4vi ~(V x3) =(~'+c'V')(V x E),

which follows from Eq. (2.12). We have assumed
the so-calledP polarization, E=(E„,O, E,). Note
that Eq. (2.29) is just the curl of Euler's equation
for the present geometry. In fact, we wrote it
down for the sake of completeness, since in the
remainder of this paper we shall use Eg (2.2.9)
together with Euler's equation.

%e now express the field E in terms of the
sources. Equation (2.14} can be rewritten

(2.28} and (2.29), the two coupled integrodiffer-
ential equations for the surface collective problem.
[From now on we shall omit the labels (q, &u) in the
argument of the fluctuating variables. ]

E. Electrostatic limit

Mathematically, it can be defined by setting e
Then, the theory developed in I follows. '

However, we want to analyze what was done in I
within the context of the retarded problem. Re-
calling Eq. (2.32) we see that a necessary condi-
tion to do that is q» "/c. Then,

E,.(k, esp) = ik;p(k, -co)+(i(u/c)Ag(k, (u), (2.30) 9j9dz'e'" ' 'n(z') and E,- ——.
g Bg

4 2

P(k, (u)=-. . .n(k, (u),

A;(k, &u)
-=. . .~;(k, &u). (2.31)

Note that

k A(k, (g)) ——P(k ~)

. .[k ~ X{k,(u) —(on(k, cu)] =0,

i.e., Q and A as defined by Eq. (2.31) satisfy the
I.orentz condition. Then, performing simple con-
tour integrations we obtain:

(-2v) ~p ~(q Q) /g Q l )gaeQ
"'Lqi I /

(
2 2/2)1/2

%e then replace this expression for F, into Eq.
(2.28) and, for the sake of simplicity in the argu-
ment, assume a Thomas-Fermi approximation to
L. Ifq«&o/P»-„, and if we assume thatn(z)-0
as z- -~ (deep inside the solid), thenq can be
treated as a, small number in Eq. (2.28) and we re-
cover what was done in I. Our procedure is con-
sistent since, under the conditions just stated, the
solution to Eq. (2.28) in the limit q -0 (but &u/c

«q first) is n(z)-e i"/8»-F i~'~, (~- &u.). However,
note that the conclusions of I now have to be con-
sidered as approximate, in other words, to hold
only to zeroth order in the small quantity &u~/qc.

In particular, the frequency of the regular plas-
mon is expected to deviate from its "canonical"
value of &o~(z =-")/~2. (See Sec. III.)

In order to further emphasize this point, let us
consider the equation of continuity

xn(q, z', (u) (2.32)
9

s'g J„+—J, —Adtl =0.
Bz

(2.33)

~ (. .-)= I -(q'-~2/c')'/')s-g
c(q2 2/c2)1/2

x j~(q~z, (a)).

Now, the existence of the higher multipoles could
be explained by noting (see I) that if charge is to
be conserved, (2,), 0=0, [z =0 being the point on

the z axis where no(z) is assumed to vanish]. Thus
uhenq-0 Eq. (2.33) requires that

In deriving Eq. (2.32) from Eg. (2.31) we have re-
quired q ~&@/c, which in any case is the region of
the (q —&u) plane which is of interest in the sur-
face-plasmon problem. Using Eqs. (2.31) and
(2.32) we can write down the expressions for
E,(qze) and E,(qz~) which are needed in Eqs.

dzn, o=O,

and this condition was shown to allow for the ex-
istence of more than one surface-plasmon branch.
It is then of physical importance to ensure that
there exists a typical length, A. , in the dynamic
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surface problem, such that )I. '»q» Id/c. Now,
since n(z)-e i i'/sTh-s * then A. =—(Idz/Prh. „)
Writing down Eq. (2.33) in dimensionless units,
the first term on the left-hand side will be pro-
portional to ()Iq) and can then be neglected. We
can then expect to find the higher-multipole
branches in the retarded region (for appropriate
surface diffusenesses} and their frequencies in

the q & &d/c region will be given to zeroth order in

&d/qc by the values obtained in the c =~ approxima-
tion. ' We remark that, however, the clear-cut
classification of these modes as multipoles holds
only in the aforementioned limit c =~, q =0.
Nonetheless, we shall retain the language, i.e.,
we shall refer to multipole fluctuations in the
identification of the various plasmon branches in
the retarded region.

