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Magnetic susceptibility of antiferromagnetic chromium
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The static magnetic susceptibility of pure chromium y(T) has been measured over the temperature range from

4.3 to 340 K. The experimental results are compared with a theory based on the Fedders-Martin model of an

antiferromagnet generalized to include bands of arbitrary shape. Fair agreement between theory and

experiment is found for g(T) from the Neel temperature —312 K down to about 130 K. At 90 K the actual

susceptibility passes through a minimum, then rises again with decreasing temperature. Neither the minimum

nor the observed increase at low temperature are predicted by the theoretical model.

INTRODUCTION

Metallic chromium exhibits a very unique anti-
ferromagnetic structure below 312 K. This struc-
ture results from conduction electrons condensing
into a state of static spin-density waves" whose
wave vectors are slightly incommensurate with
the reciprocal lattice. These waves are trans-
verse linearly polarized (the wave vector of the
spin-density wave is perpendicular to the spin
polarization vector) between about 123 and 312 K,
and longitudinally polarized below 123 K. Such an
itinerant electron antiferromagnetism is a truly
rare phenomenon and can exist only in specific
electronic structures over a limited range of
electron concentrations. ' Therefore different
physical properties of binary chromium alloys
have received considerable attention in the past
from both experimental and, to some extent,
theoretical viewpoints. In spite of some general
progress toward a better understanding of this
unique antiferromagnetic state, numerous and
fundamentally important questions still remain
completely or partially unanswered. One such
incompletely understood area is the static mag-
netic behavior of itinerant binary chromium sys-
tems. We report here our recent experimental
results for the static magnetic susceptibility
versus temperature of pure antiferromagnetic
chromium, and compare them with theoretical
predictions based on a generalized Fedders-
Martin model of the antiferromagnetic state.

THEORETICAL CONSIDERATIONS

Owing to its itinerant antiferromagnetism,
chromium exhibits an anomalous spin susceptibil-
ity below the magnetic ordering (Neel) tempera-
ture T„.The gross features of the g vs T curve
can be understood from elementary arguments
based on a two-sublattice model of atomic spins.

A strong anisotropy is found according to the
orientation of the external field H relative to the
direction of magnetization p, of the two sublat-
tices. In the perpendicular orientation the su-
sceptibility y~ is nearly independent of temper-
ature; the polarization of the sublattices normal
to the applied field exerts only a feeble opposition
to their magnetization being slightly turned in the
field direction. On the other hand, Xii goes to
zero at zero temperature because the internal
field is so strong that it prevents any spins in
the opposing sublattice from turning over. The
parallel susceptibility increases smoothly with
temperature until the anisotropy disappears at T„.

In a macroscopic sample crystal orientations
are randomized, so that the measured susceptibil-
ity X should be

1 2X(&) = sXii+ 3X»

and X(0) should have the average value of 3XJ.
These predictions are borne out qualitatively by
the chromium susceptibility data, despite the
fact that the antiferromagnetism of chromium is
attributed to itinerant conduction-band electrons.

The first susceptibility studies pertinent to
itinerant antiferromagnets like chromium were
undertaken by Fedders and Martin' (FM). Fol-
lowing Lomer, ' FM proposed a two-band model
for chromium in which antiferromagnetism re-
sults from the nesting of electron and hole pieces
of the Fermi surface. The antiferromagnetic
state thus stabilized below T„is a spin-density
wave having a net conduction-electron spin po-
larization P(r) at every point, whose amplitude
at equivalent points in the crystal lattice is mod-
ulated sinusoidally with a period determined by the
Fermi-surface geometry and generally incom-
mensurate with the lattice. The direction of spin
variation defines the axis q of the spin-density
wave with wave number iqi. The FM state is
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transverse linearly polarized, cor responding
to a fixed dix'ection of polarization P which is
everywhere perpendicular to q.

