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Induced magnetic form factor of chromium*
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Expressions in terms of Bloch wave functions are derived for the induced nondiagonal magnetic susceptibility

h(|i, 0). The expressions for the important contributions are shown to reduce in the tight-binding limit to the
usual Pauli spin, Van Vleck orbital, and core diamagnetic terms. Each of these contributions was evaluated for
Cr using augmented-plane-wave energy bands and wave functions. The results are in good agreement with the
recent measurement of the induced magnetic form factor by Stassis, Kline, and Sinha if an exchange
enhancement factor of 2.53 is assumed for the spin contribution. The calculated orbital form factor is isotropic
and is essentially identical to the free-ion orbital form factor of Freeman and Watson. The limitations and
reasons for the sucess of the free-ion model are discussed.

I. INTRODUCTION

For metals the electronic response to an applied
magnetic field has always been a fascinating but
difficult problem. The basic complexities intro-
duced by the electron-electron interactions are
well known, and the separate orbital and spin con-
tributions to the total magnetic response have been
studied theoretically. It is not as easy to study
these individual contributions experimentally,
but by using the results of different experiments
which give direct information about the micro-
scopic response the various contributions may be
separated. A classic example is the use of Knight-
shift measurements to determine the contributions
arising from the spin paramagnetism, the orbital
paramagnetism, and the core diamagnetism. ' Neu-
tron diffraction is another extremely powerful
microscopic probe which is used to study mag-
netic response. By analyzing the measured mag-
netic form factor it is possible to study the sepa-
rate contributions to the net magnetic moment.
This is because there is a different characteristic
spatial distribution associated with each of the
different response mechanisms. In this paper we
are interested in obtaining further insight into the
magnitude and character of the spatial response
of Bloch electrons subject to a weak applied field.
Using linear-response theory, expressions in
terms of Bloch electrons are derived for the mag-
netic form factor which reduce to known results
in the tight-binding and free-electron limits. The
expressions for the larger contributions have the
advantage of being physically transparent and are
adaptable for accurate calculations, which is dem-
onstrated by evaluating the induced magnetic form
factor of Cr. The results are compared with the
experimental form factor of Stassis, Kline, and
Sinha, ' which first motivated this work.

Moon, Koehler, and Trego have measured the
neutron magnetic form factor of Cr in the ordered

state. ' Their measurements were made at the
antiferromagnetic scattering angles and indicated
that the ordered magnetization density could be
fit well with an atomic 34' spin form factor. Later
band calculations by Asano and Yamashita' for the
antiferromagnetic state of Cr also yielded a spin
density which was in good agreement with the ex-
periment. The more recently measured induced
magnetic form factor' was found to be more ex-
tended than the form factor of Moon eI; al. and was
also found to remain unchanged when the tempera-
ture was lowered through the Neel point. Gyro-
magnetic measurements suggest that the reason
for the more extended induced magnetic form fac-
tor is the addition of an orbital contribution to the
induced magnetization. In fact, using the 3d free-
ion form factors of Freeman and Watson, ' Stassis
eI; a/. were able to fit their measured form factor
using 60/g orbital and 40/g spin contributions. This
predicts a gyromagnetic ratio of 1.25 compared to
the experimental value of 1.21 +0.07 as measured
by Einstein-de Haas experiments. '

The large orbital contribution to the induced
magnetization in Cr is typical of transition metals
which have nearly half-filled d bands, and arises
from the Van Vleck paramagnetic susceptibility
as first pointed out by Kubo and Obata. ' More
recent band calculations of the Van Vleck para-
magnetic susceptibility for Cr agree with the
atomic-model results of Stassis et al. and yield
a value of -100' 10 ' emu/mole for the orbital
susceptibility. ' There is no reason to believe,
however, that the spatial distribution of the in-
duced orbital magnetization density will be well
described by an atomic model since the solid-state
wave functions can differ considerably from the
corresponding atomic orbitals. The only way to
tell why the atomic model for the form factor
works as well as it does, and to assess its limita-
tions, is to understand the details of the electron
response in the metal. To this end we have used
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II. FORMULATION

A. Linear-response theory for the generalized susceptibility

In this section we present the formulation of the
orbital moment and the corresponding magnetic
form factor induced by a uniform static magnetic
field. The one-electron model of the metal is de-
scribed by the Hamiltonian

H, = P'/2 m+ V(r), (2.1)

where the potential satisfies the translation sym-
metry of the crystal,

linear-response theory to obtain expressions for
the induced p-dependent magnetic susceptibility
in the solid. We then selected the expressions
corresponding to the dominant contributions to the
magnetization and evaluated them using augment-
ed-plane-wave (APW) wave functions. It should
be noted that we have used a completely nonrela-
tivistic approach which leaves out the effects of
spin-orbit coupling. Although for Cr the spin-
orbit coupling should be quite small, it could be-
come important for heavier metals.

The linear-response formalism developed in
Sec. II is similar to the treatment by Hebborn
and March' except that more emphasis is given
to the tight-binding limit, which gives a fair de-
scription of the d electrons in Cr. We also con-
centrate on the nondiagonal q-dependent suscepti-
bility, which is the one relevant to the neutron
measurements. Inaddition to the Pauli spin para-
magnetism and the Van Vleck orbital magnetism,
the general expression for the susceptibility is
also shown to contain the Landau-Peierls diamag-
netic contribution, and the core diamagnetism.
There is also a contribution arising from the
itinerant nature of the conduction electrons which
can be expressed in terms of surface integrals
over the unit-cell boundary similar to the terms
obtained by Yafet in considering the g value for
conduction electrons. " Because of the small value
of the d wave functions at the cell boundary these
surface terms are expected to be small and are
not included in the total form-factor calculation.
The details of the calculation for the spin and or-
bital form factors of Cr are given in Sec. III, and
the final results and conclusions are given in Sec.
IV.