III ~ APPLICATION TO SIMPLE MODELS

1.0

0.8
O.
3

0.6

0.4

0,2

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0

z/XF

FIG. 1. Electron-density profiles n p(z )/n p( ) = 1.01
x(1-cosh 2 ozI) for four different values of oI (k ').
Abscissa is measured in Fermi wavel. engths (&F = 27lk F)
appropriate to sodium (one Fermi wavelength equals
6.82 A). Points z p such that n p(z) =~

p
(-~) tand beyond

which the corresponding profile was replaced by the value

Qp ( ~)] are: n, =1~ 5 zp= 0,29' &~=0,32 zp= 1 36;
0 21 zp- 2.07' ~ —0 5 zp- 2.90

As an application of the formulation and physical
picture developed in Sec. II, we now present the
solution to idealized models for the electron densi-
ty at a free metal-vacuum interface (Fig. 1.) As
mentioned in Sec. II, this "static" model is here
accompanied by the simple dynamical ansatz [Eq.
(2.22)], which corresponds to the "usual" type of
hydrodynamics. Thus, the dynamics of the sys-
tem we consider in this section is implicitly con-
tained in the conductivity tensor given by Eq.
(2.23). We remark that, however, our ansatz is
not exactly equivalent to Bennett's pressure term'
since, having lost self-consistency by the intro-
duction of an arbitrary n, (z), the static potential
Q, (z} should enter Euler's equation. However,
Bennett s numerical results do not show a marked
qualitative dependence on the value of this term
(compare Figs. 3 and 4 in Ref. 6).

The two basic equations in this section are
82 )p', + [Id' —Id~(z) —p'q']n(z)

8
+ E,(z) n, (z) = 0 —(3.1)

h(z) = -— dz' e ''-n(z )2Q
(3.4)

and

g(Z)dZ le% I zz I J(ZI)Z

2Q
(3.5)

From Eqs. (3.4) and (3.5) it follows that:

n(z) =h" (z) —o. 'h(z)

and

Z.(z) = (- i)[g"(z) —n'g(z)],

(3.6)

(3.7)

where, as in the rest of this section, we denote
differentiation with respect to z by a prime. We
remark that no(z} has been taken to vanish for z
&0 (being otherwise arbitrary for z & 0, that is, in-
side the metal). Making use of Eqs. (3.3) and (3.6}
we transform Eq. (3.1) into the following differen-
tial equation:

P'h'"'(z) —P'[o" +y'(z)] h" (z) —[oI;(z)]'h'(z)

+ p'n'y'(z)h(z)+ (Id/c')[&d~(z)]'g(z) =0, (3.8}

[where Id~(z) = 4)tn, (z)] and

i JI,d(z) =n, (z)E, (z)+ p'S,n(z). (3.2)

where

p'y'(z) —= Id2(z) + p'q' —Id2. (3.9)

Equations (3.1) and (3.2) are, respectively, Eq.
(2.28) and Euler's equation [Eq. (2.11)]after Eq.
(2.22) is used. Note that the form of Eq. (3.1) is
the same in both the retarded and the nonretarded
(c =~) limits. However, in the former case there
are two contributions to E,(z):

E.(z) =4vh'(z}+4m((d/c')g(z). (3.3)

Here o.'=- (q' —oI2/c2}'~2 and we have defined, for all

Similarly, substituting Eq. (3.7) into the z compo-
nent of Eq. (3.2) and utilizing Eqs. (3.3) and (3.6)
we obtain

g"(z}—K'(z)g(z) —('P/) oI"h'( )z

+ (1/oI)[Id,'(z)+P'a']h'(z) =0. (3.10)

Here we have defined

c K (z)=(dp(z)+c q —Id . (3.11)

Note that the term that introduces g(z) in Eq. (3.8)
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vanishes in the case of the homogeneous medium
(as well as in the electrostatic limit). Hence the
explicit coupling between Eqs. (3.8) and (3.10) is
due to our allowing for a smooth density profile at
the surface.