On the itinerant picture there is a gap energy
which keeps the spin antiferromagnetic and de-
presses the susceptibility y below T„.The gap
energy g(T) in the FM model is given implicitly
as the solution of

Here v(0) is the strength of the (screened) elec-
tron-electron x'epulsion, y is a suitably averaged
matrix element of v, P= 1/K Te, and

where &(K) is the one-electron energy measured
from the Fex'mi sux'face. Tz is fixed by the con-
dition that the gap energy vanish at the transition
temperature.

The paraI. lel and perpendicular spin suscepti-
bilities are calculated in the FM theory as

g~ 8 PE———tanh —+1'& (T )E~ 8E

where 6' denotes Cauchy principal value. The
dominant contribution to the second term comes
from the region around the Fermi energy & =0.
Representing p there by its Taylor series

p (e) = p(0) +p'(0) e+p"(0)(a e')

and extending the integx'ation limits to infinity
gives

d& tan h ——j.p(&) pE
2

4P—(o)K,(Pg) +p" (0)g'[K. (Pg) K.(—PK)),

where K„(z)are functions (defined in the appendix)
which reduce to the modified Bessel functions
K (z) ln the limit of large z.

g(T) is given in terms of g„the zero-temper-
ature gap, by

J
", "d, P( ) ",""d,P( ) t „hP

E ~ ~ E 2
j.

(10)

At the Neel tempex'ature T„gvanishes identical. ly
and Egs. (7), (9), and (10) give

4&e- tt (x/2)

g0
p

p" (0)g', v' 2e,

where p.~ is the Bohr magneton.
%e have applied these equations to the study

of the static magnetic susceptibility in pure chro-
mium. The band structure e(K) need not be spe-
cified further, since the whole theory is fixed
by the density of states and its curvature at the
Fermi energy. This generalizes the original
work of Fedders and Martin, where a linear de-
pendence of & on E was assumed in the context
of spherical bands.

GaP energy g(T ). By introducing the density
of states p(e), we can write the integral in Eq.
(2) as

d& 1+ tanh—J p(&)
2

where &, 2 are the band limits measured from
the Fermi energy. The first term is

p(&)de =2p(0) ln ' +6' J( —p(e)
2&,

' l'2 de
E g 1

+ o(g&&.)'

where g is the digamma function. The quantity in

large curly brackets is the simple FM result for
a linear band structure; with T„=312K the pre-
dicted gap is go —0.044 eV. The correction factor
may reduce this value appreciably. Indeed, the
chromium susceptibility data suggest go=0.028
eV.

Combining Eqs. (V)-(ll) yields an implicit etlua-
tion for g(T):

p Og g

4m wp 0 g

= —2KO(pg) + [Ko(pg) —K, (pg)j.
2p 0

Near T„g(T) vanishes as (T„-T)'~, while the
curve is remarkably flat at low temperature. Fig-
ure 1 shows g(T) calculated numerically from
Eg. (12) for parameters giving the best fit to the
chromium susceptibility data.

Pmgl/el suseePtihility g~~. In terms of the den-
sity of states p(e) Eq. (4) becomes
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I.O

X~ coincides with X[] at T„,but actually increases
with decreasing T, slowly reaching the zero-
temperature limit

O

0.5

Xi(0) =X«1+2/(«)+2ln
Ngp

(20a)

P (0), 2e, 1
(20b)

0 l00

2p~ P PE
de p(e) sech'

(2w)' 2,, 2
(13)

Again the main contribution to the integral comes
from the Fermi energy. Proceeding as before
we obtain

Xlt = Xo -2pgEO Pg

~
2 0 &sf&'.(&r)-&.'(«s)l)
2p 0 (14)

Here a prime denotes differentiation with respect
to the argument and

x.= [2p&/(»)'] 2p(o)

is the familiar Pauli susceptibility. At T„
(15)

FIG. 1. Temperature dependence of the antiferromag-
netic gap energy g (T) computed from the generalized
Fedders-Martin model. The familiar BCS-like gap is
shown for comparison.

where Eq. (20b) follows from Eq. (11). Figure
2 shows the parallel and perpendicular contribu-
tions to the susceptibil. ity below T„calculated
numerically from Eqs. (14) and (19) using pa-
rameters giving the best fit to the chromium
susc eptibility data.