1 e
H = p ——A(r) + V(r),2m c (2.5)

where A(r) is the vector potential, which is re-
lated to the field by

B(r) = VxA(r) . (2.6)

For a static field with a sinusoidal spatial depen-
dence B(r) =B& ~'', the vector potential may easily
be solved in the transverse gauge, i.e., V' A =0.
The result is

A(r} = (fq xB/q ') e' ~' ' . (2.'I }

For magnetic fields generated in the laboratory
the perturbation on the crystal is exceedingly
small, so we will consider the vector potential as
a perturbation and study the linear response of
the system.

The magnetic moment density M(r) induced by
the field has a more complicated spatial depen-
dence because of the nonuniform electron density
in the metal. However, for two points in the metal
separated by a lattice vector R, the local mag-
netizations are in the same ratio as the local fields.
This implies the following Bloch condition:

M(r+R) =&'~ M(r) .

Hence, upon Fourier transformation

M(r) =M(Q}e'O', (2.9)

where the allowed Q vectors are Q =G+q, and G
is an arbitrary reciprocal-lattice vector. We can
now define the generalized susceptibility y. ;~(Q, q)
by

M;(g) = lim P y, ; J(Q, q) B&
q~p

(2.10)

If B is along a high-symmetry direction of a cubic
crystal, the induced moment is in the same di-
rection. We call this the z direction; then the
induced-moment form factor is proportional to

determines the phase shift of the Bloch wave func-
tion under translation,

g„X(r+R) =e'" "g„%(r), (2.4)

and &„g is the band energy. The wave functions
are normalized in the unit cell.

The presence of a magnetic field modifies the
Hamiltonian according to

V(r +R) = V(r), (2.2) g„(G, 0) = limli„(G+q, q), (2.11)

and R is an arbitrary lattice vector of the crystal.
For an infinite crystal the eigenstates of the Ham-
iltonian are the Bloch states

q~p

and the bulk static susceptibility is

g =lim y„(q, q} . (2.12)
Ho0 u(r} = E 74 %(~), (2.3)

where n is the band index and the wave vector k

q~p

To apply the linear-response theory we need to
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J(~) = cV xM(r), (2.13)

relate the magnetic moment density to the induced
current through

eralized susceptibility. %ith the static field in
the z direction and the reciprocal-lattice vector
G normal to B, say in the y direction, the gen-
eralized susceptibility expression reduces to

or, in terms of Fourier components,

J(Q) = fcQ xM(Q) . (2.14)
f.-f.x.g(Q, &f)

aa'
The magnetic field satisfies q B =0. Since M is
parallel to B, we have g M(Q) = 0 for all G's par-
allel to q. This allows us to solve for M(g):

x&~1~.(el~&&~ If.«) l~

Qf.&~l e '"
I ~&, (2.18)

M(4) =4 x~(Q)/c0 (2.15)

x„(Q,q)=,,&,, g & l[Qxl(Q)1;I '&

aa

x &~'I lq x}'(q)], I +

~g, (Q q;g —0;e;)

x gf„&a I e "'
I &r&,

-

a
(2.16}

where I o&, I
a'& are eigenstates of H, with eigen-

values E„,E; f,f„are the Fermi distribution
functions, and the current operator is

j(Q) =(1/2m)(pe 'o'+e 'p} . (2.17)

As mentioned previously the vectors q, Q, and
G are collinear. This does not restrict the gen-
erality of Eq. (2.1'7) because we always take the
limit q -0 in the end. So as long as G is perpen-
dicular to B or M, as in the actual experiments,
we may choose q parallel to G and obtain the gen-

Under these conditions the linear-response theory
gives the following expression for the generalized
susceptibility ' ":

with

j„(Q}=(1/m) P, e 'o",
and the bulk susceptibility reduces to

2 e'N
X-(q, q)=,', .g E" E' l&&rli.(Q)l&r'&I'-

aa'
(2.19)

B. Uniform-field bmit

In the uniform-field limit, g 0, both terms in
the form factor, Eq. (2.18), diverge like &f ', and
those in the bulk susceptibility, Eq. (2.19}, diverge
like g '. This divergence arises because the vec-
tor potential for a uniform static field diverges
in an infinite crystal. However, we will show in
Appendix A that the diverging parts of the two
terms exactly cancel for a finite crystal, so both
the neutron form factor and the bulk susceptibility
ax e finite. Then the surface of the crystal is no
longer relevant and we may take the eigenstates

I o&& to be the Bloch states Ink& for the infinite
crystal. After removing the divergent parts, we
obtain for the neutron form factor

2e'N
&«..G, D'&= . .G

&'m —, g z"" "' "z' & alp, e """'& ', ic ~ q&& ', i ilz, e""&rkl, (2.20)

and the expression for the hulk susceptibility

2e'N ] g2

n, If+ cf n%
(2.21)

The matrix elements me evaluated in the unit cell,
N is the total number of atoms in the specimen,
the sum on k' is carried out in the first Brillouin
zone, and the factor 2 accounts for the spin de-
generacy. The evaluation of the derivatives is
rather complicated. Before we exhibit the general
results we will show that the formulas (2.20) and
(2.21) reduce to all the known results in the ex-
treme tight-binding limit and the free-electron
limit.

In the extreme tight-binding limit the band en-

ergies are independent of k and the wave functions
ale

4&nl('(r) =
~g & g Q e ' &j&n(r —R&) ~ (2.22)

where R; is the position of the ith atom, the sum
on i is carried over the entire crystal, the atomic
wave function &j&„(r —R;) is centered at R;, and
there is no overlap between the atomic wave func-
tions centered at different sites. In this extreme
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limit the intraband contributions are not con-
sidered. The bulk susceptibility can be found to
be

2e'N nPyn'
nn' n

—&n jP, y'js') &n'jP„jn)),
(2.23)

where jn) is just g„(r) and the integrals are over
a single cell. A few simple transformations with
the help of the identities

The first term is the form factor associated with
the Van Vleck paramagnetism and the second term
is associated with the core diamagnetism. In the
limit G-0 this expression reduces to the bulk
susceptibility limit of Eq. (2.25) provided that
there is complete symmetry between x and y, as
in a cubic crystal with & in a high-symmetry di-
rection. To arrive at this limit one must make
use of the identities in Eq. (2.24) [also see Eq.
(2.41)].