We now cast the above system of differential
equations in a form appropriate for numerical in-

tegration. We define the 6 x 1 column function vec-
tor u(z) by

u'(z) = [h(z); h'(z); h" (z); h"'(z);g(z);g'(z)]
(3.12)

(where the superscript "t"denotes transpose), and

6 x 6 function matrix OK(z} by

0 0

—o.'y'(z) [(u'(z)]'/p'

0

0 P'/(o K'(z)

(3.13)

Then the following matrix equation is equivalent
to the system of equations (3.8) and (3.10):

u'(z) =3g(z)u(z). (3.14)

At this point we have to consider a specific model
for the function A&2~(z) [that is, for no(z)]. A choice
for m~2(z) which, as shown in I, yields analytical
solutions in the nonretarded limit, is the smooth
function

tu2~(z) =~2~(l —cosh 'n, z), (3.15)

where u~ is the plasma frequency deep inside the
solid (z —~}. This function is shown in Fig. 1 for
various values of a, . We find this choice quite
useful to study the sensitivity of the surface col-
lective behavior to the shape and diffuseness of the
electron profile at the surface. Actually, for nu-
merical convenience we modified this definition

of ~~2(z) slightly by multiplying the function
(1 —cosh 'n, z}by a numerical factor very close
to unity and approximating the resulting function
by unity for z &zo, where zo is the value of z at
which this function reaches the value of one. (ft is
these "modified" profiles which are shown in Fig.
1.} We checked that this "perturbation" of Eq.
(3.15) did not have any significant effect in our
results. For instance, the critical values of a,
for which the successive multipoles first appear
are known analytically for &u2~(z) as given by Eq.
(3.15), and it was verified numerically that the
modified profiles gave essentially the same criti-
cal values.

Now the system (3.14) has six linearly indepen-
dent solutions. For z less than zo we can write
down the solutions with no difficulty. The three
well-behaved ones are

0

y, (z) = xe&'; y, (z)= Xe ~ y (z)= 0 Xz" (3.16)

p2~

(dp
—(d2 2

(dp Ck

(d(CR —K )

Q)2 Q2

~ (~2 K2)

(3.1'7)

The analytic continuation of the three solutions

where y and K refer to the values of y(z) and K(z)
at z = —~. Then the general solution to Eq. (3.14)
for —~&z &0 is

u(z) =Ay, (z)+By, (z)+Dy, (z). (3.18)

We note that knowing g(z) for all z and n(z) for

I

(3.16) into the diffuse region zo&z&0 was obtained
numerically, using a Runge-Kutta method.

Outside the solid (z &0) g(z} is given by

g(z) =Fe "', z &0.
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z &0 [n(z) vanished identically for z &0], we can
calculate all the other variables for all z, as can
be seen from Eqs. (3.3), (3.4), and (3.7) and the
following two expressions for E„and H„:

0

i(fE, (z) =-2&(n dz'e "~' '
~ n(z')

2
5"(z) — '5(z)=-y (1-—, Aey'

C

+ 2 e"' (y+n)e(y ""(&A
2(d

0
~ d*'e " (*')),

CQ

+ -4n —, z (3.19) whose general solution is

and

0

4n' ' 2H, (z) =— dz ' e ~' '
~ sgn(z -z') n(z')

+ i J,'(z) —(~'/c') g(z) . (3.20)

g(z) =De"' —, 2
Ae1'

(dp, —('d

C e"' (y+n}e'"
2(d

Now, at z =0 we have three boundary conditions:
(J,}, 5- =0 [note that from Eq. (3.18) we infer that
J, =0 outside the solid], and the continuity of g(z)
and g'(z). Since the integrals on the right-hand
side of Eqs. (3.19) and (3.20) are continuous, the
continuity of E and H„at z =0 is thus ensured. We
can find a further relation between A, B, and D
by the following argument. For z &ze, Eqs. (3.6),
(3.16), and (3.17) give

+ dz'e "' n z'
go

Now, according to Eqs. (3.12) and (3.17):

g(z) =Ay,"'(z) +By,"'(z) +Dy,"'(z)

(3.24}

(3.26)

(where the superscripts label the row in the column
vectors y, , i =1, 2, 3). Then taking Eq. (3.25) for
z ze, utilizing Eq. (3.16) and comparing with Eq.
(3.24) we obtain,

n(z) = (y' —n')Ae"'.

Hence, for z &zQ

J
0

dz' e ~' '
~ sgn(z -z')n(z')

(3.21)
(-2n)B =(a+y)e'" '*eA+

Finally, noting that

dz' e n(z').

(3.26)

=2yA. e&' —e"' y+ n e'& "QA dz' e "' [h"(z') —n'h(z')]

0
~ J e*'e "'

( ')) . (3 zz)
g0

2&2(z) dz'e ~' ' sgn(z —z')n(z')
2(d

n'(z) .