EXPERIMENTAL CONSIDERATIONS

The chromium sample, whose magnetic prop-
erties are reported in this paper, was prepared
from an arc-melted ingot using chromium (lo-
chrome iodide crystals) obtained from Chromal-
loy Corporation. The analysis of the impurities
found in this material has been given previously. '
The arc melting of this material was done by
means of facilities and techniques described else-
where. ' The magnetic susceptibility data shown
in Fig. 3 (dotted curve) were obtained using an
annealed polycrystalline sample (at 1000 'C for
about 8 h followed by slow cooling at room tem-
perature). The mass of this specimen was about
0.3 g. The magnetic susceptibility measurements
were made, starting at 4.2 K, with increasing

X« ——Xp[1 +xP" (0)/6P(0)p'„], (16)

which differs from X,. The discrepancy may be
traced to the additional band-structure details
contained in p"(0). As expected, X«decreases
rapidly with temperature, vanishing exponentially
as T approaches zero:

l.5-

x« -x.(»Pg)~'& " (17) 10-

Perpendicular susceptibility Xj. In place of
Eq. (5), a more convenient expression for cal-
culating Xi may be obtained by differentiating
the gap equation (2) to get 0.5-

(18)

With Eqs. (12) and (14), this yields, after some
manipulation,

Xi=Xo 1+20( )+2ln1 4m

P~g

p" (0) 2v«
~

4 ~D~ &«,
—8') —4K, (I38) . (19)

100 200
T (K)

FIG. 2. Parallel and perpendicular components of
susceptibility computed from the generalized Fedders-
Nartin model of an antiferromagnet.
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FIG. 3. Experimental results for the susceptibility of
antiferromagnetic chromium. Solid curves are theore-
tical predictions of the generalized Fedders-Martin
model for several values of the antiferromagnetic gap
energy g 0.

temperatures using the equipment based on the

Faraday method described briefly in a previous
paper. '

RESULTS AND DISCUSSION

Figure 3 compares the theoretical. prediction
for g = —,'gt~+-,'g~ from Eqs. (14) and (19) with the
experimental results on an annealed polycrystal-
l.ine sample over the range 4-340 K. The Noel
temperature was determined to be 311.8+ 0.2 K.

The experimental g vs T curve clearly shows
a broad minimum at about 90 K, followed by a
gradual increase in g with decreasing tempera-
tures. A similar behavior in pure chromium has
been noted before. ' " It is tempting to think that
such a behavior results from magnetic impurities
possessing localized magnetic moments. How-

ever, we. believe that the increase in g at low

temperatures is an intrinsic property of chrom-
ium for the fol. lowing reasons: First, the con-
tent of iron in our chromium sample is only about
10 ppm, an amount much too small to cause the
observed effect. Furthermore, the level of co-
balt and manganese is even lower, about 1 ppm
or less. Second, some limited experimental
studies indicate that the minimum mentioned above
remains approximately unchanged when, for ex-
ample, titanium is dissolved in chromium, "but
gradually disappears when silicon is added to the
chromium matrix. "

Finally, it should be remarked that pure chrom-
ium undergoes a very small step-type decrease"

in y with decreasing temperatures at the spin-
flip transition (123 K). Because of its small size,
this anomaly is not observable in the g vs T plot
shown in Fig. 3.

In constructing the theoretical curves the density
of states at the Fermi energy p(0) and its cur-
vature p" (0) were chosen to reproduce the ob-
served value and slope of the susceptibility at the
Noel temperature. With this procedure the best
fit to the data down to about 130 K was obtained
for g, =0.028 eV. Other estimates of the gap ener-
gy obtained by optical. methods give somewhat
higher values. ""The susceptibility predictions
are very sensitive to the gap energy, as shown
again by Fig. 3. go=0.044 eVisthegap energy
i.n the simple FM model obtained by taking p" (0)
=0 in Eq. (11). We conclude that the density-of-
states curvature at the Fermi energy is significant
in harmonizing theory with experiment for the
susceptibility in the high-temperature regime
below T~. The actual curvature deduced from
the data is