In the free-electron limit the wave functions and
energies are

[H„X,]=—NP;/m,

[Ho, Xr X,] = —(ih/m) (P; X, +X~ Pr)
(2.24) "-r/2e rf r Eg g2P2/2m (2.27)

enable us to put the result in a more familiar
form (see Appendix A):

X=2 &" & nL, n'
nn'

PSX + Pl (2.25)

The first term in the above expression is the Van
Vleck susceptibility, "which is most important for
transition-metal ions whose orbital moments are
quenched by the crystal field. The appearance of
the Fermi distribution function makes certain that
the initial states are occupied and the intermediate
states unoccupied. The second term is simply the
core diamagnetic susceptibility.

The form factor may be similarly simplified.
The result is

ie'N
X.,(G, 0)= — ', , Q " "'

&njP. e'e'jn')
nn'

x &n'jI„]n&

e2 Vk~
y2~'m~' ' (2.28)

where V=NO. This is just the Landau suscepti-
bility.

For the general band problem we must differ-
entiate all quantities that depend on p. The cal-
culation is easier if we write

P„%(r) =
j nk) =e' ' U„X(r), (2.29)

where U„q(r) is the periodic part of the Bloch wave
function. The form factor is found to have two
kinds of terms:

where 0 is the unit-cell volume. There is only
one band, and the sum on k is over the entire vol-
ume of k space. It is easy to see that the form
factor is identically zero for G &0. The bulk sus-
ceptibility is

f-k'
X= m2g2 Qq2

lim
Q~Q k+q k

se'N
pl ye n (2.26)

X..(G, o) =X'.."(G, 0)+X.".(G, 0),
where

(2.30)

(ri(G 0) m'c'G n'k nk
nn

Unk P, +5k'„e ' "
&&

n'k P n + nk P, e ' " n'k " P +kk„U„g
&k,

(2.31)

which arises from differentiating the matrix elements, and

X,', (G, O)=, , V lim — " " ' &nkjP, e ' 'jn'Q&n'kjP, jnp,
nn'k

(2.32)

which arises from differentiating the band energies. In these equations the integrals for the matrix ele-
ments are again only over a single unit cell. In the extreme tight-binding limit X„' reduces to Eq. (2.26)
and X,', vanishes. In the free-electron limit both terms vanish.

The term X,', may be put in a different form which avoids the limiting process of q-0. We divide the
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sum into intraband and interband terms. The interband terms can easily be differentiated. For the intra-
band terms we write

fn% fn' )I+. q fni& 2 SEnt)' fnk 0( z)
E„~g+ q

—E~g BE„Q Bky BE„g

When this expression is substituted into the intraband terms the first term on the right-hand side gives no
g dependence, hence no contribution. For the second term we transform the sum on k into a surface inte-
gral over the constant-energy surface E =E„g and an integral on E. Then a partial integration transforms
the intraband term into the energy derivative of a constant-energy surface integral evaluated at the Fermi
energy E~. The final result is

li'*l'(G, 0) = — . g (l — .")g ""
~

"
&nial&ke

' 'In'k) &s'kl &.Ink)

where VE„g is the k gradient of E„g and is normal to the constant-energy surface, and the symbol

g P)k.k)22

(2.33)

for an arbitrary function F(E„t;) of the energy means

8
lim F(E„g)dS .

E &s' &n%= @
(2.34)

At this step we have completely removed the interim variable p from the formulation.
A similar series of manipulations may be carried out for the bulk susceptibility but, since there are two

differentiations, we obtain three kinds of terms. These are

2e'N 2 Q2 p2'"' =, , g " " Ue P, ~ Iek, " Re( ke)P) )ekUk P, Iek, ", ), )2.25)m'c' E„g—E„g
nn'%'

e'N

nn'

0 dS 8'E„g
(2~)' ""'

2 sE, , ivE„-„i sf'" I&" I "I"~I'

nk P„n (2.36)

and

Bk,nn'

~ 2, 2.. 2 ek Uk I

ek" 2R U2 P, kk, ek
(e'k)l l P).e))))2.22)

The term X
" comes from differentiating the ma-

trix elements twice with respect to q, g
" from

differentiating the band energies twice, and X
"'

is the cross term between differentiating the ma-
trix elements once and the energies once. In the
tight binding limit X

" reduces to the sum of the
Van Vleck paramagnetic susceptibility and the
core diagmagnetic susceptibility, while X

" and
vanish because the band energies become in-

dependent of k, and in this limit there are no

intraband band contributions. In the free-elec-
tron limit g

" reduces to the Landau diamagnetic
susceptibility while p

" and p
" vanish.

C. Formulas used in computation

The formulas (2.32)-(2.37) for the form factor
and the bulk susceptibility are still not practical
for computational purposes. We will further
manipulate the formulas in order to extract the
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largest contribution in a calculable form. Ex-
periments indicate that the largest contribution
to both the bulk susceptibility and the form factor
is the Van Vleck paramagnetic term, so this term
must be carefully calculated. Thus, for the form
factor we calculate the closest possible approxi-
mation to g„' (G, 0) and for the bulk susceptibility
the closest approximation to X

The h„derivative of the wave function Lt„k(r)
satisf ies

8 U„g . i O' S(nn', k)

(2.38)

we obtain

X,'."(G, o)-=X (G, o)+Xo(G, 0),
where

~ 2

n'7 n%
nn'0

x&n'kj J., jni&,

X.(G, o) =-
nF-

(2.43)

where S(nn', k) is a surface integral over the
boundary of the unit cell S(r):

&(«', &) =f & ' s((."iii(si ((—i 'ii(ii i.)].
$(r)

(2.39)

This relation was first used by Yafet'o for the
orbital susceptibility of Bloch electrons. For
chromium the Fermi level lies nearly halfway
between the bonding and antibinding d states. So
the matrix elements are mostly between a pair of
bonding and antibonding d-state wave functions.
Since the antibonding wave functions are small
near the signer-Seitz cell boundary, the surface
integrals S(nn', k) over the cell boundary will be
small. %e will ignore them henceforth. Then the
quantity in the large parentheses in Eq. (2.31) be-
comes