Then, substituting Eqs. (3.21}and (3.22) in Eq.
(3.23) we obtain, for z &z„ the equation

(3.23)

At this point it is convenient to recast Eq. (3.10)
as an integrodifferential equation as follows:

g "(z)—z'(z) g(z)

=[h'(0)+ ah(0)] —e 'e [h'(ze) + nh(ze)],

and recalling Eq. (3.6} then Eq. (3.26) simplifies
to give

h'(0)+nh(0) =0. (3.27)

This condition can be rewritten

A[y"'(0)+ ay,"'(0)]+B[y,"'(0)+ny,"'(0)]

+D[y"'(0)+ny"'(0)] =0. (3.28)

Thus, the dispersion relation of the surface collec-
tive modes reduces to finding the zeros of the
following 4&4 determinantal equation:

[y (2) (P) + ay (1 & (0)]

[y,"'(o) —a'y,"'(o)]

y (5 ) (p)

y(e) (p)

[y (2 ) (P) + ay (1 & (0)]

[y(4)(P) n2y(2)(p)]

y(5) (p)

y(e) (p)

[y(2)(P)+ ny(1)(P)] P

[y,"'(0)—a'y."'(o)]
y(51(P) 1

y(e&(0)

=0 (3.29)
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Here 4 is the determinant of the coefficients of the
4X4 homogeneous system of equations for the un-
knowns A, B, D, and I'.

In Figs, 2 and 3 we exhibit the dispersion rela-
tions obtained by numerically solving Eq. (3.29)
for several values of e, . In order to show the de-
pendence of the dispersion relations on the shape
of the electron-density profile we shall also make
reference to the dispersion curves given in Ref.
25 for a simpler two-step density model. It was
found convenient to measure z in units of ~~, the
Fermi wavelength and to express Eq. (3.14) in
dimensionless form. In this theory the only pa-
rameter characterizing the dynamics of the elec-
tron system is its bulk density, so that upon mak-
ing Eq. (3.14) dimensionless" all the elements of
the matrix 3R(z) can be expressed in terms of &„
the (bulk) Wigner-Seitz radius. For definiteness
we took r, =3.99, which corresponds to the bulk
density of sodium. This value of r„ lying in the
middle of the metallic range, can be considered
to be a representative one. (Figure 1 in Ref. 25
applies to this same value of &,.) The values of
e, for which the dispersion curves are presented
here can be given physical significance by recall-

8.5—
~OCt

8.0

5.5

(ddjp

45
!

LIGHT LINE

ai= O. I5

8.5-

8.0— —LIGHT LINE

aI =0.21

40 I I I I I I I I I I

2 4 6 8 IO I 2 l4 l6 I 8 20

q {10 cm )

FIG. 3. Dispersion rellation for the profile shogun in
Fig. 1 for o &=0.15~ ~. q =0 values of the dipole, quad-
rupole, and octopole modes obtained in the c = ~ limit are
shown on the ordinate axis.

~ ~ e e e ~ e e e e e e = = Q - 0 32
~ ee e ~ + ~ ~ e

beteg . ~ &i ~ e
dip

a =0.21
I

O
(d sp
~djp 6,0—

aI = 1.5

~ e e e ~e e e e e e e e
~ e '"'e ~ e = 01= 0.32

0I= 0.21

4.0 I I I I I I I I I I I

2 4 6 8 1012 l4 IS 182022
q {10 cm ')

FIG. 2. Dispersion relation for three values of 0.&(~ ~).
Corresponding electron contours are shown in Fig. 1.
q = 0 values of the frequencies of the dipole and quadru-
pole modes {for the corresponding values of n &) obtained
in the c =~ limit are given on the ordinate axis.

ing the critical values of a, for which successive
multipole excitations first appear (1}. Now, the
dipole model first shows up (at ur =&a~} for n, =—n,'""
=&a~/Pv2. Then, with P'=-,'v' and r =3 99 n""'
=0.73 A '. (We remark that "o"'-&,~' A '. ) The
quadrupole mode first appears (at &u =&a~) when