[p" (0)»p(0)lg'. =0.4».
For no choice of g, was it possible to fit the

observed results below about 120 K. In particular,
the broad temperature minimum in the chromium
susceptibility around 90 K defies explanation
within the present framework. Apparently, some
important mechanism has been overlooked. One
possibil. ity concerns the samples themselves,
which are polycrystal. line. Thus a mixture of spin-
density wave vectors q of varying orientation is
represented, and comparison of theory with ex-
periment presupposes this distribution to be ran-
dom. Any mechanism invalidating the randomness
supposition would have a significant effect, par-
ticularly at lower temperatures, where one ex-
pects strong anisotropy in g. To check this hy-
pothesis, susceptibility measurements were re-
peated on chromium samples which had been
cold worked. Cold working ensures random q
orientations, thus eliminating any doubts con-
cerning directional averaging. No significant
deviations from the original. sample data were
found. For the purpose of clarity, these mea-
surements are not included in Fig. 3. The small
effects of cold work on g at T& and at tl'e spin-
flip transition as a function of warming a.nd cool-
ing rates will be reported in a separate publica-
tion. The cold-worked samples did reveal, how-
ever, an enhancement in the anomaly at the spin-
flip transition. In general. , spin flip appears to
loafer the susceptibility, but not nearly enough to
account for the observed minimum or the rise
in y at low temperatures.

Other contributory mechanisms overlooked in
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the theory include the susceptibility of electrons
in other (nonmagnetic) chromium bands and the
influence of collective modes (spin wave excita-
tions}. Estimates by Windsor" and Gupta and
Sinha" indicate the other band contributions are
appreciable at the magnetic ordering temperature,
but the temperature dependence is an unknown

quantity. Nevertheless, other band contributions
would certainly help to bring the theory into better
agreement with the high-temperature data below

TN'

At low temperatures the collective modes are
expected to dominate the response. At zero tem-
perature the FM model antiferromagnet does ex-
hibit a collective mode with a soundlike disper-
sion law at long wavelengths. Failure of the pres-
ent theory to account satisfactorily for the low-
temperature results is likely due to the presence
of these collective excitations, whose influence
on }((T) has not yet been assessed.

ACKNOWLEDGMENTS

The authors are grateful to the U. S. National
Science Foundation (S.A. ), the Research Corp-
oration (C.A.M. ), and Swedish Statens Natur-
vetenskapliga Forsknivgsrad (L.H. ) for the fi-
nancial support of this work. Helpful discussions
with Professor K. V. Rao and Professor H. U.
Astrom, also are greatly appreciated.

APPENDIX

The functions K„aredefined by

Equation (A2) is also useful for computation when

z is large.
Functional equations for K„may be obtained di-

rectly from the Bessel-function recursion rela-
tions, In particular, from

—[z'K, (z)] = -z'K, (z) =z' —K, (z) (A3)

we deduce

—[z'K, (z)] =z' —K,(z),

which may be integrated to give

z'K, (z) =limz'K, (z) + z' —K,(z}dz.
g~ 0 0

(A5)

Letting z -~ in Eq (A5.) allows evaluation of the
limit as

(d Cf{d

, e +1 6'ltmz'K, (z) =2 i zK (z) dz =2

OO

2 2-x2-s Q [z'+(2n —i)'v'] 'i'— (A7)

where y is Euler's constant. For uzi(v the radi
cal can be expanded as a power series in z to get

(A6)

where Eq. (Al) has been used for K,.
Representations useful when z is small derive

from the interesting formula"

4m yK (z) =- ln ———
z 2

p oo

Kq(z) =
I g ~ash( coshvf. (Al)

K,(z) =-,' ln—+-,'q(-,') —(l/32v')q" (-,')z'+0(z'),
The relationship to Bessel functions K„(z)is read-
ily established by expanding the denominator of
the integrand according to the binomial theorem
and using the integral representation of K„,

(A2)

(AB)

where g is the digamma function. The correspond-
ing formula for K,(z) then follows directly from
Eqs. (A5) and (A6):

,(z) =v'/6z' ——,
' —'(1/64v')f" (—,')z'+0(z').
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