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Tetracritical points in antiferromagnetic systems
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It is pointed out that certain XY-like antiferromagnets, including Cr,Te06 and KCuF3, should exhibit a
tetracritical point at (T = T~, H = 0) when the magnetic field H is applied along a symmetry axis. The zero-

temperature critical field is estimated to be of order 1 kG. The predictions of scaling and renormalization-

group theories for tetracritical points may be tested experimentally on these antiferromagnets.

The phase diagram and critical behavior of sys-
tems which exhibit multicritical points (bicritical
or tetracritical) have been of great interest in

recent years. ' ' Scaling theory and renormali-
zation-group techniques have been applied to study
the thermodynamic properties of a system near
its multicritical point. These theories are found
to be in excellent agreement with recent measure-
ments on the uniaxial antiferromagnet GdA10, near
its bicritical point. ' In general one expects that
weakly anisotropic uniaxial antiferromagnets in
a magnetic field H, parallel to the easy axis,
should exhibit a multicritical point at some finite
nonzero value of H. Whether this point is bicritical
or tetxacritical is determined by the fourth-order
anisotropy energy of the crystal. '4 Experimen-
tally it is found that the anisotropy of uniaxial anti-
ferromagnets is such that they tend to exhibit
bicritical points in the (T,H) plane.

In the present note we discuss the (T,H) phase
diagram of certain XY-like antiferromagnets (see
Table I). We show that these compounds are ex-
pected to exhibit a multicritical point at H =0,
whose nature (namely, bicritical or tetracritical)

is determined by the direction of the magnetic
field. In particular we show that for H parallel
to a certain symmetry direction the multicritical
point becomes tetxacritical, while for all other
directions it is bicritical. We suggest that the
various predictions of scaling and renormalization
group-theories for the tetracritical point be tested
experimentally on these antiferromagnetic systems.
One expects that the experimental data near a
tetracritical point occuring in zero field should
be easier to interpret than in finite field because
(a) the tetracritical point can be determined more
accurately, since only the temperature need be
varied, and (b) demagnetization corrections are
not important since the interesting region of the
phase diagram in the (T,H) plane lies close to the
& =0 axis.

Consider, for example, a tetragonal crystal
whose space group is GO=P4/mmm. We assume
that it undergoes a phase transition which results
in an antiferromagnetic structure, where ferro-
magnetic (001) planar layers are coupled anti-
ferromagnetically. The sublattice magnetization
is assumed to lie i& the plane ferromagnetic

TABLE I. Antiferromagnetic compounds which are expected to exhibit H=O tetracritical
point.

No. Compound Tz ('K)
Paramagnetic
space group Magnetic structure Reference

1 Cr2 Te06

2 Cr2WO6

105

69

P4,

/mmmm

P4~/mam

Four magnetic ions per unit cell
Type "C

Four magnetic ions per unit cell
Type i'

12

12, 13

3 MnNi, MnPd 1073, 813 P4/mmm
MnPt 970

Ferromagnetic (001) planes coupled
antiferromagnetically

14

4 KCuF3
KCr F3

5 Mn2As

6 Fe2As

—38

323

I4/mcm or
P4mbm

P4/nmm

P4/nmm

Ferromagnetic (001) planes coupled
ant iferromagne ticall. y

Ferromagnetic (001) planes coupled
ant iferromagnetically

Ferromagnetic (001) planes ordered
(++ + ———)

15, 16

17

18

14 1303
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layers. Such a transition is thus described by an
(n =2)-component vector model where the two
components, A, and A„, of the order parameter
correspond to the staggered magnetization in the
x and y directions, respectively. The Landau-
Ginzburg-Wilson (LGW) Hamiltonian which de-
scribes such a system is

1 X=- d"x —,'r A„'+A,' + —,
' VA„'+ VA„'

+u(A„+A, ) + vA, A„],
where u and v are the only fourth-order terms in-
variant under the group Go. The Hamiltonian might
include nonisotropic gradient terms such as

BA„BA„BA„BA

the H =0 critical point becomes a multicritical
point in the (T, H) space. Let us discuss the phase
diagram of the Hamiltonian (2). Consider, first,
the case where the magnetic field is applied along
the x direction. In this case the coupling term
cH„H„A„A„vanishes, and the H =0 critical point
becomes4 bicritical or tetracritical depending on
whether v —2u is positive or negative, respectively
(see Fig. 1). However we will show that if the
magnetic field is applied along the [110]direction,
one obtains a tetracritical point for v —2u & 0 and
bicritical point for v —2u&0. Let us define two
variables:

A+ = (A„+A,)/W2, A = (A„-A,)/W2. (2)

For H=(1, 1, 0)H/W2, the Hamiltonian (2) then
takes the form

It has been shown' that these terms are irrelevant;
hence we do not include them in the Hamiltonian
(1). Let us apply a small magnetic field H
= (H„H„O) in the (x, y) plane. We assume, for
simplicity, that H, =O. However, since H, does
not break the symmetry of the Hamiltonian, our
results remain valid when the applied field has a
finite nonzero component in the z direction. The
LGW Hamiltonian takes the form

1
X = d'xf —,

' (r +aH„'+bH„')A,'

+ —,
' (r +aH, +bH, )A,

+ ,' [(VA,)'+ (VA,)']+ca,a„-"„A,

+u(A 4+A, ) +vA„'A,'), (2)

where a, b, and c are coupling terms allowed by
the symmetry. We assume that the fourth-order
terms do not significantly change with the field.
This assumption simplifies the discussion but will
not affect the results, as long as the applied field
is small. The magnetic field acts as a symmetry-
breaking parameter in the Hamiltonian (2), and

—~~X= — d x ~ r+~ a+b+c H A.