&nkjP. ye '"jn'k&&n'kjP„le&

+&~jP.e '"jn'k&&n'kjP, yjnk&. (2.40)

%e write

P, y = —~ L, + —', (P, y + P„x)

and use the commutation relation in Eq. (2.24) to
obtain

(n kj P, yjnk& =--,'(n'kjf. , jnk&

,( f2h)&. kjjff„y~jx&.
(2.41)

The last term is transformed into

—„(E„.q —E„q){n'k le le&

ih
+ — ds j.(&IL~t)n'(L «-4*e u(~y(L' ()j

8(r }

(2.42)

The surface integral in the last equation is ne-
glected for the same reason cited previously for
S(nn', k). Then, after some simple manipulations,

X =X~+Xg),( j.x} (2.45)

(2.45a)

Xo=- ', f.u &nk~j' +y' jnk&.
PPS C

tt%

(2.45b)

%e will also make a few remarks on how the
other terms may be calculated. The interband
terms in X'" X'"' and X'"' are amenable to
numerical calculations with the help of the rela-
tions

""= —&nkjP, jnk&
~A~ m

s*g„i a*, ~ I( i(~„(n Bl*)

However, the convergence property of the sums
on the intermediate states requires careful study.

The quantity y+G, 0) is the generalized Van Vleck
form factor and Xo(G, 0) is the generalized Stassis
form factor. " These resemble the two terms in
the tight-binding form-factor formula, Eq. (2.26),
but with the atomic wave functions rePLaced by
crystaL wave functions. The neglect of surface
integrals is only justified when at least one of
the wave functions in the matrix element is local-
ized and has a small magnitude at the cell bound-
ary. The wave functions of d states with enex gies
above E+ in Cr are localized. The sum of the
intermediate states in Eq. (2.43) is rapidly con-
vergent because the I., operator has large matrix
elements between d-type band states only.

VVhen the same approximations are carried out
on the bulk susceptibility X~", we obtain
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The intraband terms involve energy derivatives
of surface integrals over constant-energy surfaces.
Although an attempt on this kind of calculation has
been made, the precision of the numerical method
is still too crude to yield reliable answers. "
III. INDUCED MAGNETIC FORM FACTOR OF CHROMIUM

In the formulation of Sec. II expressions were
given in Eqs. (2.43) and (2.44) for the largest con-
tributions to the orbital magnetic form factor. In
this section we use these formulas to evaluate the
induced orbita/ form factor of chromium. The
induced spin form factor is also evaluated in order
to compare the total (spin plus orbital) theoretical
form factor to the experimental result of Stassis
et al. ' First we present the results of an APW
calculation for paramagnetic chromium, emphasiz-
ing those aspects of the band and wave-function
properties which are important for the magnetic-
form-factor investigations. The numerical meth-
ods used to evaluate the spin and orbital form fac-
tors are then described and the calculated values
presented for the separate contributions.

A. Bands and wave functions

The energy eigenvalues and eigenfunctions were
obtained for the first six bands of Cr using the
linearized version of the APW method. " The crys-
tal potential for this calculation was obtained by
superposition of the Hartree-Fock-Slater 3d'4s'
atomic charge densities using the full value of
the Slater exchange parameter (a =1). Because
wave functions have been found sensitive to non-
muffin-tin corrections of the potential, "a so-
called warped-muffin-tin potential" was used in
which the actual potential between the spheres
was taken into account. For a particular k point
the basis set was chosen to include all those re-
ciprocal-lattice vectors K; such that

(3.1)

where RMT is the muffin-tin sphere radius. This
results in typically 45-55 basis functions and
better than 2-mRy convergence on the energy
eigenvalue '8

The bands and wave functions were obtained on
a slightly compressed s/6a mesh (140 points) in
the irreducible ~«th of the Brillouin zone. The
compressed mesh moves the k points to be eval-
uated very slightly away from the high-symmetry
points —just enough to break any degeneracies. It
was found that this facilitates the interpolation of
matrix elements and improves the Fourigr-series
fit of the bands which was obtained. The bands
along the high-symmetry directions are shown in

Fig. 1. Both the band structure and Fermi surface
are in good agreement with previous work. " In
order to graphically present information about the
l character of the various bands the l components
of the calculated wave functions have been pro-
jected out and the A dependence least-squares fit
with symmetrized plane waves. The fits are used
to give a global representation of the l character
throughout the Brillouin zone; however they are
not able to reproduce the discontinuities which
occur at band crossings. For this reason the l-de-
pendence plots shown in Fig. 2 are smoother look-
ing than is the actual case. These plots, however,
do provide an excellent qualitative description of
the wave-function character, and show how their
l dependence changes in regions of hybridization.
An l decomposition such as Fig. 2 is useful for
understanding how certain matrix elements vary
as function of k (e.g. , optical matrix elements are
expected to be large between a band pair in which
one band has largely E =1 character and the other
band l = 2 character).

From Fig. 2 it is evident that bands 3 and 4,
which are cut by the Fermi level, are mostly of

1.2

1.0

IXI 08
P-

0.6

FIG. 1. Energy bands of
Cr along the high-sym-
metry directions.

0.4

E 1 hG N

I I I I I I I I I I I I I I

P D N D P F
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FIG. 2. Percentage of l
character of Cr wave func-
tions along the high-sym-
metry directions.

4Q
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l =2 character except near the point N for band 3,
where there is a predominance of l =1 character.
The l =2 character of the wave functions on the
Fermi surface gives rise to the d-like Pauli para-
rnagnetic spin density. The l =4 character is not
shown on these graphs, but did contribute as much
as 3% in certain regions of the Brillouin zone. The
l =3 character is fairly small, but does rise to
about 20% of the band 6 wave function at the H point.
In connection with these l-character decompositions
it is natural to ask how reliable are the APW wave
functions. A large degree of confidence was ob-
tained by comparing the APW wave functions with
Korringa-Kohn-Rostoker (KKR) wave functions for
the Chodorow muffin-tin potential of copper. The
KKR wave functions were expanded through l =4
and gave the same (three significant figures) l de-
composition as was obtained by the APW method. "
It should also be noted that for those wave functions
with significant l =3 character (5% or greater) the
energy eigenvalues, obtained by the KKR method
with only up to l =2 radial decomposition, were
poorly converged (10 mRy or greater).