n, —= niq"*d' =n,' ~d'
v/6 =0.29 A '. The octopole

mode is first "bound" for n, = n,""'=a'""/v15
=0.18 A '. The profiles corresponding to these
limiting values of a, can be found in I. The most
abrupt profile shown in Fig. 1 corresponds to
e, =1.5 A ' and the associated dispersion relation
(as shown in Fig. 2) has the expected "regular
plasmon" behavior. %e remark that the slope for
q & &u/c is less than for the abrupt model, o, —~,
which is the a =0 dispersion curve in Fig. 1 of
Ref. 25. The next contour shown in Fig. 1 corre-
sponds to e, =0.32 A '. In Fig. 2 we present the
ensuing dispersion curves. The dipole mode is
already well bound and the regular plasmon branch
never reaches the value r ~ =u&~/W2. The next dis-
persion relation given in l'ig. 2 corresponds to
the contour drawn for n, =0.21 in Fig. 1. The
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quadrupole mode has already appeared, showing
little dispersion; the dipole branch intersects the
light line slightly below (t~ and the regular plas-
mon branch is pushed further below u:,p." Figure
2 makes evident that the lower two modes appear
to interact in the optical region and this prevents
the crossing of their dispersion curves. We note
that this effect creates a gap in the surface collec-
tive spectrum at a frequency slightly below Rsp.
One qualitative difference between the results of
Fig. 2 and those of Fig. 1 of Ref. 25, is that there
is a range of values of o., (0.22 & n, &0.29) such
that both the dipole and quadrupole modes lie
above v~, whereas for the two-step model (for
the parameters chosen in Ref. 25) the dipole was
already below ~,p before the quadrupole was bound.
That is, the two-step model binds the higher
multipoles "more strongly" once they are well
bound. The last contour shown in Fig. 1 corre-
sponds to n, =0.15 A ' and the associated disper-
sion curves are presented in Fig. 3. The octopole
mode is already bound and is practically flat
throughout the optical region. The quadrupole
branch shows little dispersion also. The dipole
mode, being well below v~ appears to interact
with the regular plasmon branch in the optical
region. We remark that the two lower branches
in Fig. 3 look very much like the corresponding
branches (not shown in Fig. 1, Ref. 25) for a =4 A

in the two-step model. However, in the latter
case for that value of a those are the only two
branches, whereas in Fig. 3 the quadrupole and
the octopole modes are present.

We believe this discussion shows quite vividly
the strong dependence of the surface collective
dispersion relation in the optical region on both
the shape of the electron contour at the surface
and its diffuseness. If the qualitative effects our
theory predicts are indeed observable (and we
emphasize that the multipole branches are a real-
ity in the case of classical plasmas}, then two
points of prime interest to the experimentalist
would be the location of the intersection of the
higher-multipole branches and the light line, and
the "gap" in the dispersion curves below c,p. We
feel that the new qualitative phenomena described
here should stimulate experimental search for the
higher multipoles with the attenuated-total-reflec-
tion (ATR) method' at surfaces of high free-elec-
tron-density metals with layers of chemisorbed
alkalis. The theoretical model of chemisorption
due to Lang" is most helpful in visualizing the
experiment we are proposing, since chemisorbing
one or more layers corresponds in this model to
varying the diffuseness of the electron contour at
the surface. The qualitative results reported here
for the optical region, together with the relative

simplicity of the ATR method (as compared with
the extremely complicated reduction analysis' to
obtain the plasmon-dispersion relation in the
electrostatic region from the LEED data}, seem to
render preference to the optical method in the
search for the existence of the higher-multipole
modes. We note that since in this paper we have
not included any damping effects, the ATR experi-
ment we are suggesting should be performed keep-
ing the incident angle fixed and scanning the photon
energy, so as to avoid the backbending of the dis-
persion curve. "

IV. DISCUSSION

We have illustrated with simple models the im-
portance of taking into account hydrodynamic ef-
fects in the problem of electron collective motion
in diffuse surfaces in the retarded region. Pre-
vious work in the subject has generally assumed
otherwise ', namely, that for q-&u/c hydrodynam-
ic dispersion was not important. In the light oi our
results this simplifying assumption seems war-
ranted only for very abrupt surfaces. On the other
hand, we show in the Appendix that hydrodynamic
effects play no role in the problem of "guided'"4
s-polarized electromagnetic waves in inhomoge-
neous media.

The main qualitative feature of the theory of Sec.
II lost by the ansatz Eq. (2.22), stems from the
disappearance of hydrodynamic effects from Eq.
(2.26), which gives the "photon component" of the
coupled plasmon-photon mode. How important an
effect that would be is only a matter of conjecture
at the present moment.