+ ,' [r +——,
' (a +b —c)H']A

+-,'[(VA, )'+(VA )']
+u (A +A )+vA A ), (4)

where u = —,
' (2u+v) and v =-,' (6u —v). Note there

is again no couyling term proportional to A,A
Since v —2u = —(v —2u), the phase diagram of the
Hamiltonian (4) exhibits a tetracritical point
whenever the phase diagram of the Hamiltonian
(2), with H, =0, exhibits a, bicritical point, and
vice versa. Therefore, any system which is de-
scribed by the Hamiltonian (2) will exhibit a
tetracritical point either for H II [100] or for

II [110]. Tetracriticality is expected only if the
magnetic field is applied Precisely along one of
the symmetry directions ([100] or [110]). When
the field is applied in a general direction, the
Neel point (T = T„, 0=0) becomes a bicritical
point in the (T,H) plane irrespective of the sign
of v —2u. The phase diagram in the three-dimen-
sional space (T,H„,H, ) is sketched in Figs. 2(a)

2
Hx )I Hx

FIG. 1. (T, H„) phase
diagram corresponding to
the Hamiltonian (2) for (a)
v —2u &0, and (b) v —2u&0.
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FIG. 3. Expected behavior of the order parameters
A+ and A as a function of the magnetic field parallel to
the [110]axis.

A

FIG. 2. (T, H„, H, ) phase diagram corresponding to
the Hamiltonian {2) for (a) v —2u &0, and {b) v —2u &0.

and 2(b) for n —2M & 0 and v —2u &0, respectively.
These figures display features similar to those
found by Rohrer Rnd Thomas, ' and Fisher' for the
phase dlRgl Rm of unlRxlal Rnlsotroplc Rntlfer-
romagnets like GdAlQ, in a field not parallel to
the easy axis.

There exist many tetragonal crystals which, on
the basis of the above discussion, may be ex-
pected to exhibit a tetracritical point at 8 = 0;
some of these are listed in Table I. These com-
pounds exhibit different antiferromagnetic struc-
tures but they may all be described by the same
LGW Hamiltonian (2). One should, however, note
that not every z =2 tetragonal crystal is expected
to exhibit a tetracritical point at 8 =0: in partic-
ular it is essential that the order parameter is
not coupled linearly to the magnetic field, Rnd that
there exists a term cH„H„A„A„ in the Hamiltonian.
An example of an g =2 tetragonal crystal vrhich
does not satisfy these requirements' is K NiF4,
@&hose LG% Hamiltonian does not, for reasons of
symmetry, include a term eH„H, A„A, . The
nature of the @=0 multicritical point for this crys-
tal is, therefore, not affected by the direction of
the magnetic field; i.e., ere predict that the phase
diagram exhibits a bicritical point for e —2u &0 and
a tetracritical point for v —2M &0 whatever the di-
rection of R.

The shape of the critical lines I and II near the
tetracritical point [see Fig. 1(b)] has been studied

Hx

&0)

8A ii

8o
-~or4
8o

T& TN

H & H~(T)
V-2U&o

-8o
-g7T-1

—ym. +8o1

(b)

FIG. 4. Behavior of the orientation of the order param-
eter as a function of the orientation of the field when
v —2u & 0. (a) Definition of the orientation angles 8~ and

8„; {b) relation between 8H and 8~ for H«zi P'). Note
that 8„undergoes a spontaneous jump from 80 to -80 as
8z passes through zero. In practice, of course, one
might observe hysteresis. Corresponding jumps take
place at 80=+2'm and +7r. The signs of 8& and 8+ depend
on the phenomenological parameters a, b, c. In the
figure we assume that 8„and 8~ have opposite signs since
for most physical systems the antiferromagnetic compo-
nent tend to align perpendicular to H, if the magnetic
field is along the easy axis {8&=-4~for 8z =@7t).
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in detail by Bruce and Aharony. They found that

$, = [T (H2) T ]/T -(H2)~&&1

t, -=[T,(H') T„—j/T„-(H')"",
where P, = p~2 is the crossover exponent associated
with the magnetic field and f2= (]I)~2 —ft)„, where p„
is the crossover exponent associated with the cubic
anisotropy. The e-expansion expressions for the
crossover exponents' ~ indicate that $,=1.16 for
n =2 and d = 2, while g, -$,=0.1.

Let us now estimate the critical field II& at
zero temperature since this will determine the
observability of the tetracritical lines II. The
mean-field expressions for the critical fields
H&(T) and Ha(T) obtained from the Hamiltonian
(4) are

H,'(T) =2m(T, H, )/c,
Ha (T) = —[2r(T,Ha)/c] [(2u —v)/(2u+ v) j, (6)

where P(T, H) =r +-,' (a+b)H'. If we assume that
a, 5, and c are of the same magnitude we obtain

6„=(2u —v)/(2u +v) .

If the cubic anisotropy" is of magnitude 5„
=10 '-10, and the critical fields& is of order

10 ko, the critical field II+ is found to be of mag-
nitude about 1 kG. The phase diagram (see Fig. 1)
can be studied experimentally by measuring, for
example, the specific heat CH and the direct
susceptibility g. As a function of T these are both
expected to diverge like t as the critical lines
I and II are crossed. Similarly as a function of
the field y should display (H -H, ) " and (H -Ha)
peaks. Here +=0.12 is the specific-heat exponent
of the Ising model. Under bicritical conditions no
singularities should be seen in the low-field region
below T„. The phase diagram can also be studied
by direct measurement of the order parameters
A.„and 2, using neutron-diffraction techniques.
The expected behavior of some of the experimen-
tally observable quantities as a function of the
field is sketched in Figs. 3 and 4.
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