The density of states of Cr is typical of the bcc
transition metals and shows that the Fermi energy
lies approximately in the middle of the d bands.
The large Van Vleck orbital magnetic moment is a
consequence of there being a large number of both

1.2—
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0.8

cvN 06
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0.4
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E =0.5 Ry

0.2
~E=EF

0.0
0.0 0.4 0.8 I.2 I.6 2.0 2.4 2.8

RADIUS (a.u. )

FIG. 3. Chromium I, = 2 radial probability densities for
energies near the bottom, middle, and top of the d bands.

occupied and unoccupied d states. The occupied d
states being lower in energy are more spread out
(bonding character) than the antibonding unoccupied
d states near the top of the d bands. This is dem-
onstrated in Fig. 3, where the pure l =2 radial
probability densities are shown for energies at the
bottom, rniddle, and top of the d bands. In Fig. 3
the radial function obtained at E =E~ =0.829 Ry is
just slightly more spread out than the Hartree-
Fock-Slater 3d atomic function which was used to
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create the crystal potential. This leads to a slight-
ly more contracted solid-state spin form factor
compared with the atomic Sd form factor.

expression for the induced spin susceptibility. The
spin current is simply

B. Induced spin form factor

If in Eq. (2.16) we substitute for j (Q) the spin
current instead of the orbital current we obtain an

j (Q) = (N/2 m) Q x o e '

and the resulting spin susceptibility

(3.2)

2

,",'"(O, 0) =Itm 2
' "' " '"" &n|kle """ln',k+q) &n', k+qle'"ln, k),

n, +g n,
knn'

(3.3)

where we have again taken the field along the z
axis and Q along the y direction, and have included
the factor of 2 for the band spin degeneracy. Tak-
ing the limit of q going to zero the spin suscepti-
bility may be written

p(r) e 'o' d'r, (3.4)

where

is the spin density due to the conduction electrons
at the Fermi surface. Note that since the wave
functions are normalized, y.

~ (0, 0} is just the
unenhanced Pauli susceptibility 2 psD(Er), where
D(E~) is the density of states per spin at the Fermi
energy.

Before presenting the calculated results, a gen-
eral outline of the numerical procedures is in
order to help the reader in better understanding
the precision of the values obtained. All the k-
space integrations in this paper were performed
using the tetrahedron method"'" or some varia-
tion of it. In this method of Brillouin zone is di-
vided into a large number of tetrahedrons. Within
each tetrahedron the energy bands are obtained
by linear interpolation between the energy eigen-
values evaluated at the four corners. In actual
practice the number of tetrahedrons must be quite
large if linear interpolation is to provide an ac-
curate representation to the energy bands. In
order to economically test the integral conver-
gence with increasing the number of tetrahedrons,
we obtained a global representation for each band

by least-squares fitting the 140 APW band energies
with 60 symmetrized plane waves. The rms error
was the largest for band 5, being 2.6 mRy. From
the fits the energies were generated on a s/Na
mesh, and each v/Na cube was divided into six
tetrahedrons. Convergence was tested up to s/15a;
however, the w/6a results were accurate to better
than 2% for all the integrations. The v/6a mesh
was used the most, since the matrix elements were

TABLE I. Calculated values of the induced Pauli-type
spin (X- ) and the Van Vleck-type orbital (Xvv) form
factors of Cr. The normalized values of X&~ and Xvv
are shown in parentheses.

X spin Xvv
sino/A, (10 emu/mole) (10 emu/mole)

[000] 0.000
[110] 0.245
[200] 0.347
[211] 0.425
[220] 0.490
[310] 0.548
[222] 0.600
[321] 0.649
[400] 0.693
[330] 0.735
[411] 0.735
[420] 0.775

18.79
7.52
3.68
2.84
1.88
0.66
1.20
0.56

—0.53
0.23

-0.28
-0.15

(1.000)
(0.400)
(0.196)
(0.151)
(0.100)
(0.035)
(0.064)
(0.030)
(—0.028)
(0.012)
(—0.015)
(—0.008)

130.00 (1.000)
87.36 (0.672)
60.32 (0.464)

16.43 (0.126)
14.12 (0.109)

evaluated on this mesh and were more easily in-
terpolated.

For the spin form factor, the integration in Eq.
(3.5} was performed by using a v/8a mesh of tetra-
hedrons. The energy gradient and the cross-sec-
tional area for E=Er (a plane inside each tetra-
hedron) was found for each of the 202 inequivalent
tetrahedrons containing the Fermi surface. The
center of mass k; was evaluated for each Fermi-
surface plane, and the wave functions for these
wave vectors calculated. Each of the 202 charge
densities ~gl, , „(r}~' were summed with the corre-
sponding M;/( VE(k, ) ] weights to yield the induced
spin density. The Fourier transform of Eq. (3.4)
was taken and the unenhanced Pauli induced spin
form factor obtained. The numerical results are
listed in Table I and the normalized spin form
factor is plotted in Fig 4. For the sake of corn-
parison, Freeman and Watson's 3d free-ion spin
form factor is also shown in this figure and indi-
cates that the induced solid-state form factor is
more contracted. In other words, the crystal
charge density from states on the Fermi surface
is slightly more extended than the 3d free-ion
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FIG. 4. Normalized spin and orbital magnetic form
factors of Cr. The dashed curves are the form factors
calculated from the 3d free-ion orbitals by Freeman and
Watson (Ref. 5).