In order to obtain results of quantitative signif-
icance we probably should use the theory of Sec.
II with a more elaborate choice for the operator
L(n, ) (that is, for the density functional G[n]}, and
retain self-consistency by using the self-consis-
tent solutions n, (z)(Ref. 20) to Eq. (2.9). We note,
however, that the smooth profiles used in Sec. III
are not so different from the self-consistent ones"
to expect our arbitrary choice [Eq. (3.15)] to be a
serious shortcoming. We rather think that if fu-
ture experimental evidence indicates significant
departures from the results of Sec. III, they would
have to be accounted for by an appropriate choice
of L. We remark that a change in L has a more
significant effect in the theory, since that change
will, in general, alter the order of the differential
equations of the problem. As mentioned in Sec. II,

A

the expressions for L we have available are the
ones proposed for the ground state of the sys-
tem. "'" In our theory, however, we need to ap-
ply them over a wide range of frequencies up to
frequencies of the order of the plasma frequency.
Perhaps a simple remark will illustrate the diffi-
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culty we face here. It is well known" that in the
homogeneous system, assuming the ideal-gas
adiabatic law to hold, the pressure-density xela-
tion at low frequencies (acoustic region) is that
appropriate for the three kinetic degrees of free-
dom of the particles, whereas at high frequencies
(plasmon region) it is that appropriate for a sys-
tem with only one translational degree of freedom.
This means that even in this simple case we should
really interpolate P' from its high-frequency value
of 5m~ to -,' of that value, which is the correct num-
ber for low frequencies. Hence, in the much more
complicated case of the strongly inhomogeneous
electron system we are concerned with, one would

expect that the low-frequency functionals will have
to be modified at high frequencies. This physical
argument has a mathematical counterpart which
we now present very succinctly. If we assume,
in an asymptotic sense, the validity of the expan-
sion of the functional G[n] in powers of the gradi-
ent of the density, "and utilize the expression for
G used by Smith" in his static studies of metal
surfaces, we obtain the following expression for
Z, [n.]:

1 1, 8 8n'
L, (n ) =p(n )+—q' —,+——'

0 0 (4.1)

where

p(n ) L(2 3)3/3n -I/3 L(2v-1)1/3 -3/3

(0.1n,-'/' 1.55 x 10-3n,-"3)/(0.079+n"')3.

(4.2)

The three terms that add up to give p(n, ) are due,
respectively, to the contributions of the local ki-
netic, exchange, and correlation energies (i.e.,
the kinetic, exchange, and correlation energies of
a homogeneous electron system with the local val-
ue of the density) to the functional G. The second
term on the right-hand side of Eq. (4.1}is due to
the first gradient correction to the kinetic energy.

Now, using Eq. (4.1}in Eqs. (2.28) and (2.11) in
conjunction with the self-consistent profiles of
Lang and Kohn33 [we remark that the self-consis-
tent density n, (a) falls off to zero exponentially
outside the metal; this is really the only feature
of n, (z) that is relevant to the present argument]
we find that the ensuing differential equations have
regular singular points at z =+~. Hence, they can
be solved by the method of indices utilized, for
example, in Bef. 23. Now, unfortunately, the
roots of the indicial equation are such that" in the
high-frequency region there is one more well-be-
haved solution in the tail region (a-+~) of the
electron distribution than in the bulk region (z-
—~), and thus we cannot match the solutions ob-
tained on both sides of e =0 (which is some con-

venient point on the z axis) to obtain the surface-
plasmon dispersion relation. This problem sub-
sists if we include the next term in the gradient
expansion for the kinetic-ener gy functional. There
are, in fact, three such terms. " On the other
hand, no such problems arises in the (d -0 limit.
Now, owing to the lack of first-principle density
functionals for frequencies other than zero, we
must try phenomenological frequency-dependent
modifications of the static functionals. But here,
of course, the problem is the lack of experimental
data to fit to. Since the higher multipoles have not
been detected to date, and the regular plasmon
branch measured on clean surfaces is relatively
well fitted in the optical region by local theories,
i.e., dropping I. altogether, our being able to im-
prove on the theory of Sec. III appears to be de-
pendent on further progress on the experimental
side. Despite the present "truncated" stage our
theory is in, we emphasize that the theory of Sec.
II offers a program of work which we think can be
brought to a more sophisticated level than the ap-
proximations of Sec. ID, should the experimental
evidence so require. %e hope that the results of
this paper and this discussion will stimulate ex-
perimental work along the lines proposed in Sec.
III.