C. Generalized Van Vleck orbital form factor

The induced Van Vleck paramagnetism arises
from the applied field mixing higher excited states
into the unperturbed ground state. Angular mo-
mentum for the new ground-state wave functions
is not quenched and the expectation value of the

charge density.
The electron-electron interaction will further

populate the spin-up states, resulting in an ex-
change-enhanced susceptibility. Similar to Pd,"
the effect of exchange enhancement on the shape of
the spin density (or the normalized form factor)
is expected to be small. This is because the spa-
tial distribution of the additional repopulated states
is essentially the same as those spin-up states
already included at the Fermi level. The strength
of the exchange interaction is strongest for local-
ized states, and since the electrons at the Fermi
level in Cr are predominantly l =2 in character
and have the same degree of localization, all re-
gions of the Fermi surface will have about the
same enhanced contribution. There is, however,
some l = 1 character on the Fermi surface near
the point N of band 3, but the weight (68I VEI ) is
small for this region. Just to be cautious, we re-
summed the 202 tetrahedrons for Eq. (3.5) with
an additional weighting on the l =2 states, to see
if an increased proportion of localized states would
alter our calculated spin form factor. Our results
indicated no appreciable difference, so in the rest
of this paper the normalized exchange-enhanced
spin form factor is assumed to be the same as the
unenhanced spin form factor shown in Fig. 4. We
also neglect contributions due to core polarization,
which is expected to be small.

current operator yields the spatial distribution
of the corresponding induced magnetization. This
is the essence of Eq. (2.43),

x (n'kIL Ink) (2.43)

To evaluate this expression only bands 1-6 were
included in the sum, since the d bands, which
amke the overwhelming contribution, are com-
pletely contained within this complex of bands.

The matrix elements needed were obtained on the
m/6a mesh for the required band pair. Only terms
through l =4 were retained in the wave-function
expansion inside each muffin-tin sphere, since
the higher-l components were found to contribute
less than 0.5%. The current matrix elements were
precisely calculated using the formulas given in
Appendix B; however, an approximation was made
to facilitate the calculation of the angular momen-
tum matrix elements. The APW radial functions
were extended to the Wigner-Seitz sphere and the
integrals evaluated within the sphere. This is a
good approximation if the wave functions have
small magnitude at the cell boundary, as is ex-
pected for the important d-like wave functions.
An idea as to the accuracy of these matrix ele-
ments may be obtained by comparing the charge
obtained within the Wigner-Seitz sphere with the
correctly normalized value of 1.0. The Wigner-
Seitz charge inside the sphere was calculated for
each wave function and the s-P-like states were
found to have the larger error (the greatest error
was 10% with the average error less than 6%),
while the more important d-like states were better
behaved (the greatest error was 5% with the aver-
age error less than 2%). Each wave function was
renormalized so that its Wigner-Seitz-sphere
charge equaled 1.0. With this renormalization, we
believe the angular momentum matrix elements
are quite accurate.

For a cubic crystal the star of k' has three inde-
pendent angular momentum matrix elements, and
the current operator has six and 12 independent
matrix elements for G=(G„0, 0) and G=(G„G„O),
respectively. The wave functions for the matrix
elements which were needed outside the irreducible
~8th of the Brillouin zone were obtained from those
already calculated by group theory.

The It-space integration in Eq. (2.43) was per-
formed by dividing each v/Na cube into six tetra-
hedrons and assuming linear energy dependence
within each tetrahedron. In this way the energy
denominator can be obtained analytically. "'" The
matrix elements were assumed to be constant with-
in each tetrahedron with their value obtained by
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FIG. 5. Orbital form factor for band pairs 1-3 and 3-5
along with the total orbital form factor. The sol.id curve
is the free-ion orbital form factor of Freeman and Wat-
son (Ref. 5), while the dashed curves are drawn only as
an aid to the eye.

local interpolation from the matrix elements tab-
ulated on the s/6a mesh. Using local interpolation
the matrix element for the point k (taken as the
center of mass of the tetrahedron) is given by

s
M(k) = g c M(ki)

s ]
Ik —kg I

where the i sum is over the eight corners of the
s/6a cube which contains the k point. L was varied
between 1 and '1 to test the sensitivity to the inter-
polation. For L = 1 the interpolation is nearly lin-
ear, and for L = I the nearest w/6a mesh point
dominates. The results were very insensitive to
L variations (less than 1% changes), so we report
only those results obtained for L =3. The number
of tetrahedrons was also varied by choosing dif-
ferent s/Na meshes. The results for ¹6were
all within a percent of each other.

The contributions from each of the allowed 13
band pairs were summed to give the Van Vleck
orbital form factor listed in Table I. Only five
values were obtained because of the large com-
putational effort required. The bulk (G =0) Van
Vleck susceptibility was calculated to be 130x10 '
emu/mole. The results are normalized to this
value and shown in Fig. 4. The curve which passes
through these points is the Freeman-Watson free
ion 3d form factor. Et is at first quite surprising
that the solid-state form factor has the same
shape as the free-ion form factor. It is surprising
because in the ion the 3d orbitals have the same
radial dependence and the angular momentum is a

I

ground-state property, whereas in the solid the
angular momentum is quenched in the ground state
and the angular momentum matrix elements are
taken between occupied and unoccupied states with
considerably different radial dependence (see Fig.
3). We believe this result is somewhat of a coin-
cidence and arises because the Cr Fermi level
falls in the middle of the d bands. There is thus
an averaging effect between the spread out occupied
wave functions in the lower bands and the more
spatially contracted unoccupied wave functions
in the higher bands. This effect is demonstrated
in Fig. 5, where the normalized contributions
from band pairs 1-3 and 3-5 are shown along with
the total. The form factor for bands 1-3 is more
contracted relative to the total because it involves
the lower band 1, which has more spatially spread
out wave functions, whereas the band-5 wave func-
tions are more contracted because of their anti-
bonding character and hence the 3-5 "transitions"
yield a more expanded form factor.

Another feature apparent in Fig. 4 is the lack
of any orbital anisotropy. The form factor was
evaluated for G =(4, 0, 0) and (3, 3, 0) because the
anisotropy in the measured form factor was large
for these reflections. However, within the ac-
curacy of our calculation there is no orbital aniso-
tropy. This does not contradict the experimental
results since the anisotropy of the calculated spin
form factor discussed in Sec. III B accounts for the
measured anisotropy. Since the anisotropy is a
purely solid-state effect, more precise experi-
mental measurements would be useful in deter-
mining if there is any anisotropy from the orbital
contribution to the magnetization density.

D. Diamagnetic form factor

The expression for the diamagnetic form factor
is given in Eq. (2.44). In the tight-binding or
atomic limit this contribution to the bulk suscepti-
bility corresponds to the usual core diamagnetic
susceptibility of Eq. (2.45b). For the core elec-
trons it is convenient to write Eq. (2.44) as

2

yD(G, O) =, P f„g(nkle 'a" Ink)

n%

and treat G as a continuous variable (see Ref. 13).
The summation is just the charge-density form
factor, which may be easily calculated and the
numerical derivative taken. For the conduction
electrons we again use the Wigner-Seitz approxi-
mation and rewrite Eq. (2.44) as

4n 'e'

LN, lm
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TABLE II. Calculated Stassis diamagnetic form fac-
tors for the core and the conduction electrons. The units
are 10 emu/mole.

l60

140)

[000]
[110]
[200]
[220]
[310]
[400]
f 330]
[420]
[510]
[440)

Core
(1S 2S 2p 3S 3P )

-14.417
—9.468
—6.467
-3.312
-2.470
-1.198
—0.991
-0.841
-0.586
-0.110

Conduction
electron

-29.274
-5.050
-0.991
—0.314
-0.588
—0.134
—0.015
—0.057
-0.034
-0.046

Total

—43.691
-14.518
-7.458
-3.626
-3.058
-1.332
—0.976
-0.784
-0.620

0.064

—(20

~ IOO
E

80
C)

~ 60

20

I

0.2
I I
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SiNerx

I
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Q

O.S

where the charge density has been expanded in
cubic harmonics Z~&(r):

FIG. 6. Experimental neutron magnetic form factor
of Stassis et al . (Ref. 2) and the total theoretical form
factor. The solid curve is the free-ion result using a
40% spin and a 60% orbital contribution, but with no
diamagnetic contribution.

= Q C~„(r)Z (r) .

The results of these calculations are presented
in Table II. The conduction electrons contribute
very little beyond the first reflection but give a
very large contribution in the forward direction.
It is interesting to note that the bulk diamagnetic
susceptibility calculated from our atomic charge
density was —5S.124 &10 ' emu/mole, which is
26% larger than the solid-state result Howev. er,
our solid-state result is for those currents re-
stricted to within the %'igner-Seitz unit cell, and
contributions from intercellular currents (e.g. ,
the Landau diamagnetic contribution) may be im-
por tant.

IV. RESULTS AND CONCLUSIONS

The total theoretical form factor is obtained by
adding the Van Vleck orbital, the Pauli spin, and
the diamagnetic form factors. Figure 6 shows this
form factor compared with the experimental re-
sults of Stassis et al. ' The spin form factor has
been multiplied by an exchange enhancement fac-
tor of 2.53 (determined by least-squares fitting
the total form factor at the four values of sine/P. ).
The agreement betmeen theory and the neutron
measurements is excellent; however, there is
poor agreement between theory (at sinl9/A =0) and
the measured bulk susceptibility. Given the ex-
ceptional agreement for finite scattering angles,
this discrepancy for the bulk susceptibility is very
intriguing. Most of the difference arises when the
diamagnetic form factor is considered. It should

be recalled that the atomic diamagnetic form fac-
tor is 26/0 larger at G =0 than the solid-state dia-
magnetic form factor, and would result in an even
larger discrepancy. Since there most certainly is
a diamagnetic contribution on the order we have
calculated, the explanation for the higher mea-
sured value must be the neglect of additional para-
magnetic contributions. These additional contx ibu-
tions must correspond to magnetization densities
having relatively uniform spatial distributions in
order to substantially increase only the 6 = 0 "re-
flection. " It is reasonable to expect such con-
tributions are contained in the expressions we
have not evaluated. In Sec. IIC we were concerned
with obtaining formulas mhich mere correct in the
tight-binding limit, and neglected surface integrals
over the unit cell because of the small value of the
wave functions on this surface. These surface
terms are nonzero for itinerant electrons, and
presumably correspond to intercellular currents
mhich would contribute at G =0. Thus the evalua-
tion of these terms would be very interesting, al-
though it is beyond the aim of the present paper
in which we are primarily concerned with the
orbital form factor.

The calculations for the orbital form factor in-
dicate that the atomic model must be used with
caution if the Fermi energy does not lie in the
middle of the d-band complex. Of' course, when
the Fermi energy does lie in the middle of the d
bands the Van Vleck paramagnetism is largest and
thus the atomic model should be reasonable for
the solids which have the largest Van Vleck con-
tributions. In this respect it would be very inter-
esting to perform accurate neutron diffraction
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measurements on metals in which the Fermi en-
ergy is near the top or the bottom of the d bands
and in which the gyromagnetic ratio is small
enough to indicate a substantial orbital contribu-
tion (e.g. , Ti). The calculated orbital form factor
is isotropic. This may not be a general feature
of orbital form factors for other metals which
have less than cubic symmetry or higher atomic
number so that spin-orbit coupling becomes im-
portant. Accurate measurements of the induced
form-factor anisotropy for heavy metals with large
orbital contributions coupled with the correspond-
ing relativistic band and susceptibility calculations
will shed light on this question.
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APPENDIX A

We prove here that the two divergent terms in
X„(G+q, q) exactly cancel in the limit q 0. We
single out from E(l. (2.18) the coefficients of q

'
from both terms. These are

2

7,=, , Q " '
&n fPe ' ' fn'&&n'fP, fn&,

2

2 2 a Q

Since

(n' fP. fn&=(im/ri) &n' fH, x-xff, fn&,

and the Hamiltonian 0 is Hermitian for a finite
crystal whose wave functions vanish rapidly out-
side the volume of the crystal, one obtains

(n'
f P, f n& = (im/h)(Z„. E—) (n'

f x f n& .