Finally, let us make two further remarks.
Firstly, there could be an objection that using a
hydrodynamic model is not justified in the surface
problem because of the low-electron density that
exists in the tail region. Actually, this same ob-
jection could be posed to the use of BPA theo-
ries, ' since the local r, -~ in the tail region.
The answer to this objection is, as usual, that the
model will find its ultimate justification if it is
able to account for the experimental evidence, and
again, this remains an open question. %e can also
offer the following argument. It is argued" that
the reason the density-functional theory works so
well in the evaluation of (static) qua. ntities like
work functions is that those quantities depend on
integrals over the entire surface region, rather
than just the tail. Now, as proved in I, this same
property holds true in the surface-plasmon prob-
lem. More precisely, at least in the electrostatic
q & &o/c region, the dispersion relation of both reg-
ular plasmon and higher multipoles is given in
terms of integrals over all space of the density
fluctuations.

Secondly, in this paper we have implicitly as-
sumed that the surface collective excitations we
dealt with are sufficiently long-lived that meaning-
ful results can be obtained from a theory like ours,
which ignores damping effects. Experimental evi-
dence" seems to indicate that damping effects are
not too serious in the optical region (at least for
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the surface-plasmon branch}. Of course, we could
always introduce an effective collision time and
associated viscous force in Euler's equation, but
the very use of a hydrodynamic formulation means
that the electron-hole pairs are left out and hence
we cannot introduce a genuine Landau (collision-
less) damping in our theory. Now, for the low
temperatures we are concerned with in this paper,
it is not obvious that the complications which would
follow from the introduction of collisional damp-
ing would mean an improvement of the theory. We
rather feel that estimates of the damping of sur-
face plasmons, which (unlike the case of bulk plas-
mons} will occur at all wavelengths, should be
done via microscopic theories. To close this com-
ment we note that we think that the conclusions
drawn by Heinrichs' in the c =~ limit do not apply
to our theory. Heinrichs, who took a different
hydrodynamic approach, based on the use of the
hydrodynamic bulk dielectric constant, claims that
when the possibility of Landau damping is neglec-
ted the spectrum of surface-plasmon modes
changes radically. However, we find little, if any,
overlapping between his theory and ours. In his
paper the differential equations for charge fluctua-
tions and electrostatic fields have constant coeffi-
cients. Nowhere does the density n, (z) enter the
theory, and in fact he finds his theory (Appendix
A in Ref. 12) to have no solution in the metal-vac-
uum interface case. In brief, the modes Heinrichs
found for the slab geometry appear to have nothing
to do with the higher multipoles discussed in I and
in this paper.

APPENDIX

In this Appendix we first show that hydrodynamic
effects play no role in the case of the s-polarized
mode, E =(O, E„O). In inhomogeneous media, the
possibility of existence of electromagnetic waves
with this polarization and with a spatial behavior
such that the wave oscillates near the surface and
decays exponentially in the bulk region, has re-
cently been investigated by Conwell, "using a local
theory. In order to make a comparison with her
paper let us write down the following two differen-
tial equations, which are obtained transforming
Eqs. (2.25) and (2.26), respectively, into r space:

V [no(r)VL(n, ) n(z)]+ [ur'- &o&(r)]n(r, u)

+ Vn, (r). E(r, &u) =0, (Al)

and

c'V'[V && E(r, (u}]+[(u' —(u'(r)]V x E(r, u)}

—Vm„'(r) && E(r, &u) = V x [m~2(r)VL n(r, cu)].

(A2)

Now, for the surface geometry considered in this
paper and for the s polarization, Vn, (z} E(r, a) =0,
so that one possible solution to Eq. (Al) is,

n(F, ~) =- 0. (As)

V~~(z) && E(r, (u) = —E,(z) ~~(z)e—„,

where e„ is the unit vector on the x direction.
Thus, taking the x component of Eq. (A4) we ob-
tain, after little rearrangement

8 8 8c' —q'+, E(z) + (u'—E(z)—8z' 8z ' 8z

——,[,'( )&,( )]=0, (A5)
8

where, as in the text, q is directed along the x
axis. We integrate Eq. (A5) once and impose the
boundary condition that E,(z) -0 as z —~. Then,

a'E, (z) ~' —(u,(z),
( )