Then,

2

T~= 2 O- fX~ Q P 8 A Q X Q

x I'e'~", x n

This completes the proof.
In a similar manner one can show that the q

'
terms in the bulk susceptibility exactly cancel.
There is no q

' term here because of the symme-
try property

X gs(q) q) = X g~(-q) -q) ~

Tlius the bulk susceptibility is also well behaved
in the uniform-field limit.

The same manipulations are also used to txans-
form the tight-binding result E(l. (2.23) into the
more familiar form Eq. (2.25).

APPENDIX B

In this appendix, we show the expressions for
the current matrix elements in terms of the AP%
wave functions. First, with the plane waves out-
side the muffin-tin spheres, it is easy to show that
the current matrix elements become

(skfe-""V,. fn'k&= gX„*W„,i(k+K„,), n8(C+K„. K„) 4xr-M, '-
nw'

+ n~ ))I

where Q is the unit-cell volume, K„'s are the reciprocal-lattice vectors associated with the plane waves,
and the A„are the corresponding AP%' expansion coefficients.

Second, with the antular decomposition of the wave functions inside the muffin-tin spheres, we seek ma-
trix elements of e'6'&~, where

8 . 8 8
V, =+——+I — and

W2 sx sz Bz

This becomes then

&safe"'W, fn'k&= g a,'.~;„,(fm fe(G'V, ff'm'&,
f m, lcm'

where the A, „are the expansion coefficients for the wave functions inside the APW sphere. The last ma-
trix element can be further reduced,

(( I~"' &, Ir'm')=4 p( v((!)

Jap�);'„(r',

),); (r) Jdrr'), (Gr)R, (r)(v )(, (r)).; (r)],
k6

(B4)

where we have used the plane-wave expansion
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e' ' ' = 4w Q i j~(Gr) Y~[)(G)Y, e(r)
ae

to obtain Eq. (B4) from Eq. (B3). Now we use the relation

v [)),(r)Y, [ )[=(-))"'()~ ))' '(—— ))),(r) Y— Y,'„„[r)
P m M

+(-I)'I" —„--R, (r) P Y,*, „(r).i/2 1 l l —1

P m M

Then, after the substitution of Eq. (B6), Eq. (B4) becomes

(B5)

(B6)

(Im(e' '
V, (l'm') =4vp & Y,*e(G)(- I) Q (&'+I)' 'G)'[), ) ii, [),

4e e e, -p -m'j
L"'

dr r 'j,(Gr) R,(r) ———R, .(r) +(l')'~' G,'[),

l' —1 1 l' d l'+1
X dr r 'j ~(Gr) R,(r) —+ R, , (r)dr

6), —p -m'
(B7)

In Eq. (B7), the Gls, ~ are the Gaunt coefficients which are defined by

G~„, . = dr Y, (r) Yg„(r) Y, .(r) . (Bs)

Equations (Bl) and (B7) are the expressions used to evaluate the current matrix elements.

*Work performed for the U.S. Energy Research and
Development Administration under Contract No. W-
7405-eng-82.

f Present address: Argonne National Laboratory, Ar-
gonne, Ill. 60439.

'A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys.
Rev. 134, A650 (1964).

2C. Stassis, G. R. Kline, and S. R. Sinha, Phys. Rev.
Lett. 31, 1498 (1973); Phys. Rev. B 11, 2171 (1975).

~R. M. Moon, W. C. Koehler, and A. L. Trego, J. Appl. .
Phys. 37, 1036 (1966) ~

S. Asano and J. Yamashita, J. Phys. Soc. Jpn. 23, 714
(1967).

5A. J. Freeman and R. E. Watson, Acta Crystallogr. 14,
231 (1961).

6R. Huguenin, G. P. Pel. ls, and D. N. Bal.dock, J. Phys.
F 1, 281 (1971).

7R. Kubo and Y. Obata, J. Phys. Soc. Jpn. 11, 547 (1956).
8W. M. Lomer, Proc. Phys. Soc. Lond. 82, 156 (1963);

N. Mori, J. Phys. Soc. Jpn. 20, 1383 (1965); Masaru
Yasuri and Masao Shimizu, ibid. 31, 378 {1971).

~J. E. Hebborn and N. H. March, Adv. Phys. 19, 175
(1970).

' Y. Yafet, Phys. Rev. 106, 679 (1957).
"D. Pines, Elementary Excitation in Solids (Benjamin,

New York, 1964).
' J. H. Van Vleck, The Theory of Electric and Magnetic

Susceptibilities {Clarendon, Oxford, 1932), p. 227.
' C. Stassis, Phys. Rev. Lett. 24, 1415 (1970)~

' F. M. Mueller, J. W. Garland, M. H. Cohen, and K. H.
Bennemann, Ann. Phys. (N. Y.) 67, 19 (1971).

'5D. D. Koel. ling, J. Phys. Chem. Solids 33, 1335 (1972);
B. N. Harmon and D. D. Koelling, J. Phys. C 7, L210
(1974).

'6B. N. Harmon and A. J. Freeman, Phys. Rev. B 10,
1979 (1974).

"D. D. Koel.ling, A. J. Freeman, and F. M. Muel. ler,
Phys. Rev. B 1, 1318 (1970).
L. F. Mattheiss, J. H. Wood, and A. C. Switendick,
Methods in Computational Physics (Academic, New

York, 1968), Vol. 8, p. 111.
'9Both our wave functions and energies agree well with

R. P. Grupta and S. K. Sinha [Phys. Rev. B 3, 2401
(1971)]. The agreement with other band calculations is
also good —see J. Rath and J. Callaway, Phys. Rev.
B 8, 5398 (1973), and references therein.
B. N. Harmon and H. Myron (unpublished).
O. Jepson and O. K. Anderson, Solid State Commun. 9,
1763 (1971).
G. Lehman and M. Taut, Phys. Status Solidi B 54, 469
(1972).

~3A. J. Freeman, B. N. Harmon, and T. J. Watson-Yang,
Phys. Rev. Lett. 34, 281 (1975).

~4Per-Anker Lindgard, Solid State Commun. 16, 481
(1975).
J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109
(1975) ~