8z
—q E~zc

(A6)

and defining e(z, m) = 1 —m~(z)/&u', we obtain

O'E, (z)
+ e(z, (u) —,—q' E,(z) =0. (A7)

which is the differential equation studied by Con-
well to investigate the possibility of obtaining
"guided" solutions, or more specifically, solu-
tions which oscillate near z =0 and then decay ex-
ponentially as z -. We emphasize that here Eq.
(At) does not depend upon the assumption of a local
theory. It is simply that nonlocal (hydrodynamic)
effects do not enter. Finally, we note that if c-~
then Eq. (Al) reduces to Laplace's equation and

hence Conwell's modes do not have an electro-
static limit, which is a reflection of the fact that
these modes are not pola, ritons. We thus think tha, t
the name Conwell gave these modes —namely,
guided plasmons —is a misnomer.

We close this appendix by showing how Eqs. (Al}
and (A2} reduce to the differential equation studied

With this choice, then, the eventual solutions to
Eq. (A2) will not correspond to plasmon modes.
Also, Eq. (A2) adopts the simpler (homogeneous in

E) form:

c'V'(V X E)+ [&u' —u~(r)]V && E(r, u)

—V(up(z) && E(r, (u) = 0. (A4)

We emphasize that, having disappeared from Eq.
(A4), hydrodynamic effects have no bearing on the
present problem, in contrast to the plasmon case
analyzed in this paper. For the sake of complete-
ness we now show how Eq. ~A4) reduces to Con-
well's" starting equation. We first note that
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[(u' —(u~(z)]n(z) + E,(z)—n, (z) = 0
8

(A 10)

and

82
,H, (z)- ~'( )zH, (z) + E(z) —&u'(z) =—0.

(Al 1)

In Eq. (All) we have defined z'„, = q' —&u'e (z, &u)/

c'. Now, we can write Eq. (All) as a homoge-
neous equation for H, by utilizing another of Max-
well's equations. Recalling Vx H= —fu&&(z, ar)E/c,
then

and

Z„(z) = —H (z)
(dz(z, M) Bz

E,(z) = [-cq/(ue(z, (u)]H, (z),

(A12)

and hence noting that

1 8—e(z, (d) = ——,—(d'(z}
BZ N BZ

by Guidotti et al.' in their local theory of plas-
mons in inhomogeneous media. The local limit
corresponds to neglecting all hydrodynamic effects
and thus we set L =0. Then Eqs. (Al) and (A2)
give, respectively,

[(o' —(u~(z)]n(r, (u) +Vn, (z) E(r, (u) =0 (AS)

and

c'V'(V x E)+ [&u' —w~(z)](V x E) V&@~(z) x E(r, e) =0.

(A9)

Now, recalling that V x E =i mH/c, and for the P
polarization, (plasmon case) we can rewrite Eqs.
(A8) and (A9) as

we can cast Eq. (All) as

H,"(z) — ' H,'(z) —y'„, H, (z) = 0,
c'(z, (o)

(A13)

which is the equation solved by Guidotti et al."for
a particular choice for no(z). We emphasize tha, t
Eq. (A13) has a regular singular point at the point
on the z axis where the frequency cu equals the lo-
cal plasma, frequency. Hence Eq. (A13) is ill-de-
fined for the purposes of numerical integration.
One way out of this difficulty would be to add a
phenomenological collision term in Euler's equa-
tion. This would add a small imaginary part to the
dielectric constant and would take the singularity
off the real z axis. (In fact, in Ref. 24 it was as-
sumed that e had an imaginary part. ) However,
this procedure was deemed meaningless by Fei-
belman' who emphasized that the coupling between
the surface plasmon and the "local" bulk plasmon
which originates the singularity in Eq. (A13) could
only be studied by allowing for the wave-vector
dependence in the dispersion relations and this
means going beyond the local theory of Ref. 24.
Finally, note that in the local theory the density
fluctuation is obtained after solving for H, (z) by
using Eqs. (A12) and (A10). In other words, Eq.
(A13) is decoupled from Eq. (A10).

To close this comment on the local limit of the
theory, we note that the additional branch found by
Guidotti et al.' can in no way be related to the
higher multipoles discussed in this paper, whose
existence is due to the pressure term in Euler's
equation. In fact, that additional branch was not
found by Cunningham et a/. ,

"who properly ac-
counted for the singularity of Eq. (All) mentioned
above.
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